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Background: Female breast cancer is currently the most frequently diagnosed cancer in
the world. This study aimed to develop and validate a novel hypoxia-related long
noncoding RNA (HRL) prognostic model for predicting the overall survival (OS) of
patients with breast cancer.

Methods: The gene expression profiles were downloaded from The Cancer Genome
Atlas (TCGA) database. A total of 200 hypoxia-related mRNAs were obtained from the
Molecular Signatures Database. The co-expression analysis between differentially
expressed hypoxia-related mRNAs and IncRNAs based on Spearman’s rank
correlation was performed to screen out 166 HRLs. Based on univariate Cox
regression and least absolute shrinkage and selection operator Cox regression
analysis in the training set, we filtered out 12 optimal prognostic hypoxia-related
INcBRNAs (PHRLs) to develop a prognostic model. Kaplan—-Meier survival analysis,
receiver operating characteristic curves, area under the curve, and univariate and
multivariate Cox regression analyses were used to test the predictive ability of the risk
model in the training, testing, and total sets.

Results: A 12-HRL prognostic model was developed to predict the survival outcome of
patients with breast cancer. Patients in the high-risk group had significantly shorter median
OS, DFS (disease-free survival), and predicted lower chemosensitivity (paclitaxel,
docetaxel) compared with those in the low-risk group. Also, the risk score based on

Abbreviations: LncRNA, Long noncoding RNA; TCGA, The Cancer Genome Atlas; GSEA, Gene Set Enrichment Analysis;
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; OS, Overall survival; DFS (disease-free survival); ER,
Estrogen receptor; PR, Progesterone receptor; HR, Hormone receptor; HER2, Human epidermal growth factor receptor 2;
TNBC, Triple-negative breast cancer; LASSO, Least absolute shrinkage and selection operator; ROC, Receiver operating
characteristic; AUC, Area under the ROC; HRL, Hypoxia-related IncRNA; PHRLs, Prognostic hypoxia-related IncRNAs;
DEHmRNAs, Differentially expressed hypoxia-related mRNAs.
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the expression of the 12 HRLs acted as an independent prognostic factor. The immune cell
infiltration analysis revealed that the immune scores of patients in the high-risk group were
lower than those of the patients in the low-risk group. RT-gPCR assays were conducted to
verify the expression of the 12 PHRLs in breast cancer tissues and cell lines.

Conclusion: Our study uncovered dozens of potential prognostic biomarkers and
therapeutic targets related to the hypoxia signaling pathway in breast cancer.

Keywords: breast cancer, hypoxia, long noncoding RNA, prognosis, immune infiltration, nomogram

BACKGROUND

Female breast cancer surpassed lung cancer as the most
frequently diagnosed cancer (representing 11.7% of total cases
and 24.5% of female cancers) worldwide in 2020 (Sung et al.,
2021). Despite recent advances in high-quality prevention, early
detection, and treatment services, breast cancer is still the leading
cause of cancer-related death for female patients (15.5%) (Loibl
et al., 2021a). Thus, it is of great importance to identify novel
prognosticators and develop a more precise prognostic model to
help optimize the individual treatment for patients.

Tumor cells grow in and continuously interact with an incredibly
complex and dynamic network called tumor microenvironment
(TME). TME consists of noncellular components, such as
extracellular matrix, growth factors, cytokines, enzymes, and
hormones, as well as diverse types of cells, including endothelial
cells, pericytes, immune inflammatory cells, and fibroblasts
(Hanahan and Weinberg, 2011). Hypoxia, as one of the most
important abnormal microenvironments that tumor cells are
continuously exposed to, has a significant impact on tumor
biology, leading to a higher phenotypic heterogeneity (Marusyk
et al,, 2012). The hypoxic tissue areas of many breast cancers are
heterogeneously distributed within the tumor mass (Vaupel et al,
2004). Oxygen tension (pO,) measured in normal breast tissue
exhibited a mean (and median) of 65 mm Hg (Vaupel et al,
2007), whereas for breast cancers in T1b-T4 stages, the median
pO, was 28 mm Hg (Vaupel et al., 1991). The hypoxic response is
mainly ascribed to HIF. The HIF is a heterodimer comprising an
inducible a subunit (HIF-a) and a constitutively expressed  subunit
(HIE-PB), which functions as a transcriptional factor that regulates the
expression of genes involved in diverse biological characteristics of
tumors (Wang et al, 1995). The levels of HIF-la have been
implicated as an independent prognostic factor for patients with
breast cancer (Bos et al., 2003). The hallmarks of cancer, such as
angiogenesis (Niu et al., 2020), invasion and metastasis (Bristow and
Hill, 2008), evading immune destruction (Hsing et al., 2012) and
reprogramming of energy metabolism (Samanta and Semenza,
2018), have been validated to be tumor supportive and associated
with the hypoxic tumor environment of breast cancer.

