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The bone marrow microenvironment provides critical cues for hematopoietic stem cell
(HSC) self-renewal and differentiation and contributes to their malignant conversion. The
microenvironment comprises a complex mixture of multiple cell types, soluble factors, and
extracellular matrix in specialized regions termed ‘niches.’ Positioning of the various cellular
players within these niches depends on their repertoire of adhesion molecules and
chemotactic signaling, involving integrins and chemokine receptors and the
corresponding intracellular players such as kinases and GTPases. The mechanical role
of adhesion is to control the strength and morphology of the cell-cell and cell-extracellular
matrix contacts and thereby the energy needed for the optimal localization of cells to their
surroundings. While it is clear that biomechanical adhesive bonds are energetically
expensive, the crosstalk between cell adhesion and metabolic pathways in the normal
and malignant microenvironment is far from understood. The metabolic profile of the
various cell types within the niche includes key molecules such as AMPK, glucose, mTOR,
and HIF-1α. Here, we describe our most recent understanding of how the interplay
between adhesion and these metabolic components is indispensable for bone marrow
niche stability. In parallel, we compare the altered crosstalk of different cell types within the
bone marrow niches in hematological malignancies and propose potential therapeutic
associations.
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INTRODUCTION

Hematopoiesis is a homeostatic process that starts with hematopoietic stem cells (HSCs) and
ultimately leads to the formation of mature blood cells of the myeloid and lymphoid lineages. This
process is supported by various cell types and soluble factors within the bone marrow (BM)
microenvironment. Hematopoietic malignancies arise when the balance within the BM is disturbed,
e.g., by DNA damage causing genetically abnormal hematopoietic cells (Hanahan and Weinberg,
2011; Bakker and Passegué, 2013) and converting HSCs into their malignant counterparts, the so-
called leukemia stem cells (LSCs) or leukemia-initiating cells (LICs). These malignant cells further
alter their microenvironment at the expense of normal hematopoiesis to facilitate their own growth
and neoplastic processes (Wang and Zhong, 2018).

Retention within the BM is required to allow survival, proliferation, and differentiation of HSCs.
For this purpose, HSCs express adhesion molecules such as integrins, selectins, and CD44 that bind
their specific ligands presented by other cells, e.g., stromal cells (Klamer and Voermans, 2014;
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De Grandis et al., 2016; Levesque and Winkler, 2016; Mitroulis
et al., 2020). Some of these molecules regulate HSC
maintenance and retention and serve as biomarkers to
determine the extent of malignant transformation (Kulkarni
and Kale, 2020), e.g., the integrin very late antigen-4 (VLA-4,
α4β1, see later chapters).

Normal hematopoiesis and malignant transformation are
shaped by bioenergetics, biosynthesis, and the redox balance
(Boroughs and Deberardinis, 2015; Deberardinis and Chandel,
2016; Pavlova and Thompson, 2016). Malignancies are often
accompanied by hypoxia and altered ATP levels, which reflect
the increased nutrient demand that is characteristic of malignant
cells (Kim et al., 2006; Hardie, 2008). Adhesive processes are
energetically expensive and thus modulated by bioenergetics.
However, the crosstalk between cell adhesion and metabolic
pathways in the normal and malignant microenvironment is
far from understood.

This review describes how various hematopoietic and non-
hematopoietic cell types interact within the normal and
malignant microenvironment. We delineate the various factors
that modulate integrin-dependent adhesion within the BM and
the consequences of an altered adhesion-metabolism interplay for
BM microenvironment stability.

BONE MARROW
COMPARTMENTALIZATION: CELLULAR
STRUCTURE AND ADHESIVE FACTORS
Two types of niches exist in the BM, namely, the endosteal and
the vascular niche. The endosteal niche promotes HSC (Lin−

CD34+ CD38−) quiescence due to its unique composition
(Nilsson et al., 1997; Wilson et al., 2007; Casanova-Acebes
et al., 2013). It is composed of spongeous bone and
specialized cells such as osteoblasts and osteoclasts
(Figure 1A) (Nilsson et al., 1997; Wilson et al., 2007) and is
enriched with a network of arterioles and sinusoids.
Hematopoietic stem and progenitor cells (HSPCs) surround
the surface of the endosteum. Along the sinusoidal belt,
endothelial cells and mesenchymal progenitors are primed to
give rise to osteoblasts (Nombela-Arrieta et al., 2013).
Osteoblasts are important players within the endosteal niche
(Xie et al., 2009), although osteoblast depletion in transgenic
mice did not affect HSC numbers (Visnjic et al., 2001; Bowers
et al., 2015; Yu et al., 2015), yet altered their cycling capacity
(Bowers et al., 2015; Yu et al., 2015). Additionally, osteoblast
depletion reduced pre-pro- and pro-B cell numbers in the BM
(Zhu et al., 2007; Yu et al., 2015).

