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Among themyriad of statistical methods that identify gene–gene interactions in the realm of
qualitative genome-wide association studies, gene-based interactions are not only
powerful statistically, but also they are interpretable biologically. However, they have
limited statistical detection by making assumptions on the association between traits and
single nucleotide polymorphisms. Thus, a gene-based method (GGInt-XGBoost)
originated from XGBoost is proposed in this article. Assuming that log odds ratio of
disease traits satisfies the additive relationship if the pair of genes had no interactions, the
difference in error between the XGBoost model with and without additive constraint could
indicate gene–gene interaction; we then used a permutation-based statistical test to
assess this difference and to provide a statistical p-value to represent the significance of
the interaction. Experimental results on both simulation and real data showed that our
approach had superior performance than previous experiments to detect gene–gene
interactions.

Keywords: genome-wide association studies, gene–gene interactions, XGBoost, additive model, gene-based
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1 INTRODUCTION

Genome-wide association study (GWAS) is a collection of successful methods for identifying
genetic loci associated with complex traits. More than 71,000 specific single nucleotide
polymorphisms (SNPs) associated with diseases or traits have been identified (Hindorff
et al., 2009; Yang et al., 2015; Liu et al., 2018a; Guo et al., 2018; Buniello et al., 2019; Loos,
2020; Lyu et al., 2020; Hu et al., 2021). Previous GWAS schemes relied mainly on a single
locus model that verified the independent association of individual markers to particular
phenotypes. Despite the successful recognition of many regions of disease susceptibility,
most SNPs captured by this kind of method may have a small effect size that does not
explain the heritability of complex traits fully. It is believed that genetic interactions that are
engaged significantly in the genetic basis of complex traits and diseases (Cordell, 2009; Moore
et al., 2010; Liu et al., 2018b; He et al., 2020; Luo et al., 2020; Shao and Liu, 2021) may be a
potential solution to the problem of “missing heritability” (Manolio et al., 2009; Fang et al., 2019;
Young, 2019). The solution may be partial, but it could enlighten the construction of new
topologies for gene pathways.
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Genetic interaction was first studied at the SNP level, and
SNP–SNP interactions (i.e., epistasis) were detected by applying
several methods (Li et al., 2015a; Ritchie and Van Steen, 2018),
such as statistics based on entropy (Dong et al., 2008), logistic
regression (Lin et al., 2016), and odds ratio (Emily, 2012); other
techniques include multifactor dimensionality reduction (MDR)
(Ritchie et al., 2003), BOOST (Wan et al., 2010), RRIntCC (Zhang
et al., 2019), GenEpi (Chang et al., 2020), and some accelerate
method (Nobre et al., 2021). One of the general challenges
encountered by these SNP-based approaches is the statistical
weakness of the higher-order or pairwise tests that result from
massive multiple testing corrections over all the groups or pairs of
SNPs. Instead, we investigated every possible SNP from two genes
in single, gene-based interaction detection.

The success of gene-based approaches in marginal
association studies of GWAS could extend to the analysis of
gene–gene interactions (GGIs) (Emily, 2018; Emily et al.,
2020). This approach has several potential advantages. First,
it typically has far fewer genes than SNPs, reducing the number
of pairwise tests drastically. For example, ∼ 2 × 108 tests are
required to detect genetic interactions in pairs of 20,000 genes.
However, over 5 × 1012 tests are required for 3 million SNPs in
a marker-based interaction. Second, because a gene contains
more information than a single SNP and genes interact
diversely, gene-based methods are more powerful
statistically, which applies to gene-based studies on the
main effects as well (Liu et al., 2010; Li et al., 2011; Jiang
et al., 2017; Wang et al., 2020; Wang et al., 2021). Additionally,
biological prior knowledge (e.g., information about the known
association of genes within protein–protein interactions (PPIs)
or pathways) can be introduced easily. Finally, gene-based
results are characterized by having better interpretability and
important biological consequences.