LncRNAs are defined as RNA transcripts longer than 200
nucleotides in length, with no potential to encode proteins
(Kopp and Mendell, 2018). Accumulating evidence suggests
that IncRNAs play crucial roles in the occurrence and
development of a large variety of cancers including breast
cancer (Gao et al, 2020; Liu et al, 2021). During tumor
hypoxia, hypoxia-inducible factors (HIFs) are upregulated

and either positively or negatively regulate IncRNAs
through hypoxia response elements within their promoters.
Or vice versa, some IncRNAs can regulate the HIF signaling
pathway directly or indirectly (Choudhry et al, 2016).
Moreover, increasing evidence reveals the potential of
IncRNAs as diagnostic or prognostic biomarkers (Bin et al.,
2018; Qian et al., 2020; Chen Y. et al., 2021).

Though there was a similar study proposing a prognostic
signature based on HRLs (Zhao et al., 2021), which served to
stratify patients with early-stage breast cancer, we aimed to
develop and validate a more comprehensive and reliable
prognostic model for predicting the survival of all breast
cancer patients. By means of both bioinformatic analysis and
experimental validation, we were also meant to mine some
potential tumor-supportive or tumor-suppressive IncRNAs to
indicate the further research direction on their functions in
breast cancer.

MATERIALS AND METHODS

Data Acquisition

We downloaded RNA sequencing data (1,109 breast cancer tissues
and 113 matched normal tissues) and corresponding clinical and
pathological information of patients with breast cancer from The
Cancer Genome Atlas (TCGA) (https://gdc.cancer.gov/) database in
March 2021. The clinical characteristics of the patients are listed in
Table 1. A total of 200 hypoxia-related mRNAs were obtained from
the Molecular Signatures Database V7.3 (Subramanian et al., 2005)
(https://www.gsea-msigdb.org/gsea/msigdb/, M5891).

Screening of Hypoxia-Related IncRNAs

Differentially expressed hypoxia-related mRNAs (DEHmMRNAs)
between the breast cancer and normal tissues were identified via
the differential expression analysis using the R package “DEseq”
with the threshold value set as |log, fold change (FC)| >1 and
adjusted p value of <0.05. Heatmap and volcano plots were drawn
using the R packages “pheatmap” and “EnhancedVolcano,”
respectively. The PPI (protein-protein interaction) network
was constructed using the STRING version 11.0 Program
(Szklarczyk et al, 2017). Further, we performed Gene
Ontology (GO) functional enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis via the R package “clusterProfiler”.
Finally, we identified the HRLs by Spearman correlation
analysis of DEHmRNAs according to the criteria of |

Frontiers in Cell and Developmental Biology | www.frontiersin.org

December 2021 | Volume 9 | Article 796729


https://gdc.cancer.gov/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Gu et al.

Correlation Coefficient| > 04 and p < 0.001. The
mRNAs-IncRNAs network were constructed via Cytoscape 3.8.2.

Construction of a Hypoxia-Related IncRNA

Prognostic Model

Univariate Cox regression analysis was used to identify prognostic
hypoxia-related IncRNAs via the R package “survival” with p < 0.05 as
the criteria. Heatmap and box plot were drawn using the R packages
“pheatmap” and “ggplot2,” respectively. Spearman’s rank correlation
was performed to assess the correlation among these genes using the
R package “corrplot.” Then, we randomly divided patients into a
training set and a testing set in the ratio of 1:1 using the R package
“caret.” The R package “glmnet” was used to perform least absolute
shrinkage and selection operator (LASSO) Cox regression analysis in
the training set to generate a coefficient for each hypoxia survival-
related IncRNA. Then, the risk score for each sample was calculated
based on the formula: Risk Score (RS) = Y., (Expi*Coe fi). Coef
means the coefficient of IncRNAs associated with survival, and Exp
means the expression of IncRNAs. Hence, breast cancer samples were
divided into a high-risk group and a low-risk group according to the
median risk score.

Validation of the Model

Kaplan—-Meier survival analysis was conducted to investigate the
differences in OS and DFS between high- and low-risk groups using
the R packages “survival” and “survminer,” no matter whether we
classified the patients into different groups based on their
clinicopathological characteristics. Receiver operating characteristic
(ROCQ) curves and area under the curve (AUC) were used to evaluate
the sensitivity and specificity of this prognostic model via the R
package “survivalROC.” Additionally, we used “survival” R package
to perform univariate and multivariate Cox regression analyses so as
to estimate the prognostic value of the model constructed. Finally, we
formulated a nomogram using the R package “rms,” which could
assign points for independent prognostic factors to predict 1-, 3-, 5-,
and 10-year OS of individual patients with breast cancer (Sui et al.,
2020). Meanwhile, we calculated the concordance index (C-index)
using “survcomp” and constructed calibration curves to evaluate the
predictive power of the nomogram.

Drug Sensitivity Analysis

We used the R package “pRRophetic” to predict the differences in
chemosensitivity from tumor gene expression levels for some
chemotherapy drugs, which was decided by the half-maximal
inhibitory concentration (IC50), between high- and low-risk
groups based on our prognostic model (Geeleher et al.,, 2014).