FIGURE 1 | Cell-cell interactions within the BM microenvironment are shaped by adhesion and metabolism. (A) HSC/HSPC/LSC express adhesion
receptors such as α4β1, CD44, and CXCR4. These receptors interact with their specific ligands such as VCAM-1, HA, and CXCL12 on non-hematopoietic
cells such as stromal cells, MSCs and osteoblasts and contribute HSC quiescence. (B) The vascular niche made up of sinusoids contains numerous ECs.
These ECs express large amounts of E-selectin and VCAM-1 and promote HSC/HSPC/LSC self-renewal. (C) Enhanced CXCR4-CD44 cooperativity can
promote leukemic cell survival via mTOR and elevates glycolytic influx. Metabolic stress further increases AMPK activity promoting glycolysis and Hif-1α
expression. High amounts of Hif-1α create a hypoxic environment followed by release of ROS. Abbreviations: HSC/HSPC, hematopoietic stem cell/
hematopoietic stem and progenitor cell; LSC, leukemic stem cell; MSC, mesenchymal stem cell; EC, endothelial cell; VCAM-1, vascular cell-adhesion
molecule-1; HA, hyaluronic acid; CXCL12, C-X-C Motif Chemokine Ligand 12; PSGL-1, P-selectin glycoprotein ligand-1; CXCR4, CXC receptor 4; mTOR,
mammalian target of rapamycin complex; AMPK, adenosine-5′-monophosphate-activated protein kinase; Hif-1α, hypoxia-inducible factor α; ROS, reactive
oxygen species.
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Furthermore, HSC survival depends on the interaction with
the vascular network, comprising arteries that enter the BM and
subdivide into numerous arterioles. The arterioles traverse the
BM along with specialized capillaries, the so-called sinusoids
(Figure 1B) (Kopp et al., 2005). These vessels lack a
continuous basal lamina, and their open pores facilitate the
passing of white blood cells from the BM while promoting
hematopoietic cell proliferation and differentiation. The term
‘vascular niche’ describes this unique environment. Its self-
renewing HSC pool is closely associated with BM endothelial
cells along sinusoidal vessels towards the center of the BM
(Figure 1B). This was confirmed by the knockout of the
glycoprotein 130 (gp130) receptor in ECs, leading to reduced
HSC numbers (Yao et al., 2005). The survival of ECs from Tie-2
gfp mice was co-dependent on HSCs in vitro, even in the presence
of growth factors (Li et al., 2004).

ADHESIVE FACTORS AND METABOLIC
COMPONENTS IN LEUKEMIA

The interaction of HSC with their niche requires communication
via cell surface receptors, that mediate their adhesion to this
environment. Particularly CD44, CXCR4 and the integrin α4β1
(VLA-4) play important roles in regulating HSPC trafficking, self-
renewal, proliferation, and differentiation. These molecules
extensively interact with each other and influence each other’s
function, with the integrin α4β1 being activated by CD44 and
CXCR4. The CD44 family comprises different variants of
glycoproteins with extensive posttranslational modifications.
This regulates the binding of CD44 to its ligands and
promotes heterodimerization with other surface molecules,
such as α4β1, thereby modulating integrin function (Yu et al.,
2021; (Gutjahr et al., 2021). Chemokines such as the CXCR4
ligand CXCL12 also serve as integrin activators. Binding of
CXCL12 to CXCR4 activates a rapid cascade of intracellular
signaling events that eventually direct the integrin
conformation to a high affinity state. This high affinity state
allows a strong adhesion of the cells to the substrate.