Peng et al. (Peng et al., 2010) discovered a canonical
correlation of a pair of genes in a case group and in a control
group by applying a canonical correlation analysis–based U
statistic (CCU), which measured the difference in the
correlation of the gene pair. The difference then indicated the
incidence of a GGI. In the analysis, however, only linear
relationships were taken into consideration. Afterward, CCU
was extended to kernelized CCU (KCCU) (Yuan et al., 2012;
Larson et al., 2013), where a non-linear relationship was detected
under the kernel. Recently, Emily (Emily, 2016) presented a
method called AGGrGATOr that combined p-values
interaction tests at the marker level to gauge how a pair of
genes interacted, which was a strategy used by Ma et al. (Ma
et al., 2013) earlier to detect interactions under quantitative
phenotypes. Li et al. (Li et al., 2015b) proposed an entropy-
based and nonparametric method called GBIGM.

At present, the new approach GGInt-XGBoost is proposed
for identifying gene–gene interactions of complex phenotypes
at the gene level in case-control studies by leveraging the
eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin,
2016), which is applied in co-expressed gene detection and to
explore genetic associations in the field of bioinformatics
(Jiang et al., 2013; Babajide Mustapha and Saeed, 2016; Liu
et al., 2016; Liu and Jiang, 2016; Mrozek et al., 2016; Wei et al.,

2017a; Wei et al., 2017b; Liu et al., 2017; Chen et al., 2018; Wei
et al., 2018; Jiang et al., 2019; Liu et al., 2019; Yu et al., 2020a;
Yu et al., 2020b; Lv et al., 2020; Li et al., 2021; Liu et al., 2021).
A built-in mechanism of XGBoost is that one can impose
constraints on the trained model to make it additive, which we
assume characterizes the lack of interaction between two
genes. Our method exhibited an outstanding performance
for detecting the underlying gene–gene interactions at the
gene level under various settings based on the experiments
using a semi-empirical dataset. Its application using real
datasets showed accurate identification of gene–gene
interactions.

2 MATERIALS AND METHODS

In this section, we detailed the statistical workflow for GGInt-
XGBoost. To evaluate the power to detect GGIs and type-I error,
we present the different parameter settings for simulation studies
based on empirical data. Then, we adopted a real-world
rheumatoid arthritis dataset from the WTCCC (Wellcome
Trust Case–Control Consortium) database to assess the
performance of our method under a real situation.

2.1 GGInt-XGBoost
2.1.1 Preliminaries and Notation
Here, we take genes, a couple of SNPs, as the basic unit. Suppose
that we have n random samples:

(G1,i, G2,i) ∈ Rp+q, i � 1, 2, . . . , n, (1)

where

G1,i � (g1,i,1, g1,i,2, . . . , g1,i,p), G2,i � (g2,i,1, g2,i,2, . . . , g2,i,q), i
� 1, 2, . . . , n

and G1 and G2 represent two genes each with p and q SNPs,
independently. In the case–control studies, yi ∈ {0, 1} is a
categorical label, where 0 is a control subject and 1 is a case
subject. gk,i,j ∈ {0, 1, 2} represents the copy number of the minor
alleles of SNP j in the gene k for the sample i.

In this work, we created a statistic based on the XGBoost to
quantify GGI intensity in order to see if there is a statistical
interaction between two genes in a qualitative phenotype. To
estimate the distribution of the statistic, we used a permutation
resampling strategy. Our method was based on the assumption
that if there was no interaction between two genes, adding a
constraint to limit interactions between SNPs to only occurring in
the same gene would not have a significant negative impact on
XGBoost performance. The XGBoost’s build-in mechanism for
adding interaction constraints enables us to generate an additive
model and use prior knowledge about the gene structure during
model construction.

