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Background: Cisplatin enhances the antitumor T cell response, and the combination of
PD-L1 blockade produces a synergistic therapeutic effect. However, the clinical correlation
between cisplatin and immunotherapy in colon cancer (CC) is unknown.

Methods: Using the “pRRophetic” package, we calculated the IC50 of cisplatin. The
correlation between cisplatin IC50, cisplatin resistance—related genes (CCL18 and
BCL2A1), and immunotherapy were preliminarily verified in TCGA and further validated
in independent cohorts (GSE39582 and GSE17538), cisplatin-resistant CC cell line DLD1,
and our own clinical specimens. Classification performance was evaluated using the AUC
value of the ROC curve. Scores of immune signatures, autophagy, ferroptosis, and
stemness were quantified using the ssGSEA algorithm.

Results: Based on respective medians of three CC cohorts, patients were divided into
high- and low-1IC50 groups. Compared with the high IC50 group, the low-IC50 group had
significantly higher tumor microenvironment (TME) scores and lower tumor purity. Most co-
signaling molecules were upregulated in low IC50 group. CC patients with good
immunotherapy efficacy (MSI, dMMR, and more TMB) were more attributable to the
low-1C50 group. Among seven shared differentially expressed cisplatin resistance-related
genes, CCL18 and BCL2A1 had the best predictive efficacy of the above immunotherapy
biomarkers. For wet experimental verification, compared with cisplatin-resistant DLD1,
similar to PD-L1, CCL18 and BCL2A1 were significantly upregulated in wild-type DLD1. In
our own CC tissues, the mRNA expression of CCL18, BCL2A1, and PD-L1 in dMMR were
significantly increased. The high group of CCL18 or BCL2A1 had a higher proportion of
MSI, dMMR, and more TMB. IC50, CCL18, BCL2A1, and PD-L1 were closely related to
scores of immune-related pathways, immune signatures, autophagy, ferroptosis, and
stemness. The microRNA shared by BCL2A1 and PD-L1, hsa-miR-137, were significantly
associated with CCL18, BCL2A1, and PD-L1, and downregulated in low-IC50 group. The
activity of the TOLL-like receptor signaling pathway affected the sensitivity of CC patients
to cisplatin and immunotherapy. For subtype analysis, immune C2, immune C6, HM-indel,
HM-SNV, C18, and C20 were equally sensitive to cisplatin chemotherapy and
immunotherapy.
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Cisplatin Chemotherapy and Immunotherapy

Conclusions: CC patients sensitive to cisplatin chemotherapy were also sensitive to
immunotherapy. CCL18 and BCL2A1 were novel biomarkers for cisplatin and

immunotherapy.

Keywords: chemotherapy, immunotherapy, BCL2A1, CCL18, PD-L1, colon cancer

INTRODUCTION

According to Global Cancer Statistics 2020, colon cancer (CC) is
the second most common cause of cancer-related deaths
worldwide, whose incidence rate ranks third (Sung et al,
2021). From the histological classification, it is mainly colon
adenocarcinoma (COAD), which accounts for about three
quarters. It can be seen that CC is a global health problem
that needs to be solved urgently.

In addition to surgery, CC can be treated with radiotherapy and
chemotherapy, molecular targeted therapy, and emerging
immunotherapy (Dekker et al, 2019; Johdi and Sukor, 2020).
Immunotherapy refers to a treatment method that artificially
enhances or suppresses the immune function of the body to
achieve the purpose of curing diseases. Previous studies show
that biomarkers for immunotherapy include tumor
microenvironment (TME) scores (Xia et al, 2021), tumor
infiltrating immune cell (TIIC) abundance (Zeng et al, 2020),
expression of immune-related genes (co-inhibitory molecules
(T cell and APC cell), Type I and II IEN response molecules, co-
stimulatory molecules (T cell and APC cell), cytolytic activity
molecules) (Liu X et al, 2021), microsatellite stability (MSI),
deficient mismatch repair (AMMR), tumor mutational burden
(TMB) (Halama et al,, 2016; Duffy and Crown, 2019), immune-
related signatures, pathways, somatic mutation frequency (Peng
et al, 2016), and activity of autophagy (Ramakrishnan et al,
2012; Sirichanchuen et al., 2012), ferroptosis (Kim et al., 2018;
Wang W et al,, 2019), and stemness (Hu et al., 2019; Unver, 2021).

Previous research proves that cisplatin augments antitumor
T cell responses, leading to a potent therapeutic effect in
combination with PD-L1 blockade (Luo et al., 2019; Wakita
et al, 2019). Then, we studied the connection between
cisplatin chemotherapy and immunotherapy in CC and tried
to reveal which CC patients were suitable for cisplatin
chemotherapy ~and  immunotherapy = and  molecular
characteristics.

In our study, based on the “pRRophetic” package and
transcriptome data, we predicted the half maximal inhibitory
concentration (IC50) of cisplatin in CC patients (TCGA,
GSE39582, and GSE17538). Based on the biomarkers for
immunotherapy, we concluded that the low-IC50 group of CC
patients might benefit more from immunotherapy. Besides this,
the cisplatin resistance-related genes CCL18 and BCL2A1 could
predict the sensitivity of cisplatin chemotherapy and immunotherapy
in CC patients, simultaneously. For wet experimental verification, in
wild-type and cisplatin-resistant DLD1 cell lines verified by CCK8
experiments, similar to PD-L1, CCL18 and BCL2A1 could predict the
efficacy of cisplatin chemotherapy. In the CC specimens of our
hospital, compared with pMMR tissues, the mRNA expression of
CCL18, BCL2A1, and PD-L1 in dMMR were significantly increased.

Previous studies show that PD-L1 and chemotherapy
resistance interact with each other in the biological and
functional cascade through microRNA regulation (Xu et al,
2016). On the ENCORI website, we extracted shared miRNAs
of PD-L1, CCL18, and BCL2A1. Results showed that hsa-miR-
137 was the most potentially predictive miRNA for cisplatin
chemotherapy and immunotherapy.

