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Stem cell therapies have shown promising therapeutic effects in restoring damaged tissue
and promoting functional repair in a wide range of human diseases. Generations of insulin-
producing cells and pancreatic progenitors from stem cells are potential therapeutic
methods for treating diabetes and diabetes-related diseases. However, accumulated
evidence has demonstrated that multiple types of programmed cell death (PCD) existed in
stem cells post-transplantation and compromise their therapeutic efficiency, including
apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Understanding the
molecular mechanisms in PCD during stem cell transplantation and targeting cell death
signaling pathways are vital to successful stem cell therapies. In this review, we highlight
the research advances in PCD mechanisms that guide the development of multiple
strategies to prevent the loss of stem cells and discuss promising implications for
improving stem cell therapy in diabetes and diabetes-related diseases.
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INTRODUCTION

Stem cells (SCs) are unique cell populations distinguished by the capacity of self-renewal and
differentiation (Biswas and Hutchins, 2007; McElhinney et al., 2020). These unique features of
SCs make them the preferred candidate for tissue repairing (Yang et al., 2019; Yang et al., 2020;
Qin et al., 2021). According to different developmental stages, SCs can be categorized into
distinct types, such as embryonic SCs (ESCs), induced pluripotent SCs (IPSCs), and adult SCs
(ASCs) (Bogliotti et al., 2018; Hu et al., 2021). These SCs are widely utilized for regenerative
medicine therapies (Gurusamy et al., 2018; Fatima et al., 2019).

The worldwide shortage of pancreas donors remains a major hurdle to islet transplantation,
and SC therapy represents a highly promising alternative approach for treatments of advanced
diabetes (Saleem et al., 2019; Chen et al., 2020). In SC therapy for type 1 diabetes mellitus
(T1DM), insulin-producing cells can be generated from SCs (Manzar et al., 2017; Chen et al.,
2020). Neural SCs (NSCs), bone marrow-derived mesenchymal SCs (BM-MSCs), and
umbilical cord MSCs (UC-MSCs) are a promising treatment for diabetic retinopathy and
foot ulcers (Zhang et al., 2017; Zhao et al., 2020a; Huang Q. et al., 2021).

However, the cell death of SC post-transplantation creates significant challenges to
transplantation therapy (Mastri et al., 2014). According to different death processes, cell
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death are categorized as: programmed cell death (PCD), a
precise and genetically controlled cellular death, and non-
PCD, also called necrosis (Cheng et al., 2018; Guo LM. et al.,
2020; Bedoui et al., 2020). Extensive pharmacological and
genetic strategies have been developed to inhibit PCD to
prevent cell loss and thus improve physiological function
of organs (Wang Z. et al., 2018; Yuan et al., 2019; Wu X. et al.,
2020; Yan W.-T. et al., 2021). Increasing evidence indicates a
close link between PCDs and cell death of transplanted SCs
(Ho et al., 2017; Wang R. et al., 2020; Pierozan et al., 2020).
More importantly, targeting these PCDs shows promising
therapeutic effects for diabetes and diabetes-related diseases
(Zhang K. et al., 2019; Hu et al., 2019).

Distinct Forms of PCD IN SC for
Transplantation
Apoptosis
Apoptosis is characterized by the breaking up of cell in apoptotic
bodies (Nikoletopoulou et al., 2013). In intrinsic pathway of
apoptosis, DNA damage can activate p53, and subsequently
induce genes involved in apoptosis signaling and execution
(Figure 1A) (Hafner et al., 2019). In human ESCs, the
stabilization of p53 can suppress the pluripotency of SCs after
DNA damage responses (Zhang et al., 2014). In addition,
silencing of the proapoptotic gene Puma, which is responsible
for p53-dependent apoptosis, can increase pluripotency of iPSCs
(Lake et al., 2012; Fu et al., 2020). Moreover, proapoptotic BCL-2
signals and ASPP1, an apoptosis-stimulating protein of p53,
contributed to the induction of apoptosis in HSCs (Yamashita
et al., 2015; 2016).