2.1.2 Definition of Total Additivity for Gene–Gene
Interaction
We defined GGIs using the concept of additive models. Additive
models were proposed by Friedman and Stuetzle (Friedman and
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Stuetzle, 1981) and further developed and popularized by Stone
(Stone, 1985), Hastie, and Tibshirani (Hastie and Tibshirani,
1990). Consider the regression problem where the feature lies in
Rd and the objective function has a real value. Let s1, . . . , sl be a
disjoint partition of the index set {1, . . . , d} and denotes the
elements of si to be ji1, . . . , jidi and πi(x) � (xji1, .., xjidi

) ∈ Rdi .
Now, real-valued function F on Rd is said to be additive for
partition {s1, . . . , sl} if there exists Fi: Rdi → R such that

F(x) � ∑l

i�1Fi(πi(x)). (2)

In our setting, the samples are elements in {0, 1, 2}p+q ⊂ Rp+q,
and we let s1 � {1, 2, . . . , p} and s2 � {1, 2, . . . , q}. We defined the
absence of interaction between the two genes as the log odds ratio
being additive with respect to the partition {s1, s2}. In other words,
our null hypothesis is

H0: ∃ F1, F2 such that P(y � 1|G1, G2)
� exp(F1(G1) + F2(G2))

1 + exp(F1(G1) + F2(G2)). (3)

2.1.3 eXtreme Gradient Boosting (XGBoost)
eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin,
2016) is a scalable machine-learning system for tree boosting,
which researchers apply to bioactive molecular prediction
(Babajide Mustapha and Saeed, 2016), protein
submitochondrial localization prediction (Yu et al., 2020a),
miRNA-disease association prediction (Chen et al., 2018), and
in the bioinformatics field (Shao et al., 2021).

For a given dataset with n samples,
D � {(xi, yi)}, xi ∈ Rm, yi ∈ R, and the XGBoost objective
function is defined as:

obj(θ) � ∑n

i
l(yi, ŷi) +∑T

t�1Ω(ft), (4)

where l is the loss function and Ω is the regularizer on the
regression tree ft, θ � (f1, . . . , fT), and ŷi � ∑

t
ft(xi) . The t −

th tree ft was obtained iteratively by gradient boosting, that is,

ft ≈ argmin∑
i
(zŷ(t−1) l(yi, ŷ

(t−1))ft(xi)

+ 1
2
z2ŷ(t−1) l(yi, ŷ

(t−1))ft
2(xi)) +Ω(ft). (5)

In our setting,

l(yi, ŷi) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−log⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ exp(ŷi)
1 + exp(ŷi)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ y � 1

−log⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1

1 + exp(ŷi)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ y � 0

(6)

When running XGBoost, an essential step is to optimize its
general parameters, booster parameters, and learning parameters.

2.1.4 XGBoost With the Additive Constraint
The base learner ft used in XGBoost is a regression tree, and we
considered features that appear in a path on the tree that starts at
the root and ends at one of the leaves as features that interact with
one another. XGBoost allows specification of feature interaction
constraints in the form of lists of features where only the features
in the same list are allowed to interact with one another. It is
evident that when the lists are disjointed, and if every feature is
included in one of the lists, the feature interaction constraint is
equivalent to forcing each ft to include only features in a single
list, which implies that the regression model ∑

i
fi must be additive

concerning the partition specified by the lists. With the constraint
[[0,1] (Hindorff et al., 2009; Liu et al., 2018a; Loos, 2020),], for
example, the tree in Figure 1A violates the first constraint [0,1],
thus so would not be in the boosting tree system, but the tree in
Figure 1B complies with both the first and second constraints.

2.1.5 Illustration of the GGInt-XGBoost Workflow
Assume there are n samples in a case–control study for a pair
of genes such that G1 has p SNPs and G2 has q SNPs. We can
then apply XGBoost using the logistic regression loss
function with and without constraints on additivity, to
the dataset to estimate the performance in error using 10-
fold cross-validation. We denote the error in the
unconstrained model as err0orig and in the constrained
model as err0cons. The improvement of the performance of
the unconstrained model over the constrained model is

Δerr0 � err0cons−err0orig
err0orig

, which according to our assumption

should be a statistic that characterizes the strength of
interaction between these two genes. A positive Δerr0
indicated that the unconstrained model performed better,
and a larger positive Δerr0 means there was a stronger
interaction between the two genes.

