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Genes, the nucleotide sequences that encode a polypeptide chain or functional RNA, are
the basic genetic unit controlling biological traits. They are the guarantee of the basic
structures and functions in organisms, and they store information related to biological
factors and processes such as blood type, gestation, growth, and apoptosis. The
environment and genetics jointly affect important physiological processes such as
reproduction, cell division, and protein synthesis. Genes are related to a wide range of
phenomena including growth, decline, illness, aging, and death. During the evolution of
organisms, there is a class of genes that exist in a conserved form in multiple species.
These genes are often located on the dominant strand of DNA and tend to have higher
expression levels. The protein encoded by it usually either performs very important
functions or is responsible for maintaining and repairing these essential functions. Such
genes are called persistent genes. Among them, the irreplaceable part of the body’s life
activities is the essential gene. For example, when starch is the only source of energy, the
genes related to starch digestion are essential genes. Without them, the organism will die
because it cannot obtain enough energy to maintain basic functions. The function of the
proteins encoded by these genes is thought to be fundamental to life. Nowadays, DNA can
be extracted from blood, saliva, or tissue cells for genetic testing, and detailed genetic
information can be obtained using the most advanced scientific instruments and
technologies. The information gained from genetic testing is useful to assess the
potential risks of disease, and to help determine the prognosis and development of
diseases. Such information is also useful for developing personalized medication and
providing targeted health guidance to improve the quality of life. Therefore, it is of great
theoretical and practical significance to identify important and essential genes. In this
paper, the research status of essential genes and the essential genome database of
bacteria are reviewed, the computational prediction method of essential genes based on
communication coding theory is expounded, and the significance and practical application
value of essential genes are discussed.
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INTRODUCTION

With the smooth progress of the Human Genome Project, more
and more new genes have been discovered, and the study of gene
function has become a major issue in the field of life sciences.
Genes support the basic structure and performance of life. It
stores all the information about the race, blood type, gestation,
growth, apoptosis and other processes of life. The environment
and genetics jointly determine important physiological processes
such as reproduction, cell division, and protein synthesis. Genes
are involved in diverse phenomena such as birth, growth, decline,
illness, aging, and death (Yang et al., 2015; Hu et al., 2020; Cheng
etal,, 2021a). Except for some viruses whose genes are composed
of ribonucleic acid (RNA) (Sun et al., 2013; Riaz and Li, 2019), in
most organisms, genes are composed of deoxyribonucleic acid
(DNA) arranged linearly on chromosomes. The existence of a
simple life form requires at least 265 to 350 genes, whose
functions are affected by internal factors and external
environmental factors.

The impact of human genome research on medicine has
gradually entered the clinic and changed the traditional
medical model. Human genomic research has had a major
impact on medicine. Genomic medicine will gradually be
applied in clinical practice, and will change the traditional
medical model (Liu et al., 2016a; Zhou et al.,, 2019; Zou, 2019;
Chen et al., 2020a; Liu et al., 2020a; Li et al., 2021; Qi et al., 2021).
Many believe that it will trigger the next medical revolution (Zeng
et al., 2022). Genomic medicine aims to prevent diseases and
apply specific gene therapies to address existing genetic defects.
In-depth clinical genomic research heralds the arrival of a new era
of medicine with a focus on drug optimization, and the prediction
and prevention of diseases based on the genome of each patient.
Genomic research has identified preferred targets for the
development of new drugs (Grazziotin et al., 2015; Yan et al,
2019; Yu et al., 2020a; Zeng et al., 2020a; Liu et al., 2020b; Zhang
etal., 2020; Zhuang et al., 2020; Yan et al., 2021a; Yan et al., 2021b;
Deng et al,, 2021; Shang et al., 2021).