Both functional enrichment analysis (GO-MF and KEGG) and
gene set enrichment analysis (GSEA) were applied for the
identification of pathways that could explain the functions of
IC50 of cisplatin, CCL18, and BCL2A1. Results indicate that the
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY
was associated with the sensitivity of COAD patients to cisplatin
chemotherapy and immunotherapy. CCL18 and BCL2A1 might
play a predictive role through the
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY.
Subgroup analysis confirmed that CC patients of immune C2,
immune C6, HM-indel, HM-SNV, C18, C20, and
High_CCL18_High BCL2A1 were equally sensitive to cisplatin
chemotherapy and immunotherapy.

MATERIALS AND METHODS

Data Source

Gene expression data of CC samples were collected from public
data sets at the TCGA (https://portal.gdc.cancer.gov/) and Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/). For TCGA data, fragment per kilobase of transcript per
million mapped reads (FPKM) was converted to TPM (transcript
per kilobase of exon model per million mapped reads) and used in
our study. Log2 transformation was used for normalization of
GEO chip data (GSE39582 and GSE17538). After removing the
missing values, our study included 419 TCGA-COAD patients,
566 GSE39582 CC patients, and 238 GSE17538 CC patients.

Chemosensitivity Assessment

Based on transcriptome data of TCGA, GSE39582, and
GSE17538 cohorts, the “pRRophetic” package was used to
evaluate cisplatin chemotherapy sensitivity (Geeleher et al,
2014) and presented it in the form of the half maximal
inhibitory concentration (IC50). According to the respective
medians of cisplatin IC50, CC patients of each cohort were
divided into low- and high-IC50 groups, respectively.

The TME Score and Tumor Purity

The TME score enabled us to reflect the behavior and response of
the cancer cells to a treatment process (Wang et al,, 2018). A
previous study proves that low tumor purity (the proportion of
tumor cells in the TME) was associated with heavy mutation
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burden and intense immune phenotype in CC tissues (Mao et al.,
2018). Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data (ESTIMATE) is a method
for estimating infiltrating nontumor cells (immune and stromal
cells) in the TME based on gene expression profiles and two gene
signatures (the immune and stromal signatures) (Wang H et al.,
2019). Next, we inferred the purity of each patient’s tumor
(Yoshihara et al., 2013).

Quantification of TIICs

The TIIC abundance was a robust biomarker for
immunotherapeutic ~ response = and  immunophenotype
determination (Zeng et al, 2020). The TIMER2.0 is a
systematic platform for evaluations of the clinical influence of
various TIICs in diverse cancer (Li T et al., 2020). Based on the
TIMER?2.0, we quantified the abundance of three types of innate
TIICs and three types of adaptive TIICs in the CC
microenvironment.

Differentially Expressed Genes (DEGs)

For TCGA, DEGs between high- and low-IC50 samples were
identifies using the “DEseq2” package (Kang et al., 2020). As a
method of differential analysis of transcriptome count data, due
to the shrinkage estimators for fold change (FC) and dispersion,
DESeq2 improves the interpretability and stability of estimation
(Love et al., 2014). For GSE39582 and GSE17538, DEGs between
high- and low-IC50 tissues were identified using the “Limma”
package. The adjusted p-value < .05 and |FC| > 2 were used as the
cutoff criteria to filter DEGs (Wu et al., 2019).

Receiver Operating Characteristic (ROC)
With the help of the “pROC” package (Robin et al., 2011), we
built the ROC curve (high vs. low IC50, high vs. low PD-L1, and
high vs. low pathway score).

T™MB

TMB is defined as the total number of gene encoding errors, base
replacement, gene insertion or deletion errors per million bases
(Schumacher et al., 2015). The 38 Mb is routinely taken based on
the length of the human exon, so the TMB estimate for each
sample is equal to the total mutation frequency/38 (Lv et al,
2020).

Establishment of the Cisplatin-Resistant
Cell Line DLD1

The resistant cell line DLD1 was established in vitro by
intermittent exposure to different concentrations of cisplatin
(51166, selleck) in stepwise increments of time. Starting with a
concentration of 5 umol/L, cisplatin was added to the cells when
they grew to ~80% confluence. After 24 h, the remaining cells
were cultured in cisplatin-free DMEM medium. When the
surviving cells were restored to exponential growth, the next
concentration of 5 FU (increase of 1 umol/L) was then added. The
cisplatin-resistant cell line DLD1 was established 9 months after
the treatment was initiated, and the resistant phenotype was
established.

Cisplatin Chemotherapy and Immunotherapy

Measurement of Cell Viability
The CCK-8 assay was used to detect cell viability according to the

manufacturer’s instructions. In short, DLD1 wild-type and
cisplatin-resistance cells were cultured until ~80% confluence,
completely digested and added to each well (5000 cells/well) of a
96-well plate (Corning, United States). After 48 h of incubation,
CCK-8 solution was added to each well of the 96-well plate.
Finally, we used the microplate reader to read the OD value.

RNA Isolation and Quantitative Reverse

Transcription PCR (qRT-PCR)

The total RNA (DLD1 cell line and six pairs of CC tissues) was
isolated according to the protocol of TRIZOL reagent (Life
Technologies). The mRNA expressions of CCL18, BCL2Al,
PD-L1, and p-actin were measured by the real-time PCR
system (Applied Biosystems, Carlsbad, United States). The
data were obtained by normalizing CCL18, BCL2A1, and PD-
L1 gene Ct (cycle threshold) values with corresponding p-actin Ct
and then analyzed with the 2-AACt Ct method (Xu et al., 2015).
The primer sequences are as follows: CCL18 forward primer (5'-
CTCTGCTGCCTCGTCTATACC-3'), CCL18 reverse primer
(5'-CTTGGTTAGGAGGATGACACCT-3'), BCL2A1 forward
primer  (5'-TACAGGCTGGCTCAGGACTAT-3'), BCL2Al
reverse primer (5'-CGCAACATTTTGTAGCACTCTG-3"),
PD-L1 forward primer (5-TGGCATTTGCTGAACGCATTT-
3'), PD-L1 reverse primer (5'-TGCAGCCAGGTCTAATTG
TTTT-3'), B-actin forward primer (5'-CATGTACGTTGCTAT
CCAGGC-3") and B-actin reverse primer (5'-CTCCTTAATGTC
ACGCACGAT-3").