To get a p-value, we needed to estimate the distribution of
Δerr0 under the null hypothesis. Here, we used a non-
parametric strategy based on permutation: we shuffled the
label y randomly m times, calculated Δerr using the exact
same aforementioned procedure, and used the resulting
empirical distribution as an estimate for the distribution of
Δerr0 under the null hypothesis. Let the result of these m
permutations be Δerr1, . . . ,Δerrm, then an estimated p-value
for the null hypothesis is

p �
∣∣∣∣{i: Δerri ≥Δerr0}∣∣∣∣

m
. (7)

For XGBoost, if we have n samples,K trees, a maximum depth
of d per tree, and ||s|| as the number of non-missing entries in the
training data, the training time complexity is O(Kd||s||logn).
Prediction for a new sample takes O(kd). We employed parallel
programming to minimize the execution time of permutation
resampling.

We summarized the process of GGInt-XGBoost in the
algorithm below (Algorithm 1) and presented the overall
workflow (Figure 2).
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2.2 Simulation Study
To assess the performance of GGInt-XGBoost to control type I
error and to detect GGIs, we compared GGInt-XGBoost with
KCCA (Larson et al., 2013), GBIGM (Li et al., 2015b), and
AGGrEGATOr (Emily, 2016).

2.2.1 Simulation With Haplotype Data
gs2.0 (Li and Chen, 2008) is a semi-empirical simulation data
generator that employs haplotype data as input and produces
high-density SNP genotype data for qualitative samples. The
generated dataset shares the same local linkage disequilibrium
(LD) structure as that of human populations. We selected
HapMap3 (a resident of Utah, the United States with
Northern and Western European ancestry from https://www.
sanger.ac.uk/resources/downloads/human/hapmap3.html) to
mimic the actual LD structure of the human population. The
Central European (CEU) dataset with 90 haplotypes was used as
the template haplotype data. In this research, we randomly
picked one pair of gene loci (i.e., GNPDA2 from chromosome 4
and FAIM2 from chromosome 12). GNPDA2 had a much
stronger LD pattern than FAIM2 did, and they were not
correlated (Figure 3). By employing the genipe module
(Lemieux Perreault et al., 2016), an imputation pipeline on
the genome-scale with PLINK, IMPUTE 2, and SHAPEIT,
chromosomes 4 and 12 were imputed. After imputing, six

SNPs were obtained from GNPDA2, and seven SNPs were
obtained from FAIM2 (Supplementary Table S1).

2.2.2 Disease Model
Here, we generated a disease model with two loci. A disease model
represents the relationship between two loci that correspond to the
disease.With various combinations of odds ratios (OR), sample sizes,
and population prevalence, we generated different disease models.
Using the jointly recessive–dominant model (RD model) as an
example, for each locus let the genotype OR be (1 + θ) and the
population prevalence of the disease bep (Supplementary Table S2).

Pr(D|gi) indicates the probability of a sample being a case given
the genotype combination of gi and named the penetrance of gi,
and Pr( �D|gi) denotes the probability of a sample being a control
given the genotype combination of gi. Then, the odds of disease are:

ODDgi �
Pr(D|gi)
Pr( �D|gi) �

Pr(D|gi)
1 − Pr(D|gi). (8)

The penetrance of genotype gi can be calculated using:

Pr(gi) � ODDgi

1 + ODDgi

. (9)

The corresponding penetrance table is shown in
Supplementary Table S3.

With a specific genotypeOR (1 + θ) and a population prevalence
p, the baseline value c represents the disease odds with the two loci
that do not have the disease alleles, and it can be calculated by
applying Eq. 10 with the terms from Supplementary Table S3.

p � Pr(D) � ∑Pr(D|gi) × Pr(gi). (10)

We used six integrated disease models in gs2.0, which included
a recessive–dominant model, a dominant–dominant model, an
XOR model, a threshold model, a multiplicative model, and a
recessive–recessive model. We generated different datasets by
various parameter settings, and we compared the performances of
KCCU, GBIGM, and AGGrEGATOr with our method.

Evaluation of Type-I Error: The type-I error indicates the
ability of a method to reject the null hypothesis when it is

FIGURE 1 | Illustration of trees with the additive constraint. With the constraint [[0,1] (Hindorff et al., 2009; Liu et al., 2018a; Loos, 2020),], (A) a tree violates the first
constraint (0,1) that would not be in the boosting tree system; (B) a tree complies with both the first and second constraints.
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true. In this study, the significance level α was set to 0.05. The
simulation used in the model is shown in Supplementary Table
S4 and run 100 times with each sample size n ∈ {1k, 2k, 3k, 4k, 5k}
with the odds ratio set at 1.