So far, there are dozens of experimental methods to identify
essential genes. The methods to realize essential gene
identification are mainly divided into two kinds, one is to
determine by means of wet experiment; The second is to use
computational biology to predict the necessary genes identified by
experiments. Wet experiments include: In 1995, Itaya used
induced mutations to detect essential genes of Bacillus subtilis,
Venter used global transposon mutations to identify essential
genes of Mycoplasma genitalium, targeted gene knockout,
transposon mutations, genetic imprinting, and scattered
Shotgun method, RNA interference and CRISPR technology
(Liu et al, 2016b; Fang et al., 2019a; Ru et al, 2019; Chen
et al, 2021). And some researchers have made progress in
different fields through the study of essential genes using
different wet experiments. Such as: Uddin et al. conducted a
comparative genomics analysis and docking studies on
Acinetobacter baumannii, and predicted and analyzed its non-
host essential genes to screen for new drug candidates (Cheng
etal,2018; Uddin etal., 2019; Wang et al., 2020). Wang et al. used
the CRISPR (clustered regularly interspaced short palindromic
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repeats) system to construct a genome-wide single-guide RNA
library and screened for genes essential for the survival and
proliferation of human cancer cell lines, thus providing a
cancer cell identification strategy (Lander et al., 2015). In the
field of energy and chemical industries, Voshol et al. created a
transposons library of Synechococcus elongatus PCC 7942, and
then screened it to identify new target genes. The aim was to
improve the production capacity of fatty acids and hydrocarbons,
and the gene encoding the GTP-binding protein Era was
identified as an essential gene in this process (Voshol et al,
2015; Hu et al., 2021a). Another research group suppressed genes
in the chloroplasts of Chlamydomonas to study its essential
signaling pathways, regulatory circuits, and gene functions
(Rochaix and Ramundo, 2015; Fang et al., 2019b; Cheng et al.,
2020; Wang et al,, 2021a). Such analyses can shed light on the
growth and photosynthetic processes of photosynthetic
organisms, so that strategies can be developed to enhance the
photosynthetic ability of engineered bacteria. Therefore, studies
on essential genes have theoretical significance and also have
practical application value. Therefore, it is of great theoretical
significance and practical value to study essential genes.

The disadvantages of wet experiments are that they are
expensive, time-consuming, inconsistent in their accuracy, and
they can give different experimental results. In addition, wet
experimental methods are not applicable to some bacteria. At the
same time, as research progresses, it is necessary to obtain
essential genes on a genome-wide scale in order to obtain as
complete a set of data as possible. This presents a serious
challenge to the determination of essential genes by wet assay
(Yang et al, 2014; Tavasolian et al., 2020). Therefore, some
scientists began to establish predictive models with higher
accuracy based on the essential gene information and the
biological characteristics of essential genes, combined with
computer science and various mathematical algorithms, so as
to realize the rapid identification of essential genes. Therefore,
greatly reducing unnecessary time and capital consumption.

ESSENTIAL GENE DATABASE

Bacteria are abundant both in terms of the number of species and
the size of populations. Only a small proportion of bacteria have
been fully sequenced. Currently, the following databases provide
essential genetic data:

1) NCBI: Holds genomic data for more than 35,000 bacteria.
Essential/non-essential genes have been fully determined for
only a few bacteria.

2) The Database of Essential Genes (DEG): This database has
been developed and maintained by Tianjin University. The
latest version (DEG 15.2) contains essential genetic
information for 41 kinds of bacteria (48 groups) (Luo
et al., 2014), 26 essential gene datasets for eukaryotes and
one essential gene dataset for archaea.

3) CEG (Cluster of Essential Genes): Holds information about
essential homologous gene clusters for 29 kinds of bacteria (Ye
et al., 2013).
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4) OGEE (Online Gene Essentiality Database): Holds
information about essential genes for 39 kinds of bacteria
(Chen et al., 2011).

5) PEC database: Holds information for essential genes in
Escherichia coli, including relevant structural information
and gene function information (Rivas et al.,, 2015).