Once the crosstalk of these three receptors is altered,
leukemogenesis is driven. For example, CD44 cooperativity
with α4β1 triggers adhesion of leukemic cells to stromal cells
(Gutjahr et al., 2021), inducing prosurvival signaling pathways.
Similarly, CD44 interacts with CXCR4, which can promote
chemoresistance in AML (Yu et al., 2021).

CXCL12 is secreted by all stromal cells in the BM. CXCL12
abundant reticular (CAR) cells/Leptin receptor-positive cells
(LepR+) (Seike et al., 2021) are a subset of VCAM-1+ reticular
cells that promote HSC activity (Omatsu et al., 2010). Cell-
specific depletion of CXCL12 diminished CAR cells, followed
by a marked decrease in HSC proliferation (Omatsu et al., 2010).

Furthermore, CXCL12 knockout in endothelial cells leads to
modest loss of self-renewing activity (Greenbaum et al., 2013).
Similarly, the co-culture of ECs with HSCs provided a growth
advantage, increasing HSC numbers (Butler et al., 2010). In
leukemic conditions, such as T-cell acute lymphoblastic
leukemia, CXCL12 knockout in ECs suppressed tumor

development, indicating a dependency of the tumor on the
vascular environment (Pitt et al., 2015). In addition, CXCL12
expression on osteoblasts is decisive for BM lymphoid progenitor
populations and their reconstitution capacity (Greenbaum et al.,
2013); Zhu et al., 2007). Furthermore, differentiated osteoblasts
regulate osteoclast differentiation and function via cytokines such
as macrophage-colony stimulating factor (M-CSF),
osteoprotegerin (OPG), and OPG ligand (OPGL) (Yasuda
et al., 1998). Osteoclasts are F4/80 low or negative
macrophages that mediate bone resorption at the endosteal
surface (Figure 1A) (Lacey et al., 1998). Additionally, the
endosteum contains F4/80 (high) expressing macrophages
called osteomacs that contribute to bone remodeling (Chang
et al., 2008). Osteomacs surround osteoblasts (Chang et al.,
2008; Winkler et al., 2010), CXCL12-abundant reticular cells
(Casanova-Acebes et al., 2013), and Nestin+ mesenchymal
stem cells (MSCs). Osteomacs and Nestin+ MSCs synergize in
maintaining a high-adhesive niche. Upon osteomac depletion,
Nestin+ cells display reduced levels of the adhesive components
CXCL12, VCAM-1, and Angpt-1 (Chow et al., 2011), which are
essential for HSC retention within the BM. In malignancy,
Nestin+ MSCs may facilitate this crosstalk as they are known
to support leukemogenesis.

CXCL12 enhances the survival capacity of AML cells and
supports chemoresistance (Yu et al., 2021). It also induces
phosphorylation of mTOR (Braun et al., 2016), which has
been linked to increased glycolysis and translation of HIF-1α
(Figure 2) (Konopleva et al., 2009). The siRNA-mediated
knockdown of CXCL12 in AML cell lines and primary AML
cells reduces glucose levels and mTOR expression (Braun et al.,
2016). This phenomenon was recapitulated using the CXC
receptor 4 (CXCR4) inhibitor plerixafor (AMD3100) (Uy
et al., 2012). Notably, CXCR4 cooperates with the glycoprotein
CD44 in AML, thereby enhancing resistance to the BCL-2
inhibitor venetoclax (Yu et al., 2021). This cooperation
conferred a phenotype attributed to cancer stem cells
(Cd44high, CXCR4high) (Yu et al., 2021) followed by high
expression of embryonic stem cell core transcription factors
such as Sox2, Oct4, and Nanog (Figure 2).

In fact, CD44 is one of the first-described cancer stem cell
markers and key homing receptors (Naor et al., 2002; Jin et al.,
2006). Alternative splicing of the Cd44 gene gives rise to
numerous variants (CD44v) (Naor et al., 2002; Jin et al.,
2006). Normal cells expressing the standard isoform (CD44s)
usually require activation and the induction of CD44 isoforms to
bind their respective ligands, particularly hyaluronic acid (HA)
and osteopontin. In contrast, tumor cells constitutively express
CD44v and can bind ligands without further stimulation (Naor
et al., 2002).