Evaluation of Power of the Test: The power of a test
indicates the probability that the method can reject the null
hypothesis correctly when the alternative hypothesis is true. In this
study, we generated 100 datasets for each parameter set under six

disease models (Supplementary Table S5). The power
under each parameter setting was expressed by the frequency with
which the null hypothesis of the dataset was rejected correctly at the
significance level of α � 0.05. To evaluate the influence of sample size,
we chose n ∈ {1k, 2k, 3k, 4k, 5k} with a specific population prevalence
p � 0.01 and OR � 2. To assess the impact of the OR, we considered
varying OR ∈ {1.5, 2, 2.5, 3, 3.5, 4} given a sample size of n � 4000
(cases and controls were both 2000, balanced dataset) and p � 0.01.

FIGURE 2 | Illustration of the GGInt-XGBoost workflow for gene-based gene–gene interaction detection.
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For GGInt-XGBoost, KCCU, AGGrEGATOr, and GBIGM, if
the number of datasets with a significance level less than α is m1,
then the power can be calculated by the following formula:

power � m1

100
. (11)

GBIGM and AGGrEGATOr methods are nonparametric
methods so no parameters need to be specific. We only set
the ratio of the trimmed jackknife to 0.05 (ω � 0.05) for KCCU.
For GGInt-XGBoost, we set the number of trees to 1,000
(num_round � 1,000), the maximum depth of trees to 3
(max_depth � 3), the type of objective to “binary:logistic”
(objective � “binary:logistic”), the learning rate to 0.01 (eta �
0.01), and the evaluate metric to error (eval_metric � “error”).
We recommend that when dealing with real-data analysis, the
depth of the trees is not to be set too deep in order to avoid
overfitting. For a dataset with thousands of samples, a maximum
depth of 2–4 is usually sufficient.

2.3 Experiments Using Rheumatoid Arthritis
Data
To evaluate GGInt-XGBoost’s ability to process real GGIs in a
qualitative dataset, we analyzed the susceptibility of a series of pairs
of genes in rheumatoid arthritis (RA), a chronic systemic disease
with inflammatory synovitis with unknown etiology. It causes
progressive bone destruction and affects bone remodeling. In this
article, we chose the WTCCC (2007) dataset, which contained
British population genotype data generated by the Affymetrix
GeneChip 500 k.We preprocessed our dataset in the followingways:

i. To verify the GGIs in the RA, we selected the pathway hsa05323
from the KEGG pathway database. The genotyping coordinates of
the WTCCC dataset can be found in UCSC hg18/NCBI Build36.
There were 90 genes in this pathway. Among them, many genes
belonged to MHCII and V-ATPase, which are two protein
combinations. Because many GGIs occurred by themselves, we
only selected representative genes from each protein combination,
and then we excluded other genes. Finally, 48 genes remained, which
resulted in C2

48 � 1128 pairs of genes to be evaluated.
ii. The detailed gene information was obtained from the

annotation file of NCBI Build36. For each gene, we added a
10 kb buffer region both downstream and upstream of the
originally defined gene position. All SNPs within the region
were selected for each gene.

iii. According to the quality control of GWAS, samples that
included gender that did notmatch the chromosomeX heterozygote
rates were removed. SNPs were also excluded when they met any of
the following conditions: the missing rate in the sample was ≥ 10%,
the minor allele frequency (MAF) was ≤ 0.05, or the frequency of
the control violated the Hardy–Weinberg equilibrium (p< 0.0001).
Finally, 385 SNPs remained with 4,966 samples that consisted of
2,993 control subjects and 1973 case subjects.

3 RESULTS AND DISCUSSION

The experimental environment of the following results was a
workstation with an Intel Xeon CPU E5-2,620 v2 at 2.10GHz,
96 GB of DDR3, Python3.6, and RStudio programming
implementation.