Correlation Diagram

The correlations between DEGs, PD-L1, and TME score were
studied by Spearman’s correlation analysis and visualized using
the “corrplot” and “PerformanceAnalytics” packages in R
software.

The Single-Sample GSEA (ssGSEA)

The 30 immune-related pathways (Shang et al., 2020) were
retrieved on the GSEA website (https://www.gsea-msigdb.org/
gsea/msigdb/genesets.jsp?collection=CC).

Using immune (Supplementary Table S1), autophagy
(Supplementary Table S2), and ferroptosis (Supplementary
Table S3) signatures, we quantified the immune, autophagy,
and ferroptosis activities by the “GSVA” package and ssGSEA
method (Hianzelmann et al., 2013).

Heatmap

Heatmaps were constructed through the “pheatmap” package in
R. Columns represent COAD tissues, and rows represent
immune-related biomarkers. The levels of biomarkers were
displayed in different colors, which transition from blue to red
with increasing expression.

Mutation Waterfall Charts

Somatic mutation data in the “masked somatic mutation” type
was processed by VarScan2 (Koboldt et al., 2012). The “maftools”
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package was used to process and visualize the somatic mutation
data of TCGA (Mayakonda et al., 2018).

Autophagy-Related Genes (ARGs) and

Ferroptosis-Related Genes

On the Human Autophagy Database (HADb, http://www.
autophagy.lu/), we collected 232 ARGs (Supplementary Table
§2) (Galluzzi et al, 2017). The ferroptosis-related genes were
downloaded from FerrDb (Supplementary Table S3) (http://
www.zhounan.org/ferrdb/) (Zhou and Bao, 2020).

The UCSC XENA Database

On the UCSC XENA database (https://pancanatlas.xenahubs.
net), an online exploration tool for public and private, multi-
omic and clinical/phenotype data, we obtained TCGA-COAD
patients’ immune subtype classification, molecular subtype
classification, tumor stemness score based on RNAseq, icluster
classification (Goldman et al., 2020), and visualized using R
software.

Functional Enrichment Analysis

To research the biofunctions of CCL18 and BCL2A1, the R
“clusterProfiler” package (Yu et al., 2012) was used to perform
functional annotations among 80 protein-coding genes with a
correlation greater than 0.6 with CCL18 and BCL2A1, which
included three categories of GO (biological processes (BP),
molecular functions (MF), and cellular components (CC)) and
KEGG enrichment analysis. Using the “treemap” package (Liu L
et al., 2021), we visualized the results of functional enrichment
analysis.

The Encyclopedia of RNA Interactomes

(ENCORI)

Using ENCORI (http://starbase.sysu.edu.cn/index.php), which is
an open-source platform for studying miRNA-mRNA
interactions, the miRNA differential expression and miRNA-
target co-expression of CCL18, BCL2A1l, and PD-L1 were
examined.

GSEA

The KEGG gene set (186 pathways) was downloaded from the
MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp) (Subramanian et al., 2005). Based on software
GSEA_4.0.1, we performed the GSEA. Enrichment FDR values
were based on 1000 permutations. Nominal p-value < .05 and
FDR <0.25 were considered to be statistical significance (Cheng
et al,, 2021).

Statistical Analysis

All statistical analyses in our study were performed using R
software (version 4.0.3). Due to COAD transcriptome data,
immune cell abundance, and ssGSEA scores do not follow a
normal distribution, differences between two groups were tested
by the Wilcoxon test. p < .05 was considered statistically
significant: *p < .05, **p < .01, **p < .001, **p < .0001.

Cisplatin Chemotherapy and Immunotherapy

RESULTS

Estimation of TME Score and TIIC

Abundance

The flow chart of this research is shown in Figure 1. Previous
studies show that the TME score and tumor purity (the
proportion of tumor cells in the TME) were novel features to
measure the efficacy of immunotherapy (Gong et al.,, 2020).
Specifically, a high TME score or low-purity tumors exhibited
a strong immunophenotype (Zhang et al., 2017). It was reported
that cisplatin therapy could increase antitumor immune response
by reducing immunosuppressive cells of the TME. Therefore, we
studied the relationship between cisplatin chemotherapy and the
TME in CC. Compared with the high-IC50 group, CC tissues in
the low-IC50 group had higher stromal, immune, and
ESTIMATE scores (Figure 2A) and lower tumor purity
(Figure 2B), which suggests that the low-IC50 group are more
like “hot tumors.” Furthermore, we investigated differences of the
abundance of three types of innate TIICs and three types of
adaptive TIICs in the TME. Combining the above three cohorts,
the samples in the low-IC50 group had significantly higher
infiltration of CD8+T cells, neutrophils, macrophages, and
myeloid dendritic cells (MDCs) (Figure 2C). Therefore, we
conclude that the immunophenotype of the low-IC50 group
was different from that of the high-IC50 group and CC tissues
sensitive to cisplatin chemotherapy were more like hot tumors
and might be more sensitive to immunotherapy.

Differences in the Expression of

Immune-Related Genes

To further clarify whether the low-IC50 group would benefit
more from immunotherapy, we studied differences in the
expression of co-inhibitory molecules of APC and T cells
(Figure 3A), IFNG response molecules (Figure 3B), co-
stimulatory molecules of APC and T cells (Figure 3C), and
cytolytic activity molecules (Figure 3D) between low- and
high-IC50 groups. The expression of most immune-related
genes was significantly higher in the low-IC50 group,
indicating that the CC in the low IC50 group had a stronger
immunophenotype and  would benefit more from
immunotherapy.

Other Predictive Biomarkers for

Immunotherapy

Next, we explored the relationship between the IC50 and other
hallmarks of genomic instability  (biomarkers for
immunotherapy), including MSI, dMMR, and TMB (Halama
et al., 2016; Duffy and Crown, 2019). Compared with the high-
IC50 group, the low-IC50 group had a higher proportion of MSI
(Figure 4A), dMMR (Figure 4B), and more TMB (Figure 4C).
Similarly, patients of MSI, dMMR, and more TMB had lower
IC50 (Figures 4D-F). The diagnostic power of cisplatin IC50 was
evaluated using the area under the curve (AUC) of the ROC. The
IC50 had excellent diagnostic performance for MSI (Figure 4G)

Frontiers in Cell and Developmental Biology | www.frontiersin.org

February 2022 | Volume 9 | Article 799278


http://www.autophagy.lu/
http://www.autophagy.lu/
http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
https://pancanatlas.xenahubs.net
https://pancanatlas.xenahubs.net
http://starbase.sysu.edu.cn/index.php
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Yue et al.