METHODS FOR IDENTIFYING ESSENTIAL
GENES

The study of essential genes can also obtain potential drug targets,
which can be used to develop antibacterial drugs to resist the
invasion of pathogenic microorganisms. Therefore, it is of great
practical value to study the theoretical and computational
prediction methods of essential genes. Theoretical prediction is
a common method of comparative genomics, which is to
understand the characteristics of genes to be tested by
comparing with the structure of known genes. The
disadvantage of this method is that it can not accurately
determine all the necessary genes of a certain microorganism,
and it is more difficult to analyze eukaryotes. Computational
prediction is a potential computational prediction, which uses a
variety of biological characteristics of the research object,
combined with statistical and classification prediction
algorithms, to predict essential genes. With the rapid
development of technology, omics data such as protein
structure and interaction are widely used in essential gene
prediction analysis. Therefore, computational biology methods
can be used to provide suitable candidate target genes. The main
steps are as follows: First, algorithms and tools are developed to
predict essential genes of pathogenic bacteria through
computational modeling. This step yields a set of candidate
essential genes. Second, an essential gene prediction model is
constructed. The model includes information on conserved
regions of genes, and this allows for the identification of
essential genes showing homology among multiple species.
Next, the sequences of the obtained essential genes are
compared with the genome sequences of humans or other
mammals, and those that are too similar are filtered out. The
ones that remain are thus identified as candidate targets for the
development of new therapeutic drugs. These genes can be
targeted to design and screen effective therapeutic drugs.
Compared with traditional drug design strategies, the
computational model is more directed, so it can shorten the
development time for new drugs (Yu et al., 2020b; Zeng et al,
2020b; Huo et al., 2020; Li et al., 2020; Cheng et al., 2021b; Wang
et al,, 2021b; Dong et al., 2021). For example, Paul et al. used a
biological metabolic network of leishmaniasis and deletion
mutations designed using bioinformatics methods to identify a
collection of essential proteins for this disease (Ao et al., 2021; Hu
et al,, 2021b), and this method was more than five times more
efficient than the method of randomly selecting potential drug
targets (Stanly Paul et al., 2014; Chiu et al., 2020; Wang et al.,
2020). As full genome sequences are obtained for more
organisms, and with the continuing development of functional
genomics research, more attention is being paid to the
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relationships among genes (Wang et al,, 2019), proteins, and
phenotypes  (Kitano, 2002). Proteins are indispensable
components of cellular structures, and participate in a wide
range of processes that affect growth, physiology, and
development (Eisenberg et al., 2000). In addition, proteins
function in particular subcellular compartments (Huh et al,
2003).

Gene Computation and Prediction Methods
Based on Communication Coding Theory

In 1995, Itaya studied the minimum number of chromosomal loci
required for the survival of B. subtilis using an induced mutation
method. Mutations of only six out of 79 randomly selected
chromosomal loci prevented the formation of bacterial
colonies. Thus, it was inferred that genes at these six loci were
essential for the survival of B. subtilis (Itaya, 1995). Later, other
researchers determined the essential genes of Mpycoplasma
genitalium and explored the composition of the minimum
gene set with experimental methods (HutchisonPeterson et al.,
1999). Ongoing research on the minimum gene set has
continuously discovered new essential genes, thus opening the
door to essential gene characterization and further in-depth
research.

Hwang et al. studied the topological properties of essential and
non-essential genes in protein interaction networks with
Saccharomyces cerevisiae and E. coli as the research objects.
Then, they predicted essential genes using machine learning
methods and on the basis of protein interaction networks and
sequence information (Hwang et al., 2009; Song et al., 2021).
Deng et al. used machine learning methods, combined with three
types of 8 characteristic parameters such as subcellular
localization, phylogenetic information and expression levels,
and co-expression networks to predict the essential genes of 4
species including E. coli. However, the effectiveness of this
method relies on similar feature distributions in the research
objects (Deng et al.,, 2011). Yang et al. studied human essential
genes by constructing a classifier based on 28 protein interaction
network topological features and 22 biological features (Yang
et al., 2014). Yu et al. identified six fractal features of DNA and
protein sequences of DEG bacteria, and classified sequences
using naive Bayes and random forest methods. Arun et al.
studied the relationships among gene conservation, repetition,
constitutive expression, and gene essentiality in E. coli (Arun
et al, 2016). Although those studies made considerable
progress, there were still some problems: few species were
studied; the universality of prediction models and analysis
results and prediction accuracy needed to be improved; and
characteristic parameters that effectively describe essential
genes needed to be identified.