CD44 variants v6, v8, v9, and v10 (numbering based on
expressed exons) are found in normal peripheral blood
mononuclear cells (Dougherty et al., 1991; Bendall et al.,
2000), yet at a low abundance. In hematological malignancies,
these variants are primarily associated with non-Hodgkin’s
lymphoma, myeloma, and leukemia, while in solid tumors,
they are associated with breast and colon cancer (Legras et al.,
1998; Asosingh et al., 2000; Medina et al., 2010; Guo and Frenette,
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2014). Multifaceted properties of CD44 have been deciphered as
links between LSCs and their BM microenvironment (Jin et al.,
2006). One of these many links is found in the metabolic shift in
the microenvironment that involves elevated production of
reactive oxygen species (ROS) due to oncogene activity
(Figure 2), along with an increase in ROS-driving enzymes
such as NADPH oxidase. CD44v8-10 elevates the synthesis of
reduced state glutathione (GSH) via its cysteine-glutamate
antiporter system (xcT) (Ishimoto et al., 2011). This
phenomenon aids cancer cells in overcoming elevated ROS
levels, e.g., in the context of aerobic glycolysis (Warburg
effect) (Ishimoto et al., 2011). Blocking CD44 by monoclonal
antibodies leads to the terminal differentiation of leukemic cells,
thereby reducing their potential for engraftment (Jin et al., 2006).
The role of CD44 in maintaining the stemness character of
leukemic cells can be attributed to either its direct binding to
ligands or to its cooperation with other surface receptors, which
eventually shapes the niche (Goodison et al., 1999; Orian-
Rousseau and Sleeman, 2014; Gutjahr et al., 2021; Yu et al.,
2021). For example, HA binding to CD44 on malignant cells
activates the integrin α4β1, enhancing strong adhesion to
VCAM-1, FN, and laminin (Grassinger et al., 2009; Gutjahr
et al., 2021). Strong adhesion is mechanically based on α4β1
clustering upon the CD44-α4β1 cooperation and promotes
stromal cell-leukemia cell contacts that act as metabolically-
relevant “adhesive hubs” (Figure 2).

The cooperation of CD44 with α4β1 is one example of the so-
called inside-out signaling of integrins, which serves as a means to
integrate extracellular cues in cellular responses. Several possible

signaling pathways and processes are involved in inside-out
signaling, which starts with the activation of cell surface
receptors, e.g., cytokine-, chemokine-, or antigen receptors.
The activated surface receptors then induce an intracellular
signaling cascade involving phosphoinositide 3-kinase (PI3K)
and PLC-γ, among others, which eventually culminates in a
high-affinity integrin status (Harzschel et al., 2020). The PI3K/
Akt signaling pathway is also relevant for stromal cell-mediated
chemoprotection of leukemic cells and for α4β1 downstream
signaling to metabolic pathways via the master regulator (mTOR)
(Shishido et al., 2014; Guerra and Issinger, 2020; Harzschel et al.,
2020). Focal adhesion kinase (FAK) interaction with integrins has
proven essential for the metabolic regulation of tumor cells (Yin,
2011), leading to excessive glucose consumption via the PI3K/Akt
pathway (Bisht and Dey, 2008; Paik et al., 2009). In AML, three-
dimensional access to VCAM-1 using coated beads triggers high
phosphorylation levels of Akt, ERK, and mTOR (Gutjahr et al.,
2021), and this downstream signaling is intensified by the
association of Src and FAK (Zhou et al., 2016; Gutjahr et al.,
2021). FAK activation by integrins also triggers the insulin
growth factor receptor-1 resulting in sustained PI3K
activation (Andersson et al., 2009). This particularly
facilitated the proliferation of leukemic cells. In solid tumors,
reciprocal interaction between β1-integrins and glucose
metabolism has also been reported. In breast cancer cells,
glucose metabolism is promoted by β1-integrin signaling
through Twist, a regulator of epithelial-mesenchymal
transition (EMT) (Yang et al., 2016), while knockdown of
Glut1 in breast cancer cells lowers integrin β1 levels followed