Gene Set Enrichment Analysis

We performed gene set enrichment analysis (GSEA) (version 4.1.0,
https://www.gsea-msigdb.org/gsea/index.jsp) to identify the related
differential biological function and pathways between high- and low-
risk groups as separated by the prognostic model using the following
gene sets: Hallmark, GO, KEGG and BioCarta. Each analysis
included 1,000 random permutations. The statistical significance
level was set to be p < 0.05 and the false discovery rate as < 0.25.
The plots were drawn using the R package “ggplot2.”

Prognostic Model in Breast Cancer

TABLE 1 | Baseline patients characteristics (n = 1,097).

Characteristic N (1,097) %
Age
<65 years 776 70.7
>65 years 321 29.3
Unknown 0 0
Sex
Female 1,085 98.9
Male 12 1.1
Unknown 0 0
Clinical Stage
| 183 16.7
I 621 56.6
Il 249 22.7
vV 20 1.8
Unknown 24 2.2
Pathologic T Stage
™ 281 25.6
T2 635 57.9
T3 138 12.6
T4 40 3.6
Unknown 3 0.3
Pathologic N Stage
NO 516 47.0
N1 364 33.2
N2 120 10.9
N3 77 7.0
Unknown 20 1.8
Pathologic M Stage
MO 912 83.1
M1 22 2.0
Unknown 163 14.9
ER status
Positive 808 73.7
Negative 238 21.7
Unknown 51 4.6
PR status
Positive 699 63.7
Negative 344 31.4
Unknown 54 4.9
HER2 status
Positive 149 13.6
Negative 640 58.3
Unknown 308 28.1
Molecular subtypes
Luminal A/B 501 45.7
HER2 positive 149 13
TNBC 139 12.7
Unknown 308 28.1

Immune Cell Infiltration Analysis
The CIBERSORT (Floberg et al., 2021), CIBERSORT-ABS(Yuan

et al,, 2021), TIMER (tumor immune estimation resource) (Jiang
et al., 2021), xCELL (Sui et al,, 2020), quanTIseq (Subramanian
et al, 2005), EPIC (extended polydimensional immunome
characterization) (Yeo et al., 2020), MCPcounter (Dienstmann
et al., 2019) algorithms were used to further analyze the
differences in immune cell infiltration between high- and low-
risk groups. The immune score for each single sample was
calculated using the R package “estimate.” Additionally, we
calculated the correlation between infiltrating immune cells
and risk scores using Spearman’s rank correlation with the
criteria of p < 0.05. Subsequently, 11 immune checkpoints

Frontiers in Cell and Developmental Biology | www.frontiersin.org

December 2021 | Volume 9 | Article 796729


https://www.gsea-msigdb.org/gsea/index.jsp
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Gu et al. Prognostic Model in Breast Cancer

A B Tumor versus normal

m m ‘Ty"e Normal @ NS @ Log2FC @ p-value @ p-value and Log2 FC
[ . leli ri |\ HH i HI \ \‘l‘ || zFPas I or

, ‘l 1” le |” i H || rlll i

| \ [ [ H\ i “ 1l

I
il

il A

‘l‘ h I M "
| w"r‘fn f.,f'* |
lr il ‘[w m“ I “‘1

|
|
|
|
| |
o |
75 !
|
: DEN: : BGN
| \ \ GP | |
F )
|
|
|
|
|
|

!ﬁ

ke "" Tff"' ‘”ﬂ "‘ = o

“M‘ i 'l‘ i fli

il m

ot ti ,)"‘,"wm i ) ,.rJ’sw J i i |
"U“W‘»MM i

ccuI
25 o PFKFHl |

° ca12
Kl}s 5i1°
4

]
it

i e m \,
H it 4y M

w{ o
\" www N
\fﬂzﬂ" 'qﬁ \/tm’Wl”ﬁ',“”'!"mlll:l il
i M\. "
ik l il
il il i i lfm,w)i," W i

\H\H I “ ‘i

Log2 fold change

&
" Glycolysis / Gluconeogenesis

HIF-1 signaling pathway

s
[ X
I ®:s
i @

PFKFB3 g
se’and ma e befism .8
Category

.~ Biosynthesis of amino acids
==l — Carbon metabolism

~ Fructose and mannose metabolism
~ Glycolysis / Gluconeogenesis

~ HIF-1 signaling pathway

EI‘R)Z

BP cc MF

monosaccharide metabolic process a o collagen-containing extracellular matrix a growth factor binding
ount
i i extracellular matrix structural constituent
carbohydrate biosynthetic process. o ; : endoplasmic reficulum lumen ] & Count
ount
8 ivi ° 2
hexose metabolic process o7 4 lyase activity
b 0 iysosomallumen{ @ :G ®:3
glucose metabolic process . . 9 . 8 glycosaminoglycan binding . 4
@ Golgilumen{ @ o @
gluconeogenesis 4 . . 11 cytokine binding [ )
sarcolemm: c-Ceh ine bindi
h biosyntheti X ~C chemokine binding ® )
exose biosynthetic process. [ ] padiust p.adjust p.adjust
anchored component of membrane{ @ . o
monosaccharide biosynthetic process. . 250-07 . chemokine binding [ ] 5004
pyruvate metabolic process [ see07 Vel her lument—@ 0.0050 coreceptor activity ® 0.005
7.5e-07 0.0075 0.006
NADH regeneration { @ 1o os nchored component of plasma membrane{ @ carbohydrate phosphatase activity { ®
canonical glycolysis 1 @ platelet alpha granule lumen{ @ sugar-phosphatase activity { @
0.06 0.08 0.10
01 020 010 015 020 ]
ge Ratio GeneRatio GeneRatio