The extrinsic pathway of apoptosis is initiated by docking
of death ligands of tumor necrosis factor (TNF) to TNF
receptors 1 (TNFR1) (Carneiro and El-Deiry, 2020). TNF-
α can induce apoptosis in NSCs by upregulating the
phosphatidylinositol p38 mitogen-activated protein kinase
(p38 MAPK) pathway (Chen et al., 2016). In HSC
transplantation for treating malignancies, activation of
TNF-α-TNFR1 signaling pathway caused accumulation of
reactive oxygen species (ROS) in HSCs and subsequent cell
damage (Ishida et al., 2017). In contrast, TNF-α-TNFR2
signaling is important for survival and function of MSCs
and endothelial stem/progenitor cells (EPCs), and its
deficiency resulted in reduced proliferation rate and
diminished immunomodulatory effect of these cells (Beldi
et al., 2020a; Beldi et al., 2020b; Naserian et al., 2020; Nouri
Barkestani et al., 2021; Razazian et al., 2021).

Autophagy
Autophagy is a self-degradative process that contributes to
removing excessive or misfolded proteins and clearing
damaged organelles at critical times (Figure 1B) (Glick et al.,
2010; Andrade-Tomaz et al., 2020). The autophagy is triggered by
upregulation of AMP activated protein kinase (AMPK) and
downregulation of mammalian target of rapamycin complex 1
(mTORC1) (Kim et al., 2011). In ESCs and HSCs, the regulation

of AMPK andmTOR kinase is essential to their homeostasis, self-
renewal and pluripotency (Huang et al., 2009; Gong et al., 2018;
Suvorova et al., 2019). Additionally, the precise regulation of
mTOR by Sox2 is vital to reprogramming of somatic cells to form
iPSCs (Wang S. et al., 2013). The viability and stemness of NSCs
and ESCs were also associated with LC3 lipidation, autophagic
flux, and formation of autophagosomes (Bialik and Kimchi, 2010;
Vázquez et al., 2012; Gu et al., 2019; Wang et al., 2019).
Additionally, the autophagy-related gene ATG3 was shown to
be a pivotal regulator of mitochondrial homeostasis regulation in
ESCs (Liu et al., 2016).

Notably, Dou et al. demonstrated that an amyloid binding
peptide with three chaperone-mediated autophagy motifs
significantly reduced Aβ oligomers in iPSC cortical neurons
(Dou et al., 2020). Autophagy driven by FOXO3A and
FOXO1 also protected HSCs from metabolic stress and
guarded ESC identity (Warr et al., 2013; Liu et al., 2017).
More importantly, the coordination of autophagy and
apoptosis is vital to maintaining homeostasis in BM-MSCs
(Zhang et al., 2016).

Necroptosis
Necroptosis is a programmed form of necrosis mediated by
receptor interacting protein kinase 1/3 (RIPK1/3) and mixed
lineage kinase domain-like (MLKL) proteins (Figure 1C) (Wang
M. et al., 2020; Font-Belmonte, 2020; Yan WT. et al., 2021; Liao
et al., 2021). Necroptosis of intestinal SCs triggered bowel
inflammation in the pathogenesis of inflammatory bowel
disease (Wang R. et al., 2020). In addition, compression
triggered necroptosis of nucleus pulposus-derived SCs and
inhibiting necroptosis rescued regeneration of degenerated
intervertebral discs (Hu B. et al., 2020). Furthermore,
inhibition of necroptosis is a novel strategy for allogeneic
HSCs transplantation and spermatogonial SC-based therapy
for male fertility preservation (Matsuzawa-Ishimoto et al.,
2017; Xie et al., 2020). Moreover, cellular transplant therapy
based on human olfactory SCs ameliorated motor function in
Huntington’s disease by preventing necroptosis (Bayat et al.,
2021). Intriguingly, TNF-α also could function as a pro-
regeneration factor in HSCs that primarily prevented
necroptosis rather than apoptosis by activating a p65-nuclear
factor κB-dependent gene program (Yamashita and Passegué,
2019).