FIGURE 3 | Illustration of LD structureswithin genesGNPDA2and FAIM2. The plots are generated byHaploview. r2 measures the LD strength of each pair of SNPs in each
square, 0≤ r2 ≤1, where 0 indicates no LD and 1 indicates complete LD. The GNPDA2 has a much stronger LD pattern than that within FAIM2, and they are not correlated.
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3.1 Simulation Study
3.1.1 Evaluation of Type-I Error
For type-I error, by setting the significance level at α � 0.05, we
varied the sample size from 1,000 to 5,000. All the methods tested,
except for GBIGM when n � 1, 000, had a type-I error
comparable to the significance level (Table 1), which implied

that these methods well controlled type-I error for various
sample sizes.

3.1.2 Evaluation of the Power of the Test
Impact of Odds Ratio
We investigated the performance of the various methods in
detecting GGIs under the six disease models, with a
population prevalence of 0.01, the sample size of 4, 000, and
odds ratios that varied from 1.5 to 4 (Figure 4). For this
experiment, a single pair of SNPs that belonged to different
genes was chosen randomly for the disease models in the
generation of the simulated dataset, and the genes that
contained these two SNPs were considered to be interacting. A
larger OR resulted in better performance for all methods, and,
when OR � 4, some methods had a power that approached 1
(Figure 4). Our method was the best among all methods tested
except for when OR � 1.5, which might be because the base

TABLE 1 | Type-I error for KCCU, GBIGM, AGGrEGATOr, and GGInt-XGBoost
when varying the sample size.

Method Sample size

1,000 2,000 3,000 4, 000 5, 000

KCCU 0.02 0.02 0.01 0.05 0.07
GBIGM 0.13 0.06 0.07 0.07 0.07
AGGrEGATOr 0.05 0.06 0.07 0.04 0.02
GGInt-XGBoost 0.03 0.06 0.07 0.04 0.06

FIGURE 4 | Statistical power of simulation studies for KCCU (blue), GBIGM (yellow), AGGrEGATOr (green), and GGInt-XGBoost (red) under six disease models
with OR ∈ {1.5, 2,2.5, 3,3.5, 4}
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learner of XGBoost was a regression tree that might be prone to
overfitting. It would be difficult to distinguish the signal from
noise when the interaction strength was too low.

It is worth noting that in the recessive–recessive model (RR
model) (Supplementary Table S5A), the detection power was
consistently ≤ 20% as the OR value changed gradually from 1.5
to 4. AGGrEGATOr and GGInt-XGBoost reached
approximately 45%. According to the RR model penetrance
table, the baseline γ was very small when the population
prevalence was p � 0.01. Therefore, of the nine genotype
combinations, eight of them tended to be zero. The only
causal genotype (aabb) contained two minor alleles.
Typically, the MAF of a SNP ranged from 0.2 to 0.4, and few
genotypes (aabb) appeared in the simulation dataset.
Consequently, it was difficult to detect the GGI under the
disease phenotype. This was the main reason for the poor
performance of these methods under the RR model.

Impact of Sample Size
We also investigated the influence of the sample size. Let the
sample size be n ∈ {1k, 2k, 3k, 4k, 5k}, p � 0.01, and OR � 2
(Supplementary Figure S1). As the sample size increased, the
detection power of all methods increased monotonically under all
disease models, except for the RR model. In all methods, a larger
sample size corresponded to better performance.

In conclusion, GGInt-XGBoost performed better in
simulation studies than the other methods tested in almost
every setting. The reason was probably that our method, by
making use of constrained and unconstrained XGBoost
models, made weak assumptions on the kind of interaction
because any deviation from the additivity in the prediction of
log odds ratios indicated an underlying GGI, which resulted in

better statistical power. Furthermore, our method was more
robust with respect to the LD pattern among the SNPs within
each gene because the additivity constraint did not destroy the LD
structure within each gene.