FIGURE 1 | Differential expression and functional annotation of DEHMRNAs in breast cancer. (A) Heatmap and (B) volcano plot of DEHMRNAs between breast
cancer tissues and normal tissues (HTSeq-Counts data from TCGA, “DESeq”). (C) A PPI network of DEHMRNAs. (D) KEGG pathway and (E-G) GO function enrichment
analysis of DEHMRNASs.
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were selected from the previous literature (Marin-Acevedo et al.,
2018).

RNA Extraction and Real-Time
Quantitative PCR

Total RNA was extracted from 11 breast cancer tissues, paired
adjacent normal tissues, and breast cell lines including MCF10A
and MDA-MB-231 (under normoxia or hypoxia conditions) cell
lines. RT-qPCR experiments were performed as previously
described. The primers used in this study were shown in
Supplementary Table S1. The mRNA quantification of the 12
PHRLs was based on the 274" method and the expression levels
were plotted by using ACTB as the reference gene.

Statistical Analysis

Data were processed using Perl language (version 5.26.1) and
analyzed using R software (version 1.3.1073). The Wilcoxon test
was applied to compare gene expression, risk scores, drug sensitivity
(IC50), and immune cell infiltration scores between two
independent groups. Univariate Cox regression and LASSO Cox
regression analyses were applied to identify the most useful IncRNAs
to build a prognostic model. Survival analysis was conducted using
the Kaplan-Meier method and log-rank tests. The chi-square test
was used to compare the relationship between risk and immune
score level and other categorical clinicopathological factors.
Correlation analysis was assessed by Spearman’s rank correlation.
Statistical significance was set at p < 0.05 or 0.001 for diverse analysis.

RESULTS

Identification of Differentially Expressed

Hypoxia-Related mRNAs in Breast Cancer
We obtained 200 hypoxia-related mRNAs from the Molecular
Signatures Database V7.3 (HALLMARK_HYPOXIA, M5891),
which were previously validated to be hypoxia-regulated in
multiple kinds of cancer including breast cancer (Wang et al,
2009; Xia and Kung, 2009; Leithner et al., 2014). By comparing
their expression levels between 1,109 breast cancer tissues and
113 normal tissues using the R package “DEseq,” we identified 46
DEHmRNAs (Supplementary Table S2). The heatmap and
volcano plot are shown in Figures 1A,B. A PPI network
showed that almost all proteins encoded by the
aforementioned genes interacted with each other except SRPX
and TPBG (Figure 1C). Further, we performed KEGG
(Figure 1D) and GO (Figures 1E-G) analyses to investigate
the biological function of 46 DEHmRNAs. The top 3 most
enriched KEGG pathways were “HIF-1 signaling pathway”,
“Glycolysis/Gluconeogenesis”, and “Carbon metabolism”.

Screening of Hypoxia-Related IncRNAs and
Construction of a Co-Expression Network

Co-expression analysis between DEHMRNAs and IncRNAs based
on Spearman’s rank correlation was performed to screen out 166
HRLs according to the criteria of |Correlation Coefficient| >0.4 and

Prognostic Model in Breast Cancer

p <0.001 (Supplementary Table S3), of which 46 were significantly
upregulated and 41 were downregulated (Supplementary Figure S1
and Supplementary Table S4). Based on the mRNA-IncRNA co-
expression pattern, we constructed a network to show the
relationships among them (Supplementary Figure S2).

Development of Hypoxia-Related IncRNA

Prognostic Model

By matching the sample IDs in the expression matrix and clinical
information profile, we collected 1,090 samples for subsequent
analysis after excluding 19 samples. We performed univariate
Cox regression analysis to identify 20 PHRLs significantly
associated with survival (p < 0.05) (Figure 2A). The differential
expression of these 20 PHRLs is shown in Figures 2B,C. Most of
them were notably correlated with each other (Figure 2D). Then, we
randomly divided these 1,090 patients with breast cancer into two
groups in the ratio of 1:1: a training set (n = 546) and a testing set
(n = 544). LASSO-penalized Cox regression was performed in the
training set, and finally a prognostic model was developed, which
consisted of seven risk IncRNAs and five protective IncRNAs on the
basis of the coefficient value (Figures 2E-G). We calculated the risk
scores for all samples using the following formula: Risk score =
(0.309031851 x Exp of TDRKH-AS1) + (0.213481355 x Exp of
AC011978.2) +(0.170772984 x Exp of AC110995.1) + (0.051734285
x Exp of OTUD6B-ASI) + (0.046646469 xExp of YTHDF3-AS1) +
(0.019875191 x Exp of AL512380.1) + (0.019087737 x Exp of
MIR4435-2HG) + (-0.037067764 x Exp of HSDI1B1-AS1) +
(-0.063799579 x Exp of LINC02084) + (-0.162152639 x Exp of
TRG-ASI) + (-0.399031951 x Exp of AL451085.3) + (-0.886350422
x Exp of AL109955.1). All the patients were further separated into
high- and low-risk groups according to the median risk score in the
training set.