Considering that information transmission and coding are
similar between biological systems and modern communication
systems, communication coding theory can be a useful tool for
essential gene analysis and prediction of gene functions. The
definition of coding problem in DNA computation was first
proposed by Garzon and Deaton et al. in literature network,
and then the complete definition of coding problem in DNA
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computation was given in 2004 after refining and summarizing
(Garzon and Deaton, 2004).

The steps involved in essential gene prediction based on the
theory of communication coding are as follows: First, a genetic
sequence analysis model is constructed based on communication
coding theory. The model includes sequence analysis based on
simple coding models (such as block codes, convolutional codes)
and cascaded and mixed coding models. In error correction
coding, convolutional codes (based on channel coding
methods but with better performance), have been proven to be
as effective as block codes in theory and in practice. The next step
is to extract the characteristic parameters that describe essential
genes. The combination of the theoretical model of
communication coding for analyzing genetic sequences and
genetic database information can reveal correlations between
information units in DNA sequences at different scales in the
coding sense, and extract the characteristic parameters of
essential genes. Then, based on the features of the coding
meaning and the omics data, the necessary gene calculation
and prediction are carried out and combined with the
determined gene data in the database, the performance
optimization parameters of the established model are
evaluated. Finally, the noise or redundancy is removed from
the acquired features, and the key features are screened out, which
are called “essential features,” and the feature set formed by these
“essential features” is called “minimum feature group.” The
“minimum feature group” should be constructed within the
range of existing features. This will simplify and optimize the
model and the analytical process, and improve its analytical
efficiency and universality while ensuring prediction accuracy.

Analysis and Design of Gene Computational
Prediction Models Based on

Communication Coding Theory

According to the research of gene prediction method based on
communication coding theory in 3.1 summary, we use the
following research steps to establish a prediction model:

1. Check published studies to understand the current research
situation.

2. Collect and preprocess datasets from open databases such as
DEG, NCBI, KEGG, and Uniprot, and clean and sort the
collected data.

3. Model research and feature extraction. This step includes
encoding - based sequence analysis model and feature
extraction. 1) Sequence analysis model based on coding; If
the genetic sequence is analyzed as a sequence with certain
information and coding characteristics, the biological
sequence (DNA, RNA, or amino acid sequence) needs to
be expressed in a form that is suitable for analysis,
regardless of which analytical model is used (Dao et al,
2021). In this context, researchers have proposed digital
mapping methods, graphic expression methods, and
geometric expression methods. Taking a DNA sequence as
an example, the digital mapping method expresses the four
bases A, G, C, and T as different values, in a form that is
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convenient for computer processing, including integer
expression and plural expression (Rosen, 2006; Liu et al.,
2021a). The graphic and geometric expression methods
express each base as a vector in space, and then connect
the corresponding vectors to map a curve in the space. These
methods allow for visualization of the sequence structure, and
the local and overall characteristics of the sequence.
Visualization of sequences is also useful for sequence
comparisons and sequence similarity analyses. Once the
biological sequence has been expressed and visualized,
models based on convolutional code and block code models
can be designed, adjusted, and modified according to
analytical results and biological significance. Models can be
analyzed using cascaded codes and mixed codes on the basis of
simple model analysis. 2) Extract features of essential genes:
According to different observation scales, the basic
information units are set as bases, codons, genes, or the
whole genome. Then, the association between essential
genes and information units is investigated. This results in
the extraction of characteristic parameters that reflect the
essentiality of genes in combination with the parameters of
the coding model (code length, generator matrix, constraint
length, and code distance).

4. Computationally predict essential genes: After completing the
tasks in Step 3, essential genes are predicted using machine
learning algorithms. The best model is selected through
performance evaluation. Redundant features are removed
and essential features are screened to identify the
“minimum feature group.”

5. Conduct performance testing and feedback optimization: Test
the analytical performance of the prediction model based on
cross validation and other methods (Jiang et al., 2013; Xu et al,,
2021), using the essential/non-essential genes listed in DEG
and other databases as training samples and verification
samples.