Cisplatin Chemotherapy and Immunotherapy

Three cohorts of colon cancer (CC) patients
TCGA, GSE39582, and GSE17538

|

IC50 of cisplatin chemotherapy
l for each CC patient

IC50
TCGA, GSE39582 and GSE17538
Immune score, stromal score, ESTIMATE score
tumor purity
tumor infiltrating immune cells

!

TCGA, GSE39582 and GSE17538

Expression or proportion of
APC and T cell co-inhibitory molecules
IFN response molecules
APC and T cell co-stimulatory molecules
Cytolytic activity molecules

Microsatellite stability (MSI)
MMR-deficient (AIMMR)
Tumor mutational burden (TMB)

CCL18 and BCL2A1

TCGA, GSE39582 and GSE17538
7 shared differentially expressed genes
(high IC50 vs. low IC50)

!

TCGA and GSE39582
Correlation with PD-L 1, immune score,
stromal score, ESTIMATE score
tumor purity
Expression of TMB
Proportion of MSI dMMR
In vitro validation: expression differences of

CCL18, BCL2A1 and PD-L1

in DLD1 wild type and cisplatin resistance,
pMMR and dMMR tissues

!

L TCGA and GSE39582
Relationship between IC50 / CCL18 / BCL2A1 / PD-L1
and immune-related signatures,
immune-related pathways, immune-related genes,
somatic mutation frequency,
scores of autophagy / ferroptosis / stemness

!

Hsa-miR-137,
shared microRNA associated with
CCLI18, BCL2A1, PD-LI
and IC50

!

!

TCGA and GSE39582
The functional enrichment analysis and
Gene Set Enrichment Analysis (GSEA)

Differences of CCL18, BCL2A1, PD-L1 and IC50
between high and low pathway activity groups

!

TCGA
The proportion of different immune subtypes,
molecular subtypes and icluster subtypes
between
high and low group of IC50, CCL18, BCL2A1 and PD-L1

FIGURE 1 | The flowchart of our research.

and MMR (Figure 4H), and general diagnostic performance for
TMB (Figure 41I). From this, we conclude that CC patients who
were sensitive to cisplatin chemotherapy were more likely to be
sensitive to immunotherapy.

Cisplatin Resistance-Related Genes

To explore the transcriptomic signatures associated with cisplatin
resistance, we conducted differential expression analysis between the
low- and high-IC50 groups in three cohorts, respectively. Utilizing

the DEseq2 (TCGA) and limma (GSE39582 and GSE17538)
algorithms, a total of seven shared DEGs were screened
(Figure 5A), all of which were downregulated in the high-IC50
group (Figure 5B). Diagnostic power (high vs. low IC50) (high vs.
low PD-L1) of these seven genes were also evaluated using the AUC
of the ROC. Combining three data sets, for the quantification of
IC50, CCL18, TMEM45A, TNFAIP6, and BCL2A1 had higher
diagnostic efficiency (AUC > 0.7) (Figure 5C). For the
quantification of PD-L1 expression (biomarker in cancer
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FIGURE 2 | The COAD tissues of the low-IC50 group were more like hot tumors. (A) The stromal, immune, and ESTIMATE scores of the low-IC50 group were
significantly higher than those of the low-IC50 group. (B) The tumor purity of CC tissue was significantly lower in the low-IC50 group. (C) Comparison of abundance of six
kinds of tumor infiltrating immune cells between low- and high-IC50 groups. **p < .01, **p < .001.

immunotherapy), CCL18, TNFAIP6, and BCL2A1 had higher
diagnostic efficiency (AUC > 0.7) (Figure 5D). We concluded
that the mechanisms for the low-IC50 group to benefit from
immunotherapy might be closely related to the increased
expression of CCL18, TNFAIP6, and BCL2A1.

Correlation of Cisplatin Resistance-Related
Genes With PD-L1 Expression and the TME

Score

In the above three cohorts, we further performed Spearman
correlation analysis among PD-L1 and seven cisplatin
resistance-related genes. Taking the correlation coefficient
greater than 0.5 as the threshold, CCL18 and BCL2A1 were
significantly associated with PD-L1 (Figure 6A). Besides this,
similar to PD-L1, CCL18 and BCL2A1 were also significantly
positively correlated with TME score (stromal, immune, and

ESTIMATE scores), whereas negatively associated with tumor
purity (Figure 6B). It could be seen that the expression of
cisplatin resistance-related genes, CCL18 and BCL2A1, were
significantly related to the immunophenotype of the TME.
Compared with DLD1 wild-type, the survival rate of drug-
resistant DLD1 increased significantly when the concentration of
cisplatin was more than 10 umol/L (Figure 6C). For in vitro
verification, compared with DLD1 wild-type, the expression of
CCL18, BCL2Al, and PD-L1 was significantly decreased in
cisplatin-resistant DLD1 (Figure 6D). Next, we evaluated the
CCL18, BCL2A1, and PD-L1 mRNA expression in six pairs CC
tissues (PMMR vs. dMMR) of our hospital. The patient’s consent
was obtained in advance, and informed consent was signed.
Compared with pMMR tissues, the mRNA expression of
CCL18, BCL2A1, and PD-L1 in dMMR was significantly
increased (Figure 6E). The in vitro wet experiments were
consistent with the abovementioned bioinformatics analysis
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activity molecules were significantly higher in the low-IC50 group. *p < .05, *p < .01, **p < .001.
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conclusion, that is, CC tissues that were sensitive to cisplatin

chemotherapy might be more sensitive to immunotherapy.

The Relationship Between CCL18, BCL2A1,

and Hallmarks of Genomic Instability
To further determine whether CCL18 and BCL2A1 could be used
as predictive biomarkers for cancer immunotherapy, such as

cisplatin  IC50, we investigated their relationship with
hallmarks of genomic instability  (biomarkers for
immunotherapy). In contrast with the low group of CCLIS,
BCL2A1, and PD-LI, the corresponding high group had a
higher proportion of MSI (Figure 7A), dMMR (Figure 7B),
and more TMB (Figure 7C).