Validation of the Prognostic Model
We performed Kaplan-Meier survival analysis to investigate
whether there any differences in survival outcomes existed
between the high and low-risk groups. The results shown in
Figure 3A indicated that in the training set, patients in the high-
risk group had shorter median OS compared with those in the
low-risk group (log-rank test, p = 4.385¢-08). This significant
difference can also be seen in both the testing set and the total set
(p = 0.0026 in the former, p = 8.537e-10 in the latter) (Figures
3B,C). Then we built time-dependent ROC curves for the three
sets. The AUC for 1-, 3-, 5-, and 10-year OS was 0.734, 0.727,
0.741, and 0.786 in the training set and 0.681, 0.637, 0.612, and
0.749 in the testing set, respectively (Figure 3D). In the total set, it
was 0.707, 0.691, 0.684, and 0.769 (Figures 3E,F). Additionally,
we compared the DFS of 984 patients with breast cancer. As
expected, the patients in the high-risk group had significantly
shorter median DFS than those in the low-risk group when the
best cut point of the risk score was set as 1.55 (Figures 3G-I).
We next visualized risk score distribution, survival status, and
PHRLs expression in all three sets. The plots showed that,
whether in the training (Figures 4A,D), testing (Figures
4B,E), or total Figures 4C,F) set, patients in the high-risk
group had poorer survival and higher risk scores compared
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with those in the low-risk group. The heatmaps manifested the
differential expression pattern of PHRLs between the high- and
low-risk groups (Figures 4G-I).

We excluded 305 patients with incomplete clinical and
pathological information to further test the independent
predictive ability of the risk model. In order to ensure the
accuracy of the following analyses, we compared the
difference in clinicopathological factors of breast cancer
patients between training (n = 383) and testing (n = 402)
sets (Supplementary Table S5). As expected, there was no
significant difference between the two sets randomly sampled.
Then, we performed univariate and multivariate Cox
regression analyses. The results showed that the risk score
was significantly associated with OS (p < 0.001) after
adjustment for age, stage, TNM stage, ER/PR status, and

HER2 status in the training (Figures 5A,D), testing
(Figures 5B,E), and total sets (Figures 5C,F), suggesting
that the risk score could act as an independent prognostic
factor.

Moreover, we divided patients in the total set into multiple
groups according to their clinicopathological characteristics and
then used Kaplan-Meier survival analysis to verify the prognostic
value of the risk model for them. The results shown in Figures
6A-M indicated that the prognosis of patients in the high-risk
group was significantly worse than that of the patients in the low-
risk group. It is worth noting that this model was applicable to
patients with breast cancer of three different molecular subtypes
[HR-positive/luminal, HER2-positive, or triple-negative breast
cancer (TNBC)]. By comparing the risk scores of patients in
different groups, we found that patients over 65 years and those
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FIGURE 5 | Identification of the risk score as an independent prognostic factor by Cox regression analysis. (A,D) Training set. (B,E) Testing set. (C,F) Total set.

with higher clinical stage had higher risk scores while patients
with TNBC had lower risk scores (Supplementary Figure S3).

Establishment and Validation of a

Nomogram and Drug Sensitivity Analysis
The independent prognosticators, including age, stage, ER, PR,
HER? status, and risk score, were used to establish a nomogram

for the total set, which could assign a point for each subgroup of
these prognosticators. Then, we could calculate the total points to
predict the 1-, 3-, 5-, and 10-year OS. As shown in Figure 7A, a
54-year-old patient with clinical stage II, risk score of 10.02, and
TNBC had a total point of 236 and predicted 1-, 3-, 5-, and 10-
year OS of 93.8, 70.3, 49.7, and 7.2%, respectively. The C-index
was 0.816 (95% CI 0.760-0.873) in the training set (n = 383),
0.800 (95% CI 0.725-0.874) in the testing set (n = 402), and 0.797
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(95% CI 0.746-0.848) in the total set (n = 785). Moreover, we
constructed calibration curves for three sets to predict 5-year OS,
which validated the great repeatability and reliability of the
established nomogram (Figures 7B-D). Intrinsic and acquired
resistance to chemotherapy remains a major challenge in effective
breast cancer treatment. Hence, we calculated the differences in
drug sensitivity, which was decided by IC50 between high- and
low-risk groups. As predicted, patients in the high-risk group had
lower chemosensitivity to paclitaxel (p = 2.3e-13), docetaxel (p =
3.8e-07), and doxorubicin (not significant) compared with those
in the low-risk group (Figures 7E-G).