3.2 Experiments Using Rheumatoid Arthritis
Data
Rheumatoid arthritis (RA) is an autoimmune disease with
symptoms that typically include pannus formation in the synovial
joints and destruction of cartilage and bones. The genes IL-17, IL-6,
TNF − α, RANK, and MMP3 are related to the development of RA
(Majithia and Geraci, 2007). There were 48 genes in our dataset
chosen from the RApathway hsa05323, which resulted in 1,128 pairs
of genes. We set significance level to α � 0.01, and for our method,
the number of permutations were set to m � 1000. GBIGM and
KCCU resulted in 134 and 159 pairs of detected interacting genes,
respectively. A total number of 65 of those pairs that were detected
by GBIGM and 30 of the pairs that KCCU detected had a p-value of
0. AGGrEGATOr detected 17 pairs of interacting genes, and GGInt-
XGBoost detected 58 pairs of interacting genes.

Because there were too many detected interacting gene pairs
in KCCU and GBIGM with a p-value � 0, we could not analyze
all of them in detail, so we focused on the 10 most significant
gene pairs detected by AGGrEGATOr and, by our method,
GGInt-XGBoost (Table 2). After a literature search, we found 7
of the 10 most significant gene pairs under GGInt-XGBoost and
3 of the 10 most significant gene pairs under AGGrEGATOr
were supported by prior research. There was also a greater
correlation between the results of GGInt-XGBoost and KCCU
or GBIGM than the correlation between AGGrEGATOr and
GBIGM or KCCU.

TABLE 2 |Calculated p-value for the 20 gene pairs using all four different methods. p-values in bold font indicate that they are significant. The ``Ref’’ column indicates that the
pair can be found as direct interaction in our literature search.

Gene1 Gene2 Ref p-value

GGInt-XGBoost AGGrEGATOr KCCU GBIGM

HLA class II TGF β Navarrete Santos et al. (1998) 0.0 0.588 0.0 0.037
HLA class II LFA-1 Steere and Glickstein, (2004) 0.0 0.591 0.195 0.373
HLA class II TEK 0.0 0.213 0.521 0.226
IL-8 ANG-1 Kabala et al. (2020) 0.0 1.0 0.818 0.32
MMP-3 April 0.0 0.164 0.161 0.063
HLA-DQA1 ANG-1 0.0 1.0 0.788 0.962
CTLA4 HLA class II Karlson et al. (2008) 0.0 0.663 0.292 0.0
MMP-3 BLYs Narasimhan et al. (2018) 0.0 0.473 0.0001 0.5
JUN FOS Huber et al. (2019) 0.0 0.441 0.692 0.025
GM-CSF HLA class II Field, (1995) 0.0 0.391 0.047 0.0
CD80 April 0.549 0.0006 0.941 0.334
CTSK BLYS 0.0 0.0008 0.356 0.056
AP-1 IL-6 0.764 0.0018 0.098 0.287
CD86 CTSL 0.235 0.0019 0.519 0.252
CXCL6 FLT-1 0.098 0.0023 0.004 0.52
CTLA4 AP-1 Schneider and Rudd, (2014) 0.843 0.0023 0.042 0.102
FLT-1 LFA-1 0.117 0.0031 0.063 0.028
CCL3 TRAP Jordan et al. (2018) 0.098 0.0032 0.682 0
IL-18 TGF β 0.137 0.0036 0.149 0.22
IL-1 SDF-1 0.647 0.004 0.116 0.636
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Furthermore, when using GGInt-XGBoost, after the detection
of interacting gene pairs, one can also use the ensemble tree
mechanism of XGBoost to investigate marker-based interactions
further; this is because the regression tree, which is the base
learner used in XGBoost, is a powerful tool for the discovery of
interactions among features. For a regression tree model, one
considers features that appear in the same traversal path from the
root to leaf to be interacting. As an example, the gene pairs IL-8
and Ang-1 were found to interact using our method. Pawel
et al.(Kabala et al., 2020) reported that Ang-1 induced the
production of IL-8 in synovial tissue explants of RA patients.
In the first tree in the unconstrained XGBoost model, it was clear
that one SNP from the gene IL-8 on chromosome 4 interacted
with rs121937926 in the gene Ang-1 (Supplementary Figure S2).
The interaction form was flexible because our method imposed
no functional form.