6. Develop software to implement analysis and prediction
algorithms and visualize the results. Package the final
model into an executable program module with a
functional interactive webpage. Establish an online service
platform to provide online data analysis services.

The process of the research method is illustrated as a roadmap
in Figure 1.

KEY PROTEIN IDENTIFICATION METHOD

A gene, the basic unit of heredity, is the DNA fragment required
to produce a functional RNA or a polypeptide chain that forms
into a functional protein. Therefore, genes and proteins are
inextricably linked. For example, to explore the characteristics
of essential genes, it is necessary to integrate and summarize the
genomic metabolome, proteome and other omics data, and
extract their combined data features, including metabolic
pathways, evolutionary conservation, protein domains, and
protein interactions (Wang et al., 2018; Zhang et al, 2018;
Chen et al,, 2019; Chen et al., 2020b; Yu et al., 2020c). Thus,
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FIGURE 1 | Technical roadmap of gene computational prediction model based on communication coding theory.
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it is important to identify proteins and collect all relevant
information about their sequence, structure, localization, and
function.

Protein is the material basis of life, is an organic
macromolecule, is the basic organic matter that constitutes
cells, and is the main undertaker of life activities (Wei et al,,
2014; Wei et al., 2017; Guo et al., 2020; Tao et al., 2020; Wei et al.,
2020; Guo et al., 2021). The human body contains many types of
proteins with different properties and functions. All proteins have
something in common: they are composed of 20 amino acids in
different proportions, and they are constantly metabolized and
renewed in the body. Many methods for identifying protein
complexes based on protein interaction networks have been
proposed. Some proteins are essential for the survival and
reproduction of organisms, and for essential biological
processes. Without them, organisms will have serious defects
in their growth and development, or may even die. Thus, these are
known as essential proteins. At the same time, research show
many proteins perform specific biological functions only after
they participate in the formation of protein complexes and
interact with other proteins in the complex, suggesting that
protein interactions are related to protein complexes.
Therefore, this part takes the key proteins as the research
object and uses the methods based on the subcellular protein
interaction network and subcellular importance to identify the
key proteins (Cheng et al., 2021a; Zulfiqar et al., 2021).

The centrality algorithm, a method used to identify key
proteins in a protein-protein interaction network, is often used
to quantify the contribution of a specific node in the graph and its
impact on the network and it’s based on the law of central-
lethality (Liu et al., 2020¢; Zhai et al., 2020). Nodes with higher
centrality values are usually regarded as key nodes in the network.
Commonly used graph-based centrality algorithms include
degree centrality, betweenness centrality, tight centrality,

subgraph centrality, node cluster centrality, and local average
connection centrality. However, this method cannot fully assess
the criticality of proteins because it does not take temporal and
spatial characteristics of protein interactions into account.
Therefore, the subcellular location information can be used to
construct a subcellular protein interaction network, and a key
protein identification method based on the subcellular protein
interaction network (LSED) is proposed. LSED is first based on a
given global protein interaction network and protein The
subcellular location information of each subcellular
compartment is constructed to construct a subcellular
compartment protein interaction network (PSLIN). Then, its
credibility is calculated based on the size of the protein
interaction network in each subcellular interval. Next, the
centrality scores of the proteins in the subnets of the protein
interaction network for each subcellular interval are calculated
with a centrality method. Finally, the Localization-specific
Centrality Score is calculated for each protein based on its
centrality score in the protein interaction network for different
subcellular intervals and the credibility of the network. By
comparing the prediction accuracy of LSED method on PSLIN
with that of centrality method on global protein interaction
network, a multi-species average accuracy index (AKAcc) can
be proposed, which can more comprehensively evaluate the
prediction accuracy of various methods on multiple species.
The key protein recognition methods mentioned in this paper
are shown in Table 1.

Because different subcellular intervals differ in importance,
protein interactions in different subcellular intervals also differ in
their importance. Therefore, the importance of protein
interactions can be estimated based on the importance of
subcellular intervals. A Centrality-based Independent Cascade
(CIC) based on the importance of subcellular intervals has been
proposed to detect essential proteins. For two interacting proteins
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TABLE 1 | Key protein identification methods.