Functional Annotation in High- and

Low-Risk Groups by GSEA

We performed GSEA using the gene sets, including Hallmark
(Figure 8A), GO (Figure 8B), KEGG (Figure 8C), and BioCarta
(Figure 8D), to identify the related differential biological function
and pathways between high- and low-risk groups. Remarkably,
multiple immune-related signaling pathways were enriched in the
low-risk group, such as inflammatory response, interferon
gamma response, TNFA signaling via NFkB, T cell activation,
regulation of natural killer cell mediated immunity, T cell
differentiation, T cell receptor signaling pathway, B cell
receptor signaling pathway, IL12 pathway, Th1Th2 pathway,
NKT pathway, and so on. Based on the GSEA results, we

would like to further explore the difference in immune
infiltration between the groups.

Immune Cell Infiltration Analysis

With the CIBERSORT algorithm, we compared the differential
infiltration levels of 22 kinds of immune cells for each sample
between the high- and low-risk groups. As shown in
Figure 9A, plasma cells (p < 0.001), resting NK cells (p =
0.049), M0 macrophages (p < 0.001), M2 macrophages (p <
0.001), and neutrophils (p < 0.001) were significantly enriched
in the high-risk group while the proportions of naive B cells
(p <0.001), CD8+T cells (p < 0.001), regulatory T cells (Tregs)
(p < 0.001), and activated NK cells (p = 0.004) were
significantly higher in the low-risk group. To validate the
observed differences, we divided the patients into high- and
low-immune score groups according to the median immune
score. We then compared the risk scores between them
(Wilcoxon test). Obviously, patients with high immune
scores had lower risk scores (p < 0.001) (Figure 9B).
Consistently, the immune scores of patients in the high-risk
group were lower than those of patients in the low-risk group
(p < 0.001) (Figures 9C,D). Additionally, we calculated the
correlation between infiltrating immune cells and risk scores
and exhibited it in a bubble chart (p < 0.05) (Figure 9E).
Immune checkpoints are immunomodulators of both
stimulatory and inhibitory pathways (Pardoll, 2012). We
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obtained 11 immune checkpoints from the previous literature =~ Most of them (GITR, 0X40, CDI137, CD40LG, CD28,
(Marin-Acevedo et al., 2018) and then compared their CD278, CTLA4, VSIR, and CD223) were dramatically
expression level between the high- and low-risk groups.  downregulated in the high-risk group (Figures 9F,G).
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FIGURE 11 | The expression of 12 PHRLS in breast cell lines. (A)TDRKH-AS1, (B) AC011978.2, (C) AC110995.1, (D) OTUDBB-AS1, (E) YTHDF3-AS1, (F)
AL512380.1, (G) MIR4435-2HG, (H) HSD11B1-AS1, (I) LINC02084, (J) TRG-AS1, (K) AL451085.3 and (L) AL109955.1. hyp: hypoxia (1% Oy) treatment for 24 h.

Validation of the Expression of the 12 PHRLs
in Breast Cancer Tissues and Breast Cell

Lines

To verify the differential expression of the 12 PHRLs, 11 breast cancer
tissues and the corresponding adjacent normal tissues were collected

for RT-qPCR assay. Two IncRNAs were significantly overexpressed
in tumor tissues while six were significantly underexpressed
(Figure 10). We further explored the expression of the 12 PHRLs
in MCF10A (normoxia, 21%0,), MDA-MB-231 (normoxia, 21%
0,), and MDA-MB-231 (hypoxia, 1%0,). The results were shown in
Figure 11. We next carried out the Kaplan—-Meier survival analysis
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FIGURE 12 | Kaplan-Meier survival analysis of breast cancer patients based on the expression of PHRLs using GEPIA2 database. (A) TDRKH-AS1, (B)
AC011978.2, (C) AC110995.1, (D) OTUD6B-AST, (E) YTHDF3-AST, (F) MIR4435-2HG, (G) HSD11B1-AS1, (H) LINC02084, (I) TRG-AS1, (J) AL451085.3 and (K)
AL109955.1.

for the 12 PHRLs using GEPIA2 database (http://gepia2.cancer-pku.
cn/) except AL512380.1 for its median expression being zero
(Figure 12). Based on the transcriptomic data from TCGA and
the Genotype-Tissue Expression (GTEx) database, we analyzed the
differential expression of the 12 PHRLs between breast cancer tissues
or TNBC tissues and normal breast tissues (Supplementary Figures
$4 and S5). Taken together, we could also draw a conclusion that
TDRKH-AS1, MIR4435-2HG, HSDI11B1-AS1, TRG-AS1, and
AL451085.3 were valuable prognostic indicators for patients with
breast cancer.