We explored the structure of the unconstrained XGBoostmodel
further with R package EIX (Karbowiak and Biecek, 2021), which
produced an interaction plot (Figure 5). For the convenience of
display, all the SNPs in IL-8 were named “G1_X”, and all SNPs in
ANG-1 were named “G2_X”, where “X” was the index. We chose
the sumGain as a measure for the interaction strength. The
sumGain was the sum of the gain value in all nodes in which
the given SNP occurred. The intensity of the sumGain was divided
into four equal parts and represented by different colored squares
in the legend. The interacting SNP pairs in Supplementary Figure
S2 from IL-8 and Ang-1 exhibited median strength in Figure 5
(with red star), which demonstrated that it was possible to use the
results of GGInt-XGBoost for a more fine-grained analysis of GGIs
at themarker level. Also, ourmethod was robust with respect to LD
because the LD structure within each gene was still expressed in the

tree model and did not directly impact the performance of our
method (Figure 5). Table 3 gives the information of the top 10
interacted SNP pairs by sumGain and occurrence frequency in the
ensemble boosting trees.

4 CONCLUSION

Gene–gene interactions (GGIs) are important in the study of
complex diseases and traits. In this article, we developed a
gene-based GGI detection algorithm called GGInt-XGBoost. We
treated the GGI detection problem as a measure of how much the
log odds ratio of qualitative traits deviated from the additive
structure. GGInt-XGBoost benefits from the attractive built-in
mechanism of XGBoost that allows for an elegant expression of
the additive structure by adding feature interaction constraints.

FIGURE 5 | Plot that shows pairs of SNPs that lie in two nodes of a regression tree connected by an edge. The color indicates the sumGain measure for the SNP
pairs. The pair with the red star indicates the interacting SNP pair from IL-8 and Ang-I.

TABLE 3 | sumGain measure of the 10 most significant interacting SNP pairs from
IL-8 and Ang-I. “Frequency” is the number of occurrences of the SNP pair in
the trained model.

Index Parent_SNP Child_SNP sumGain Frequency

1 G2_26 G2_12 387.846,816 87
2 G2_44 G2_46 237.672,225 50
3 G2_57 G1_2 228.947,974 75
4 G2_51 G2_33 218.003046 33
5 G2_2 G2_1 214.650,794 68
6 G2_51 G2_36 213.414,267 28
7 G2_6 G2_54 184.671,309 81
8 G2_51 G2_49 178.749,247 27
9 G2_47 G2_6 154.492,033 31
10 G2_6 G2_9 140.040435 54
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Because of the weak assumptions of the interaction form and
powerful and practical ability of XGBoost to fit nonlinear
relationships, our method detected more types of interpretable
GGIs accurately and effectively than other methods.

Combined with logistic regression, GGInt-XGBoost can be
used for the GWAS of complex qualitative traits. To test its
performance, we conducted a semi-empirical simulation study
and a retrospective analysis of rheumatoid arthritis. For most
of the settings tested, GGInt-XGBoost outperformed prior
methods in statistical power for detecting GGIs. Also,
because the base learner we used in XGBoost was the
regression tree, GGIng-XGBoost can detect GGIs under
quantitative traits. Furthermore, the base learner of
XGBoost is a tree model that has a natural way of
expressing marker-based interactions, which allows further
investigations of interactions at the marker level after two
genes are known to interact. For example, we looked for
interactions between the genes IL-8 and Ang-1 and found
that it was largely accounted for by the interaction between
a single pair of SNPs from these two genes. Also, through the
analysis of IL-8 and Ang-1, we found that GGInt-XGBoost was
robust with respect to the LD structure within genes. The
workflow designed for detection of GGIs did not damage the
LD structure, and the assumption of the additive structure
allowed marker-based interaction within genes. Last, GGInt-
XGBoost might be improved further or generalized by
incorporating ideas from causal inferences that would be
applied more effectively to multi-gene settings and the study
of gene pathways. In conclusion, GGInt-XGBoost is a helpful
addition to the existing toolbox of statistical methods for
studying gene–gene interaction in genome-wide association
studies.
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