FIGURE 2 | Leukemic cell survival can be augmented by adhesion and metabolic components. AML cells express high amounts of CD44, CXCR4, and α4β1.
Ligands such as HA, CXCL12, and VCAM-1 secreted by stromal cells activate the receptors and render chemoresistance. CD44-mediated activation and clustering of
α4β1 leads to adhesive hubs and promotes mTOR activity. CXCL12 interaction with CXCR4 can be followed by enhanced glycolysis. CXCR4 interaction with CD44
confers a cancer stem cell phenotype via Oct4, Sox2, and Nanog expression. Elevated CD44 expression increases ROS levels via NADPH oxidase and further
promotes malignancy. Abbreviations: FAK, focal adhesion kinase.
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by reduced Src and FAK expression (Oh et al., 2017). With
metabolic deregulation being a hallmark of both solid and
hematological malignancies, the involvement of integrins and
the underlying mechanisms of cell adhesion changes warrant
further investigation.

HYPOXIA

Hypoxia regulates cell proliferation and survival via hypoxia-
inducible factor 1-alpha (HIF-1α), mammalian target of
rapamycin complex (mTORC), and adenosine-
5′monophosphate-activated protein kinase (AMPK) (Kim
et al., 2006; Hardie et al., 2012; Dibble and Manning, 2013).

The endosteal niche is widely believed to be hypoxic and
shows oxygen levels of less than 2% (Spencer et al., 2014). This
has been attributed to the quiescence of HSPCs that reside within
the niche (Spencer et al., 2014). A report by Arrieta and others
(Nombela-Arrieta et al., 2013) contradicted this traditional
viewpoint. Using quantitative 3D imaging, the authors found
that the hypoxic profile of HSPCs is independent of their cell cycle
state and anatomical positions within the BM, implying that the
tendency towards hypoxia could be driven by the cell populations
within the BM rather than their location.

HIF-1α is one of the many critical factors driving glycolysis
and mitochondrial respiration within the BM, with higher levels
in hypoxic conditions (Figure 1B) (Papandreou et al., 2006). HSC
survival is maintained by high rates of glycolysis (Simsek et al.,
2010). For example, in quiescent HSCs, HIF-1α minimizes ROS
generation and favors pyruvate dehydrogenase kinase expression
(Takubo et al., 2013). When HIF-1α is knocked out in HSCs,
glycolysis rates drop, and mitochondrial metabolism levels are
elevated. This prevents pyruvate from entering the tricarboxylic
acid cycle, thereby preventing mitochondrial respiration.

Integrin function is modulated by different oxygen levels in a
partially HIF-dependent manner. For example, integrin α5β1-
dependent upregulation of mast cell adhesion to fibronectin was
observed in oxygen tensions as low as 1%. This upregulation was
accompanied by increased Akt phosphorylation and sensitivity
towards PI3K inhibition, indicating a hypoxia-driven integrin
activation via the PI3K signaling pathway (Pastwinska et al.,
2020).

AMPK

Glycolysis is influenced by AMPK (Almeida et al., 2004), which
allows cancer cells to survive metabolic stress (Figure 1C) (Jiang
and Nakada, 2016). This energy sensor and central regulator for
cellular metabolism plays a crucial role in growth and metabolic
programming and is activated during cellular stress such as
nutrient deficiency. Notably, AMPK is the most prominent
factor known to link integrins and metabolism. The metabolic
signaling via AMPK extensively influences adhesion
mechanisms, e.g., the AMPK-activating kinase LKB1 regulates
focal adhesion kinase (FAK), thereby controlling cell migration
and cell polarization via PI3K localization (Mihaylova and Shaw,

2011). LKB1 expression is also necessary to maintain HSC
quiescence. Lkb1 abrogation resulted in enhanced cycling of
HSCs and subsequent depletion (Nakada et al., 2010). AMPK
phosphorylation of HSCs also required Lkb1.

AMPK-guided cell adhesion is regulated via the tensin family
of proteins. Tensins bind β1-integrins and support their
activation (Georgiadou et al., 2017) with the integrin adaptor
talin. AMPK downregulates tensins and thereby negatively
regulates β1-integrin activity. Factors that arrest
gluconeogenesis, such as loss of nutrients, enhance AMPK
activity. We propose that this results in reduced integrin-
mediated adhesion in malignancies. However, AMPK levels
have to be tightly balanced and thus both, enhanced and
suppressed, AMPK activity can hinder cell migration (Nakano
et al., 2010; Yan et al., 2015). This is molecularly based on
dysregulation of the cytoskeletal arrangements during
migration, with Rac activity at the front of the migrating cell
being in dynamic balance with Rho A activity at the rear of the
cell. Augmented AMPK phosphorylates its substrate, Pdlim5,
higher phosphorylation levels of which down-regulates Rac1
expression at the leading edge of the cell (Yan et al., 2015). In
contrast, suppressed AMPK activity alters microtubule
polymerization (Nakano et al., 2010). While actomyosin
filaments and the ECM mechanically regulate cell migration,
the dual role of AMPK provides a possible explanation for the
observed discrepancies in AMPK-mediated effects on integrin
activity.