DISCUSSION

Breast cancer remains the most common cancer worldwide, with
continuously increasing incidence and various factors affecting its

development (Bray et al., 2015; Loibl et al., 2021b). Hypoxic areas
are distributed heterogeneously throughout the tumor mass and
surrounding environment. The crosstalk between tumor cells and
the local microenvironment contributes to carcinogenesis,
metastasis, and chemoresistance and even determines clinical
outcomes. Over the past decade, an increasing number of
IncRNAs have been verified to play crucial roles under
hypoxia TME in breast cancer. For example, IncRNA BCRT],
which is transcriptionally regulated by HIF-la under hypoxic
conditions, promoted breast cancer cell proliferation and
progression (Byrne et al, 2020). Interestingly, another study
showed that hypoxia-induced lincRNA-P21 promoted the
Warburg effect to increase ATP generation by regulating HIF-
la transcriptional activity in breast cancer (Yang et al., 2014).
Most of these studies focused on the role of IncRNAs in the
occurrence and development of breast cancer.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

15

December 2021 | Volume 9 | Article 796729


http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Gu et al.

Although several articles concerning prognostic models in breast
cancer have been published (Li et al., 2020; Pei et al., 2020; Zhao et al.,
2021), in this study, we selected a well-recognized gene set
“HALLMARK_HYPOXIA” which consists of 200 canonical
hypoxia-related mRNAs to perform a differential expression
analysis between breast cancer tissues and normal tissues and
obtained 46 DEHmRNAs. The co-expression analysis was
performed to screen out 166 HRLs. Using these HRLs, we finally
constructed a novel prognostic model for patients with breast cancer,

which consisted of 12 PHRLs: TDRKH-AS1, AC011978.2,
AC110995.1, OTUDG6B-AS1, YTHDEF3-ASI1, AL512380.1,
MIR4435-2HG, HSD11B1-AS1, LINC02084, TRG-AS1,

AL451085.3, and AL109955.1 (RBM38-AS1). The PHRLs above
were totally different from those four of Zhao et al’s: AL031316.1,
AC004585.1, LINC01235, and ACTA2-AS1. The principle reason
for this difference is the different hypoxia-related gene sets we chose,
which led to only 13 overlapped DEHMRNAs and 34 overlapped
HRLs between our study and theirs in the co-expression network
(Supplementary Table S6). Nevertheless, the KEGG analysis for the
46 DEHmRNAs we filtered out verified the accurate and strong
correlation with hypoxia. Moreover, our prognostic model could
divide the patients with breast cancer into high- and low-risk groups
more effectively in both training and testing sets and was found to
have greater prognostic value by multiple verification methods. The
AUG:s for 1-, 3-, 5-, and 10-year OS in three sets were calculated to
evaluate the predictive accuracy. Beside OS, the difference in DFS
between high- and low-risk patients was also significant. It’s also
worth noting that our prognostic model was applicable to all breast
cancer patients with different clinical stages or molecular subtypes
(HR-positive/luminal, HER2-positve, or TNBC) while Zhao et al.’s
model applied only to early-stage breast cancer patients. When we
compared the risk scores of patients in different groups, we found
that patients over 65 years or those with later clinical stage had
higher risk scores while patients with TNBC had lower risk scores.
There may be two reasons accounting for this result: For one thing,
among the 208 patients over 65 years in TCGA breast cancer
database, only 21 of them were with TNBC; for another, there
were merely 23 TNBC patients among a total of 178 patients with
late stage (stage III or stage IV). This seems to indicate that the roles
of age and clinical stage as clinicopathological factors outweigh the
role of molecular subtypes to predict the survival of patients in the
current study, which has also been proved by previous studies
(Ferguson et al, 2013; O’Brien et al, 2018). The nomogram
established in the present study, which took the
clinicopathological factors (HER2, PR, ER, stage, and age) and
risk scores into consideration, could precisely predict the OS of
patients with breast cancer. The drug sensitivity analysis showed that
patients in the high-risk group may be more likely to be resistant to
chemotherapy drugs including paclitaxel, docetaxel, and
doxorubicin. Though we failed to retrieve ideal GEO datasets
including all the 12 PHRLs for independent validation, the
validation process above was still sufficient to underscore the
utility of our model in predicting the prognosis of breast cancer
patients.

Among the 12 PHRLs, AC011978.2, AC110995.1, YTHDE3-
AS1, AL512380.1, HSD11B1-AS1, AL451085.3, and AL109955.1
have not been reported to date. TDRKH-AS1 was reported to