Based on respective medians of CCL18 and BCL2A1, CC

patients were divided into four groups, including
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Low_CCL18_Low_BCL2Al, Low_CCL18_High_BCL2Al,
High CCL18_Low_BCL2A1 and High CCL18_High BCL2Al.
Low_CCL18_High BCL2A1 and High CCL18_High BCL2Al
patients had a higher proportion of MSI (Figure 7D).
BCL2A1 was better than CCL18 in terms of MSI prediction.
For MMR, High_CCL18_High_BCL2A1 patients had the highest

proportion of dMMR  (Figure 7E). For TMB,
High_CCL18_High BCL2A1 patients had the highest TMB
(Figure 7F). Therefore, compared with the other three groups,
High_CCL18_High BCL2A1 patients would benefit more from
chemotherapy or immunotherapy. Besides this, For MSI
prediction, BCL2A1 had a better prediction of the efficacy of

Frontiers in Cell and Developmental Biology | www.frontiersin.org

10

February 2022 | Volume 9 | Article 799278


https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Cisplatin Chemotherapy and Immunotherapy

Yue et al.
A 100% B 100% c
100) ek
75% 75% 80
= MSI o I
50% mNo  Ssow = 1.
= H YES - -
= MMR % 1.
 dMMR N
B pMMR 1
25% 25% K
20 mean = 16.72
mean = 4.64 :
0% 0% 0
LowCCLI8  High CCLI8 Low CCLI8 High CCL18 Low_CCL18(a=197) High CCL13 (n=.156)
100% 100%
100 .
75% 75% i
MSI o i
— 60
@ 50% mNO  Z s0% E
= HYES S = -
MMR e .
m dMMR . J”
M pMMR @
25% 25% "
20 mean = 16.45
mean =4.91
0% 0% 0
Low BCL2A1 High BCL2A1 LowBCL2A1 _ High BCL2A1 Low_BCL2A1 (n=197)  High BCL2Al (n=196)
100% 100%
100 sk
75% 75% 80 i
MSI
— oy @ 60 ;
@A 50% mNO S 50% = Sp
p= mVES S & [ 13
MMR 0 .
= dMMR ‘1.
B pMMR ;
25% 25% : s 2
20 .| mean=16.73
mean = 4.63 A
0% 0% 0
Low_CD274 (n = 197) High CD274 (n= 196)

High PD-L1 Low PD-L1 High PD-L1 F

D Low_PD-L1 E
100% 100%
sk
3
*
75% 75% 200
MSI
7 Jai]
= 50% m NO s 50% S
B YES =
avr
]
= pMMR
25% 25% 1 P 5
% o
I mean =347 4 Mean=8.98 nean= 10.24m men= 1849
0
0% Low_CCLIS Low_CCLI8 High CCLI8 High CCLIS

0% X

Low_BCL2A1 High BCL2AI Low_BCL2AI High BCL2A1
Low_CCLIS  Low_CCLI8 High CCLI8 High CCLIS (=155 (n=42) (n=42) (=154
Low_BCL2A1 High BCL2A1 Low_BCL2AI High BCL2A1

Low_CCLI$  Low_CCLI$ High CCLIS High CCLIS
Low BCL2Al High BCL2A1 Low BCL2AI High BCL2A1
FIGURE 7 | The relationship between MSI, dMMR, TMB, and CCL18, BCL2A1. Similar to PD-L1, the high CCL18 or BCL2A1 group had a greater proportion of (A)
MSI, (B) dMMR, and (C) more TMB. (D) Low_CCL18_High_BCL2A1 and High_CCL18_High_BCL2A1 groups had a greater proportion of MSI. Compared with the
other three groups, the High_CCL18_High_BCL2A1 group had the highest proportion of (E) dMMR and the most (F) TMB. *p < .05, **p < .001.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 February 2022 | Volume 9 | Article 799278


https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Yue et al. Cisplatin Chemotherapy and Immunotherapy

g m e S E——— TCGA
oy gmlgﬂ CD274
(IR TR L0 [ | (1AL T PD-L1 Response 4 I ow
\ I{ | \ P \ [ | R Type I IEN Reponse High CD274
\ Il I I | IR CERS IETRFR [ | Type PN Reponse 2
\ \ \ [ T E T LT ] ceck—poine group2 .
| If HLA 0 High_CCL18_High_BCL2A1
| | I} [ 11 \ | MHC class 1 High_CCL18_Low_BCL2AI
I |” I ‘ I \ I Parainflammation ) Low_CCLI18_High BCL2A1
| | H ‘ ‘ ‘ ‘ ’ Inflammation—promoting Low _CCL18 Low BCL2A1
| “ ‘ ‘ l ‘ , ‘Tcelleo—sumulauon 4
AN \ | |1l T cell co-inbibition groupl
| || | BIERIE_INFLAMMATORY_RESPONSE_TGFBI High IC50
[ | | BOHN_PRIMARY_IMMUNODEFICIENCY_SYNDROM_DN Low IC50
[I{ | | FULCHER_INFLAMMATORY_RESPONSE_LECTIN_VS_LPS_DN
[ | || GALINDO_IMMUNE_RESPONSE_TO_ENTEROTOXIN
‘ [ 11] | ||| ZHOU_INFLAMMATORY_RESPONSE_FIMA_DN
L

ZHOU_INFLAMMATORY_RESPONSE_FIMA_UP

\ I | ZHOU_INFLAMMATORY_RESPONSE_LIVE_DN
H | | | \ 000 ‘ ZHOU_INFLAMMATORY_RESPONSE_LIVE_UP
| ‘ il ‘ | ZHOU_INFLAMMATORY_RESPONSE_LPS_UP

\ Il fi11 11 | [ [ GOLDRATH_IMMUNE_MEMORY
‘ |H ‘ ‘ | || ||| KEGG_AUTOIMMUNE_THYROID_DISEASE
| (LU E

‘ KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION

I [ [ A ' || | KEGG_PRIMARY_IMMUNODEFICIENCY
(1l | K1 A | | |1l || LIN_TUMOR_ESCAPE_FROM_IMMUNE_ATTACK
||| NEMETH_INFLAMMATORY_RESPONSE_LPS_UP
”\ ll

PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_DN

| | OKUMURA_INFLAMMATORY_RESPONSE_LPS
IR (]
\ ]

PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_UP

REACTOME_ADAPTIVE_IMMUNE_SYSTEM
| REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM
I | | | | REACTOME_IMMUNE_SYSTEM
| | REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_LYMPHOID_CELL
Il ‘ I | | [l
| [ 1]

I REACTOME_INNATE_IMMUNE_SYSTEM
|| || REACTOME_THE_NLRP3_INFLAMMASOME
[ | | REACTOME_TRANSLOCATION_OF_ZAP_70_TO_IMMUNOLOGICAL_SYNAPSE
[N [ 11 LI W1 SEKI_INFLAMMATORY_RESPONSE_LPS_DN
| ||| SEKI_INFLAMMATORY_RESPONSE_LPS_UP

WUNDER_INFLAMMATORY_RESPONSE_AND_CHOLESTEROL_UP
| \ | WUNDER_INFLAMMATORY_RESPONSE_AND_CHOLESTEROL_DN
(| H | FULCHER_INFLAMMATORY_RESPONSE_LECTIN_VS_LPS_UP

i !(“l

1WA
l‘l l )H\ ‘II |H

B — group3

& GSE39582
group
group3
[ DR EMIT I Po-L1 Response 6
11 i \ [] \ ‘ | Type I IEN Reponse . IL9w CD274
| f \ \ (] [ 1111 | Type 11PN Reponse High CD274
LI i LR e A
[ ML \ ’I | Hi (I I MHC class 1 0 High CCL18_High BCL2AI
0 | (I Parainflammation High_CCL18_Low_BCL2A1
| | | | (] | || Inflammation-promoting -2 Low_CCL18_High BCL2A1
\ ‘ il L T cell co-stimulation Low_CCLI18_Low_BCL2Al
[l T celt coinhibition —4
{1 BIERIE_INFLAMMATORY_RESPONSE_TGFBI -6 groupl
[} [ || |l Il ‘ BOHN_PRIMARY_IMMUNODEFICIENCY_SYNDROM_DN High IC50
| | ‘ | | | (| [ } | FULCHER_INFLAMMATORY_RESPONSE_LECTIN_VS_LPS_DN Low IC50

||| GALINDO_IMMUNE_RESPONSE_TO_ENTEROTOXIN
0K JI0 | R M | | ZHOU_INFLAMMATORY_RESPONSE_FIMA_DN
[ 1'0] | |//| ZHOU_INFLAMMATORY RESPONSE_FIMA_UP
| [{ 1l | ZHOU_INFLAMMATORY_RESPONSE_LIVE_DN
| [ | | [ “ ||| ZHOU_INFLAMMATORY_RESPONSE_LIVE_UP
[ | ||| ZHOU_INFLAMMATORY_RESPONSE_LPS_UP
| |l | \ GOLDRATH_IMMUNE_MEMORY
KEGG_AUTOIMMUNE_THYROID_DISEASE
| Il \] |1 KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION
U {1l I (LU \ Il KEGG_PRIMARY_IMMUNODEFICIENCY
\ 1 0] AR Il | LIN_TUMOR_ESCAPE_FROM_IMMUNE_ATTACK
|| NEMETH_INFLAMMATORY_RESPONSE_LPS_UP
\ I I} | [ \ \ | OKUMURA_INFLAMMATORY_RESPONSE_LPS
[ r [T PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_DN
} \
| REACTOME_THE NLRP3 INFLAMMASOME
‘I | [T | \ | REACTOMEiTRANSLOCAT]ONioFizAPjO?TOJMMUNOLOG[CAL}YNAPSE

| \ | | | | SEKI_INFLAMMATORY_RESPONSE_LPS_DN
H | [l ||| || SEKIINFLAMMATORY RESPONSE LPS UP
H
[l

| PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_UP
\ ‘ REACTOME_ADAPTIVE_IMMUNE_SYSTEM

REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM

REACTOME_IMMUNE_SYSTEM
REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_LYMPHOID_CELL
REACTOME_INNATE_IMMUNE_SYSTEM

flEi I WUNDER_INFLAMMATORY_RESPONSE_AND_CHOLESTEROL_UP
\ | \ | 11 | | | WUNDER_INFLAMMATORY_RESPONSE_AND_CHOLESTEROL_DN
|| | | [ ||| FULCHER_INFLAMMATORY_RESPONSE_LECTIN_VS_LPS_UP
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FIGURE 10 | The landscapes of somatic mutations. The low-IC50 group and the high CCL18 or BCL2A1 or PD-L1 group had more somatic mutation frequencies.
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immunotherapy. Based on the expression of CCL18 and BCL2A1,
we could partly predict the sensitivity of immunotherapy in CC
patients.

Scores of Immune Signatures and Immune
Pathways and Expression of

Immunomodulators

Based on the ssGSEA algorithm, we calculated the scores of 10
immune signatures and 30 immune pathways and further
forecasted their relationship with cisplatin IC50, CCL18,
BCL2A1, and PD-L1. Results indicate that, with the increasing
expression of CCL18 and BCL2A1, most immune responses were
activated as well as immune-related pathways (Figures 8A,B).

Besides this, for immunomodulators, whether it was
immunostimulators, immunoinhibitors, = chemokines, or
chemokine receptors, most of them were significantly

positively correlated with the expression of CCL18 and
BCL2A1 (Figures 9A,B). Cisplatin resistance-related genes
CCL18 and BCL2A1 could partly predict the efficacy of
immunotherapy in CC patients.

The Landscapes of Gene Mutations

Gene mutations caused cancer patients to be sensitive or resistant
to immune drugs, affecting clinical drug selection and treatment
effects (Peng et al, 2016). Therefore, we investigated the
landscapes of gene mutations in the low and high groups of
TCGA-COAD patients. Similar to the PD-L1 high group, for the
low-IC50 group and high-CCL18 or BCL2A1 group, among the
20 most frequently mutated genes, there were more TTN,
MUCI16, SYNE1, FAT4, PIK3CA, ZFHX4, OBSCN, RYR3,
DNAHS5, PCLO, DNAH11, NEB, and LRP1B mutation and
less APC, TP53, and KRAS mutation (Figure 10). It could be
seen that gene mutation frequencies were closely related to
immunotherapy response in CC patients.