Methods

Degree centrality

Betweenness centrality

Tight centrality

Subgraph centrality

Node cluster centrality

Local average connection centrality

Gene Prediction Research

Principle

Based on protein interactions, a reliable PPI network can be constructed by combining other protein biological information.
Subsequently, key protein identification is carried out through the centrality method related to network topology

PSLIN Use subcellular location information to construct a subcellular protein interaction network
LSED Key protein identification method based on protein interaction network in subcellular compartment
ClC Centrality method based on the importance of subcellular intervals

TABLE 2 | Identification methods of protein complexes.
Methods

Graph clustering method

Hierarchical clustering method based on similarity or distance

u and v, the importance of the interaction (u,v) is defined as the
maximum importance of the subcellular interval where the two
proteins cooccur. A weighted protein interaction network is
constructed based on the importance value of the interaction,
and the CIC centrality method is used to estimate the criticality of
proteins in this network. Thus, the CIC centrality score of a
protein depends on the importance of its interactions in different
subcellular intervals. Finally, the predictive performance of the
CIC method is compared with those of other centrality
algorithms. In addition, researchers conducted experiments on
the protein interaction network of yeast, human, mouse and fruit
fly to compare the prediction performance of CIC method with
other centrality methods, including topology-based centrality
methods and methods integrating other biological knowledge.
There are close relationships between protein complexes and
essential proteins. Studies have shown that the criticality of a
protein is not only determined by a single protein node, but often
by the function of protein complexes. According to experimental
data, essential proteins tend to aggregate in large amounts in
certain complexes. Machine learning methods can be used to
identify such protein complexes. At present, there is no strict
mathematical expression or unified definition for the subgraph
model corresponding to protein complexes and functional
modules in interaction networks. However, some graph-
clustering methods are effective for identifying protein
complexes and functional modules, such as the graph-
clustering algorithm RNSC, and density-based algorithms such
as MCODE. Some studies have found that most proteins in the
same protein complex have similar or identical functions, so some
hierarchical clustering methods based on similarity or distance
are also used to identify protein complexes. Hierarchical
clustering algorithm can be divided into two categories,
condensation algorithm and splitting algorithm. Among them,
the G-N algorithm, a classic splitting algorithm, removes the edge
with the highest betweenness and recalculates the betweenness of

Specific type

RNSC algorithm based on graph partition
Density-based local search algorithm MCODE
Condensation algorithm

Division algorithm

all edges. When at least two of the generated subgraphs meet the
definition of the module after removing the edges, a
corresponding phylogenetic tree can be drawn. And the HC-
PIN method uses weighted edge clustering coefficient to do fast
agglomerative clustering. The clustering idea is to merge the two
clusters if there is an edge with the highest edge clustering
coefficient between two clusters. At the same time, Table 2
shows various methods for identifying protein complexes.

EXISTING PROBLEMS AND RESEARCH
PROSPECTS

In this paper, we have discussed some of the methods used to
analyze and process biological sequence information, and
introduced the use of coding theory in communication
engineering to calculate and predict essential genes. However,
some problems are yet to be solved. First, limited data are
available for the preliminary analysis of essential genes. The
DEG database contains information for a limited number of
species, and this makes it difficult to test and validate analytical
models. In the identification and function prediction of proteins,
it is seldom possible to determine protein function based on a
single experiment, because protein function is also affected by
environmental factors. In addition, due to various biological,
budgetary, or ethical factors, experiments cannot be performed
on some organisms. Experiments conducted in vitro may not
truly reflect the activity of proteins in the body. Moreover, the
datasets in biological databases have problems such as noise,
deviation, and missing data (Su et al., 2019; Liu et al., 2020d; Liu
et al., 2021b; Su et al., 2021).

There are many commonalities between the transmission of
genetic information and communication information. Therefore,
methods based on communication coding theory can be applied
to identify essential genes in bacteria and other organisms. This
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provides a new perspective and approach for analyzing and
predicting essential genes. The information obtained in these
analyses has applications in disease prevention, diagnosis, and
treatment.
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