Prognostic Model in Breast Cancer

promote colorectal cancer (CRC) progression through the Wnt/
B-catenin signaling pathway (Jiao et al., 2020). In addition, its
differential expression with copy number alteration was positively
associated with longer OS in lung adenocarcinoma (Wang L.
et al., 2019). OTUD6B-AS1 was demonstrated to indicate poor
prognosis in ovarian cancer, clear cell renal cell carcinoma
(ccRCQC), and breast cancer (as an immune-related IncRNA)
while its overexpression inhibited ccRCC proliferation (Wang
G. et al, 2019; Li and Zhan, 2019; Ma et al., 2020). Similarly,
OTUD6B-AS1 played a tumor-suppressive role in thyroid
carcinoma (Wang Z. et al, 2020), bladder carcinoma (Wang
Y. et al., 2020), and CRC (Cai et al,, 2021; Wang et al,, 2021). In
contrast, in hepatocellular carcinoma (HCC), OTUD6B-ASI
could enhance cell proliferation and invasion ability via the
GSKIP/Wnt/B-catenin signaling pathway (Kong et al., 2020).
MIR4435-2HG has been verified to be tumor supportive in
multiple forms of cancer including breast cancer (Chen D.
et al., 2021). Linc02084, as a low-risk immune-related IncRNA
in ccRCC(Sun Z. et al., 2020), could also be used to construct a
classifier for predicting early recurrence in HCC after curative
resection (Lv et al., 2018). TRG-ASI acted as a molecular sponge
to stimulate tongue squamous cell carcinoma (He et al., 2020),
HCC (Sun X. et al,, 2020), and glioblastoma (Xie et al., 2019)
progression. By means of both bioinformatic analysis and
experimental validation, our research also indicated that
TDRKH-AS1, MIR4435-2HG, HSD11B1-AS1, TRG-AS1, and
AL451085.3 were likely to play tumor-supportive or tumor-
suppressive roles in the development and progression of breast
cancer and may be valuable independent prognostic indicators
for patients with breast cancer.

Immune escape has emerged as a key mechanism for breast
cancer progression and a crucial step in the preinvasive-to-
invasive transition (Gil Del Alcazar et al., 2020). The hypoxic
areas in solid tumors are highly infiltrated with
immunosuppressive  cells, such as  tumor-associated
macrophages (TAMs), myeloid-derived suppressor cells, and
Tregs (Noman et al,, 2014). Liang et al. showed that hypoxia-
induced exosomal IncRNA BCRT1 contributed to M2 phenotype
polarization of TAMs and enhanced its tumor-promoting
function (Liang et al, 2020). Ben-Shoshan et al. revealed that
hypoxia induced the differentiation of nonspecific CD4" T cells
into functionally active Foxp3 + CD4"CD25" Treg cells to initiate
an anti-inflammatory program via HIF-la(Ben-Shoshan et al.,
2008). Neutrophils with HIF2A gain of function displayed a
reduction of apoptosis both ex vivo and in vivo (Thompson
et al., 2014). The presence of CD8" T cells in breast cancer is
a reliable predictor of clinical outcome and treatment response
(Ali et al., 2014; Byrne et al, 2020). By univariable analysis,
Denkert et al. found that high tumor-infiltrating lymphocytes
predicted longer disease-free survival in patients with HER2-
positive breast cancer and TNBC treated with neoadjuvant
therapy (Denkert et al., 2018). Our GSEA results showed that
multiple immune-related signaling pathways were significantly
enriched in the low-risk group. To validate these findings, we
performed immune cell infiltration analysis. Obviously, patients
with high immune scores had lower risk scores, indicating better
prognosis, in line with the findings of Bruni et al. (2020), Jiang
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et al. (2019), Mlecnik et al. (2016), and Savas et al. (2016). Naive
B cells, CD8+T cells, activated NK cells, and Tregs were
significantly enriched in the low-risk group, which was also
partially consistent with the aforementioned previous findings.
Considering the importance of immune checkpoint
inhibitor-based immunotherapies, we further investigated the
differences in the expression of 11 immune checkpoints between
the high- and low-risk groups. We found that the expression
GITR, OX40, CD137, CD40LG, CD28, CD278, CTLA4, VSIR,
and CD233 were downregulated in the high-risk group, which
corroborated the results of the study of Hu et al. that upregulated
immune checkpoint genes were positively associated with high
immune infiltration and favorable prognosis in patients with
invasive breast carcinoma (Hu et al., 2020). The immune cell
infiltration analysis based on our prognostic model suggests that
patients in the low-risk group (with high prevalence of tumor-
infiltrating cells lymphocytes, elevated immune-related signaling,
and high mRNA expression levels of immune checkpoints) may
benefit from immune checkpoint inhibitors while patients in the
high-risk group (with low prevalence of tumor-infiltrating cells
lymphocytes, downregulated immune-related signaling, and low
mRNA expression levels of immune checkpoints) may not.
Whether and how the PHRLs influence the immune
microenvironment of breast cancer still remains to be explored.

CONCLUSION

In conclusion, we developed a novel prognostic model consisting
of 12 hypoxia-related IncRNAs and an integrative nomogram that
could predict the OS accurately and effectively for patients with
breast cancer. Furthermore, we analyzed the immune cell
infiltration conditions and drug sensitivity between high- and
low-risk breast cancer classified based on the prognostic model.
Our study uncovered dozens of potential prognostic biomarkers
and therapeutic targets concerning the hypoxia signaling pathway
in breast cancer.
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