Difference of Autophagy, Ferroptosis, and

Stemness Scores

Previous studies confirm that autophagy mediated the sensitivity
of tumor cells to immunotherapy after chemotherapy
(Ramakrishnan et al,, 2012). In our study, in the TCGA and
GSE39582 data sets, compared with the low-IC50 group, the
autophagy score of the high-IC50 group was significantly
decreased (Figure 11A), which was consistent with previous
study that autophagy activators could inhibit the cisplatin
resistance of tumor cells (Sirichanchuen et al, 2012).
Compared with the low group of CCL18 or BCL2A1 or PD-
L1, the autophagy score of corresponding high group was
significantly increased (Figure 11B), which was consistent
with the conclusions of previous studies that enhanced
autophagy would increase the sensitivity of immunotherapy
(Jiang et al,, 2019; Xia et al., 2021).

Ferroptosis, the bright new star in immunotherapy, could
enhance the efficacy of immunotherapy (Wang W et al., 2019).
Besides  this, ferroptosis  inducers could  enhance
chemotherapeutic drug sensitivity (Kim et al., 2018). Similar to

Cisplatin Chemotherapy and Immunotherapy

the difference in autophagy score, the low-IC50 group and the
high-CCL18 or BCL2A1 or PD-L1 group had higher ferroptosis
scores (Figures 11C,D). Among the four groups, the autophagy
or ferroptosis score of High CCL18_High BCL2A1l patients

were significantly higher than that of
Low_CCL18_Low_BCL2A1 and High CCL18_Low_BCL2A1
patients. The autophagy or ferroptosis score of

Low_CCL18_High_BCL2A1 patients were significantly higher
than that of Low_CCL18_Low_BCL2A1 patients (Figures
11EF). The difference between autophagy and ferroptosis
further verified that CCL18 and BCL2A1 were closely related
to the sensitivity of immunotherapy in CC patients.

Previous study confirms that the stemness of immune T cells
promotes antitumor effects (Li W et al., 2020). Therefore, we
analyzed the stemness score difference between low and high
IC50 or CCL18 or BCL2A1 or PD-L1 groups. (Figure 11G) The
high-IC50 group and low-CCL18 or BCL2A1 or PD-L1 group
had a higher stemness score. The stemness score of
High_CCL18_High BCL2A1 patients was significantly lower
than that of Low_CCL18_Low_BCL2Al patients. Therefore,
we speculated that the outcome of chemotherapy and
immunotherapy for CC patients with high stemness score
might not be good (Figure 12).

MicroRNA Correlation

The mechanism of drug resistance is very extensive in cytology,
including a variety of key genes and pathways. The genetic
variation of these key factors can lead to the occurrence of
drug resistance in tumor cells. Among them, microRNA is one
of these key genes (Ma et al., 2010). On the ENCORI database, we
excavated the respective miRNAs of CCL18, BCL2A1, and PD-L1
and finally screened the two miRNAs shared by BCL2A1 and PD-
L1, hsa-miR-514a-5p and hsa-miR-137 (Figure 12A). Hsa-miR-
137 was significantly positively associated with CCL18, BCL2A1,
and PD-L1 (Figure 12B), and upregulated in CC (Figure 12C)
and the high-IC50 group (Figure 12D). Previous studies confirm
that hsa-miR-137 was closely related to the occurrence and
development (Smith et al, 2015; Huang et al, 2016),
chemotherapy sensitivity (Guo et al, 2017) of cancer, and
could also regulate the autophagy (Wang Z et al, 2019),
ferroptosis (Luo et al, 2018), and stemness (Sakaguchi et al.,
2016) of cancer cells. To a certain extent, this confirms the
conclusions of our analysis. However, the roles of hsa-miR-
137 in cancer immunotherapy were never mentioned, which
needed to be explored in depth. For the other microRNA, hsa-
miR-514a-5p was only positively significantly associated with
BCL2A1. Therefore, we did not study it further.

The Functional Enrichment Analysis (GO

and KEGG) and GSEA

To explore the underlying mechanisms of CCL18 and BCL2A1,
among 19,584 protein-coding genes in the TCGA and
20,183 protein-coding genes in the GSE39582, based on the
Spearman correlation coefficient greater than 0.6, we
unearthed 80 genes related to both CCL18 and BCL2A1 and
performed GO (Figure 13A) and KEGG (Figure 13B) analysis.
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For BP, MF, and KEGG, CCL18 and BCL2A1 were significantly
related to immune and inflammatory response. For CC, CCL18
and BCL2A1 were significantly related to granule membrane.
Besides this, results of GO-MF and KEGG were both significantly
related to the function of Toll-like receptors. Toll-like receptors
might be involved in the resistance process of chemotherapy and
immunotherapy in CC patients.

To further study potential pathways for chemotherapy-sensitive
tumor cells to benefit from immunotherapy and the molecular
mechanisms of CCL18 and BCL2A1, we performed GSEA among
186 KEGG pathways, including the Toll-like receptor signaling
pathway. Results indicate that the low-IC50 group and high-
CCL18 or BCL2A1 or PD-L1 group were significantly associated
with KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION
and KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY
(Figure 13C). Downregulating the activity of these two pathways
might help increase the sensitivity of drug-resistant tumor cells to
cisplatin chemotherapy and immunotherapy.

Differences in the Scores of two Enrichment
Pathways

Using the ssGSEA method, we quantified the scores of the above two
key pathways. Based on the respective medians of the pathway score,
CC patients were divided into high and low groups. In the high group

of two key pathways, the expression of CCL18, BCL2A1, and PD-L1
increased significantly, whereas the IC50 decreased significantly
(Figures 14A,B). Diagnostic power (high vs. low IC50) of two
pathways were also evaluated using the AUC of the ROC. The

diagnostic power of
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY was
higher than

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION
(Figures 14C). This corresponded to the Toll-like receptor function
of the previous GO-MF and KEGG results. The Toll-like receptor
signaling pathway might play a pivotal role in the response to
chemotherapy and immunotherapy and was a key target to
increase treatment sensitivity.