A reciprocal response from integrins is observed in regulating
metabolic signaling. For instance, integrin-linked kinase (ILK)
regulates factors upstream of YAP/TAZ, thereby promoting
YAP/TAZ activity within the nucleus. This might be assisted
by the TEAD family of transcription factors, which directly
interact with AMPK (Ata and Antonescu, 2017). Indeed, the
release of cyclic AMP, an activator of AMPK (Omar et al., 2009)
supports the survival of B-lineage acute lymphoblastic leukemia
cells. This suggests that regulating the cAMP pathway could serve
as a therapeutic target in leukemia (Perez et al., 2016).

Selectins, CD44 and integrins strengthen the interaction
between ECs and HSCs. During inflammatory conditions,
selectins aid leukocytes in binding to endothelial cells and
establish leukocyte rolling on the vasculature (Winkler et al.,
2012). Constitutive E-selectin expression on ECs guides HSC
activity (Schweitzer et al., 1996). Characterization of E-selectin
knockout mice (Sele−/−) revealed slower HSC division, suggesting
enhanced HSC quiescence and self-renewal capacity (Winkler
et al., 2012). In BCR-ABL1-induced chronic myelogenous
leukemia (CML)-like myeloproliferative neoplasia (MPN),
Sele−/− mice showed lower engraftment rates of leukemia
compared to the wild-type, suggesting a homing defect
(Krause et al., 2014). Endothelial damage occurs during
malignancy and via irradiation and chemotherapy (Lyu et al.,
2019; Wijerathne et al., 2021). As a result, this dislodges the
vascular endothelium, creating impaired vascular permeability
and elevating vascular fibrosis. In TNF-stimulated ECs,
overexpression of dominant-negative AMPK (AMPKα2−/−)
resulted in higher levels of NF-ĸB and E-selectin. AMPK
activation in endothelial cells by vasculoprotective agents, such
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as metformin and VEGF, triggers several biological effects
beneficial to vascular homeostasis (Cheng et al., 2007). These
involve suppression of hyperglycemia-induced generation of ROS
(Kukidome et al., 2006), alleviation of free fatty acid-induced
lipotoxicity (Mccarty, 2005), and inhibition of nuclear factor-κB
activation by tumor necrosis factor-α (Hattori et al., 2006).
AMPK activity triggers endothelial progenitor cell
differentiation in vitro upon VEGF stimulation (Li et al.,
2008). Highly phosphorylated AMPK was associated with high
levels of VE-cadherin and the integrin ligand ICAM-1, while
AMPK inhibition reduced expression of these markers,
suggesting the involvement of AMPK in endothelial progenitor
cell differentiation (Li et al., 2008). In AML, a dense vascular
compartment is a hallmark of poor prognosis (Shih et al., 2009)
and BMECs are known to support AML cell quiescence (Ding
et al., 2012; Ding and Morrison, 2013). Treatment with the
tubulin polymerization inhibitor combrestatin altered the
shape of BMECs, depleting VCAM-1 and VE-cadherin in
AML cells, leading to increased peripheral blood cycling of
AML cells. Combrestatins trigger ROS production in AML
cells, and in combination with cytarabine, decrease leukemic
cells within the murine BM (Bosse et al., 2016).