Subtype Analysis of TCGA-COAD Patients

To understand the pathogenesis of fatal malignant tumors, 33
types of tumors in the TCGA were classified into different
subtypes according to the genomic characteristics (Liu et al.,
2018; Thorsson et al., 2018; Swanson et al., 2019). We explored
the proportion of different immune subtypes, molecular
subtypes and icluster subtypes of a TCGA-COAD cohort.
Among five types of immune subtypes of TCGA-COAD, the
proportion of IFN-y dominant (immune C2) and TGF-beta
dominant (Immune C6) patients in the low-IC50 group, high
CCL18 or BCL2A1 or PD-L1  group, and
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FIGURE 13 | The functional enrichment analysis and GSEA. The (A) GO and (B) KEGG analysis of 80 genes significantly related to CCL18 and BCL2A1
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High_CCL18_High BCL2A1 group increased significantly
(Figures 15A,B), indicating that these patients were suitable
for cisplatin chemotherapy and immunotherapy. Among four
types of molecular subtypes of TCGA-COAD, patients of HM-
indel and HM-SNV might benefit more from cisplatin
chemotherapy and immunotherapy (Figures 15C,D). Using
the iCluster and Cluster of Cluster Assignments (COCAs)

method (Swanson et al., 2019), CC patients were mainly
divided into five types, of which C18 and C20 patients were
mainly attributable to low-IC50 group, high-CCL18 or
BCL2A1 or PD-L1 group, and High_CCL18_High BCL2Al
group (Figures 15E,F). It could be seen that C18 and C20
patients might benefit more from cisplatin chemotherapy and
immunotherapy.
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FIGURE 15 | TCGA-COAD subtype analysis. (A,B) The proportion of immune C2 and C6 increased significantly in the low-IC50 group, high CCL18 or BCL2A1 or
PD-L1 group, and High_CCL18_High_BCL2A1 group. (C—F) The low-IC50 group, high group of CCL18 or BCL2A1 or PD-L1 and Low_CCL18_Low_BCL2A1 group
had a higher proportion of HM-indel, HM-SNV, C18 and C20.

DISCUSSION In this study, we found that CCL18 and BCL2A1 could predict
the efficacy of chemotherapy and immunotherapy at the same
As one of the leading causes of cancer-related death, the treatment of ~ time. At the subtype level, COAD patients of immune C2,
COAD has always been highly concerned. The immune TME  immune C6, HM-indel, HM-SNV, C18 and C20 were suitable
occupies an important position in the process of tumor  for chemotherapy and immunotherapy. At the genetic level,
occurrence, invasion, metastasis, and treatment tolerance, = High CCL18_High BCL2A1 patients might benefit the most
indicating that we can start from the perspective of the immune  from chemotherapy and immunotherapy.
microenvironment to explore novel ant-tumor targets. Low_CCL18_High BCL2A1 patients had a high proportion of
With the increasing popularity of immunotherapy, it has ~ MSI, which was close to that of High CCL18_High BCL2Al
brought hope to cancer patients. However, not all patients can  patients. In addition, the proportion of immune C2 and HM-
respond well to immunotherapy (Ganesh et al., 2019). Therefore,  indel in Low_CCL18_High BCL2A1 patients was higher than
the development of immune-related biomarkers with high that of High_CCL18_Low_BCL2Al. From this, we concluded
accurate value is essential to predict the efficacy of  that BCL2A1 was better than CCL18 in predicting the sensitivity
immunotherapy in COAD patients. of COAD patients to chemotherapy and immunotherapy.
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To study the potential mechanisms of CCL18 and BCL2Al,
GSEA and functional enrichment analysis were conducted.
Results show that the expression changes of CCL18 and
BCL2A1 mainly affected the Toll-like receptor signaling
pathway, which provides clues for further research.

For hsa-miR-137, a previous study confirmed its correlation with
chemotherapy sensitivity. Hsa-miR-137 chemosensitized CC cells to
the chemotherapeutic drug oxaliplatin by targeting YBX1 (Guo et al,,
2017). Silencing OIP5-AS1 and upregulating hsa-miR-137
expression significantly intensified growth inhibition of drug-
resistant CC cells and improved the sensitivity of CC cells to
Oxaliplatin (Liang et al., 2020). Besides this, hsa-miR-137 was
closely related to the occurrence of early colorectal cancer
(Huang et al,, 2016). Hsa-miR-137 acted as a tumor-suppressive
miRNA in CCs and negatively regulated the progression of CC
(Smith et al, 2015). Hsa-miR-137 was also closely related to
ferroptosis (Luo et al., 2018), stemness (Sakaguchi et al,, 2016),
and autophagy (Wang Z et al., 2019) of cancer cells. However, the
roles of hsa-miR-137 in immunotherapy had never been explored,
and more molecular biology experiments were urgently needed.

CCL18 is a member of the secreted protein cytokine family
involved in immunoregulatory and inflammatory processes
(Babu et al, 2009). BCL2A1 is the underdog in the BCL2
family (Vogler, 2012). Previous studies confirm their
association with chemotherapy resistance (Eisele et al., 2007;
Yajima et al., 2009; Lane et al., 2015; Sagara et al., 2016; Lin
et al., 2020). Besides, both CCL18 and BCL2A1 were significantly
related to the occurrence and development of cancer (Yu et al,
2019; Korbecki et al., 2020). This study confirmed their prediction
of immunotherapy sensitivity, and we looked forward to more
wet experiments to verify it in the future.

The advantages of this paper are as follows: in this study, the
relationship ~ between  cisplatin ~ chemotherapy  and
immunotherapy was explored in detail by bioinformatics
methods and verified in vitro by cell experiment and clinical
specimens. The disadvantages of this paper were as follows: for
CC patients, we proposed cisplatin chemotherapy combined with
immunotherapy for the first time, which urgently needs more
in vitro and in vivo research, including animal experiments.

CONCLUSION

COAD patients who were sensitive to cisplatin chemotherapy
might also benefit more from immunotherapy. CCL18 and
BCL2A1 could simultaneously predict the sensitivity of COAD
patients to chemotherapy and immunotherapy.
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