THERAPIES TARGETING THE BM
MICROENVIRONMENT

Leukemia is marked by genetic and epigenetic alterations in
hematopoietic cells and their respective progenitors (De
Beauchamp et al., 2021). Myeloid leukemia (CML and AML)
is particularly faced with the challenge of targeting cells that are
treatment-resistant due to the large repertoire of mutations that
arise, namely, point-mutations associated with BCR-ABL in CML
or FLT3-TKD in AML (Corbin et al., 2011; Hamilton et al., 2012).
Though widely implemented in clinical trials, tyrosine kinase
inhibitors are not sufficient to eradicate minimal residual disease
as they preferentially target differentiated cells (Corbin et al.,
2011; Hamilton et al., 2012). An alternate route to target these
malignant cells might be to interfere with metabolism. Preclinical
data in CML showed that CD34+ cells display an oxidative
phenotype marked by low levels of fatty acids such as oleic
and linoleic acids and an increase in TCA metabolites,
namely, glutamate and aspartate (Kuntz et al., 2017).
Administration of the antibiotic tigecycline blocked levels of
aspartate and, upon combination with the kinase inhibitor
imatinib, arrested colony formation (Kuntz et al., 2017).
Similarly, in CD44-overexpressing CD44high K562 cells, non-
steroid anti-inflammatory drugs (NSAIDs) administration
triggered autophagy followed by increased sensitivity to heat
shock protein inhibitor 17-AAG (Moon et al., 2019). This was
supported by the activation of AMPK, and thus, inhibition of
Akt/mTOR/p70S6K/4EBP1 activity. Autophagic cell death
eventually led to the downregulation of CD44, Oct4, and
c-Myc in these cells (Moon et al., 2019), linking back adhesion
and metabolism. Phase 2 clinical data suggests that 17-AAG
(Tanespimycin) at a dosage of 340 mg/m2 in combination with
bortezomib serves as a promising therapeutic option for patients

with refractory multiple myeloma (Richardson et al., 2010).
Regulation of metabolic components in AML was also studied
by implementing dietary restriction coupled with the AMPK
inhibitor Compound C, enhancing overall survival reducing
the percentage of circulating AML cells in vivo (Saito et al.,
2015). In addition, metformin administration stimulates the
LKB1/AMPK cascade leading to mTORC declination in AML
supported by shrinkage in tumor burden (Sujobert et al., 2015).
Recent research suggests that resistance to chemotherapy in AML is
mediated by metabolic alterations that are short-lived and sufficient
to drive patients and patient-derived xenograft models into relapse
(Van Gastel et al., 2020). Upon chemotherapeutic intervention
specialized leukemic cells prevailed within the bone marrow. The
metabolic signature of these cells comprised elevated levels of
glutamine, further supporting pyrimidine synthesis. Pyrimidine
synthesis, in turn, required a sustained aspartate supply from BM
stromal cells. Blocking pyrimidines using Brequinar in combination
with lower-dose chemotherapy cleared AML cells from the BM in
PDX models (Van Gastel et al., 2020).

Multiple therapeutic options within the BM
microenvironment have thus far targeted soluble factors and
cell adhesion molecules. The CXCR4-CXCL12 axis was
targeted using several individual inhibitors (Burger et al., 2005;
Parameswaran et al., 2011; Uy et al., 2017); however, combination
therapies proved more effective. For instance, the AML specific
peptide E5 (Li et al., 2015) hindered the adhesion and migration
of AML cells to the BM by interfering with the CXCR4-CXCL12
pathway. In combination with the chemotherapeutic drugs
vincristine and cyclophosphamide, the leukemic burden in
mice was reduced, and survival was prolonged (Li et al., 2015).
Co-culture of leukemic cells with BM stromal cells confers
resistance to the CD44 antibody A3D8 via the PI3K-Akt
pathway (Chen et al., 2015). Administration of the PI3K-Akt
inhibitor, LY294002, along with A3D8, partially resensitizes the
AML cells (Chen et al., 2015). α4β1 inhibition reduces
chemoresistance of AML and MM cell lines (Rashidi and
Dipersio, 2016) and restores CD3-mediated cytotoxicity within
the AML BM microenvironment (Nair-Gupta et al., 2020).

CONCLUSION

The importance of cell adhesion molecules within the BM is well-
acclaimed and continuously advancing as the expression of
certain molecules strongly correlates to malignancy. While our
understanding of the crosstalk between integrins and these
metabolites is improving, there remains a gap in its
therapeutic application. Investigating the extent of chemo-
sensitization within the BM upon combining adhesion
molecules and metabolic inhibitors might bring novel insights
into potential therapeutic alternatives.
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