Pyroptosis
Pyroptosis is specific PCD mediated by cleavage of gasdermin D
(GSDMD) to form membrane pores and activation of cytokines
(Figure 1D) (Chu et al., 2020; Chen Y. et al., 2021; Huang Y. et al.,
2021). Pyroptosis contributed to the cell death of human cardiac
SCs (hCSCs) in an acute hyperglycemic microenvironment,
which impaired cardiac regeneration in diabetic hearts (Yadav
et al., 2020). The culture media collected from pyroptotic bone
marrow-derived macrophages also induced pyroptosis in MSCs
(Zhang C. et al., 2020). Additionally, the pyroptosis of neural
progenitor cells represented a therapeutic target in Zika virus-
induced brain atrophy (He Z. et al., 2020). Moreover, chitosan
thermosensitive hydrogel enhanced the therapeutic efficacy of
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BM-MSCs for myocardial infarction by alleviating pyroptosis of
vascular endothelial cells (Liu Y. et al., 2020). Finally, emerging
evidence showed that SCs and SC-derived exosomes inhibited
pyroptosis and could be used to treat different diseases (Zhang
J. et al., 2020; Yan et al., 2020; Chen M.-T. et al., 2021).

Ferroptosis
Ferroptosis is an iron-dependent form of cell death (Figure 1E)
(Stockwell et al., 2017). The iPSC-derived cell modeling of
neuroferritinopathy revealed that iron-dependent ferroptosis
has a primary role in neuronal aging and degeneration (Cozzi
et al., 2019). Also, iron overload (IOL) may induce cellular
toxicity in hematopoietic SCs therapy for hematologic
malignancies, and IOL reduction may improve outcomes
(Leitch et al., 2017). In addition, catecholic flavonol quercetin
inhibited erastin-induced ferroptosis in BM-MSCs (Li et al.,

2020). Moreover, in Pelizaeus-Merzbacher disease, the mutant
oligodendrocytes of patients exhibited the hallmarks of
ferroptosis, and gene correction in patient-derived iPSCs
rescued the iron-induced cell death (Nobuta et al., 2019).

The characteristics of distinct kinds of PCD in transplanted
SCs provide an in-depth understanding of cell death in SC
therapy. Based on the key mediators and crosstalk identified
in PCD, the development of highly precise strategies to improve
SC survival is possible.

Which Types of PCD Reported IN SC can be
Used to Treat Diabetes and
Diabetes-Related Diseases?
Whereas SC therapy represents a highly promising
therapeutic strategy for treating diabetes, PCD existed in

FIGURE 1 | A brief overview of the main molecular mechanisms in PCDs (A) Apoptosis is initiated by the intrinsic and extrinsic pathways. In the intrinsic pathway,
DNA damage activates p53, and subsequently activates Puma/Noxa to induces signaling genes including proapoptotic proteins (Bax, Bak, tBid), apoptosome (Cyt c,
Apaf-1, pro-Caspase-9), antiapoptotic protein (Bcl-2), and apoptosis execution factors (caspase-3/7). The extrinsic pathway of apoptosis is initiated by the binding of
TNF to its receptors, leading to the recruitment of FADD and caspase-8. In addition, caspase-8 can cleave Bid to t-Bid, which participates in the intrinsic pathway of
apoptosis (B) Autophagy is initiated by nutrient sensoring, including AMPK, PI3K-1, mTORC1. Autophagosome formation and maturation are mediated PI3K-III
complex, ATG3, and LC3. Finally, the autophagosome contents undergo is degraded by lysosomes (C)Necroptosis is initiated by the binding of TNF-α and the receptor
TNFR. Under conditions of caspase-8 (initiator caspase of extrinsic apoptosis) is not active, the formation of necroptosome (integration of phosphorylated RIPK1 and
RIPK3) induces the MLKL phosphorylation and oligomerization. Finally, the MLKL oligomers translocation to membranes and disrupt it to kill cells (D) Pyroptosis is
triggered by various pathogens and danger signals. These signals activate NLRP3 inflammasome, which consists of NLRP3, ASC and procaspase-1, and subsequently
leads to cleavage of GSDMD and pro-IL-1β and pro-IL-18. Finally, the N-terminal fragment of GSDMD targets to membrane to form membrane pores and induces
inflammatory cell death (E) Ferroptosis is triggered by severe lipid peroxidation with ROS and iron overload, leading to membrane damage. The uptake of Fe2+ is
regulated by DMT1. The lipid peroxidation is mainly caused by loss of activity of GSH and GPX4. The xCT also functions in regulating ferroptosis viaCys. In addition, p53,
an initiator of intrinsic apoptosis, controls ferroptosis by regulation of the production of GSH. Abbreviations: Cyt c, cytochrome c; Apaf-1, apoptotic peptidase activating
factor 1; Bcl-2, B cell chronic lymphocytic leukaemia/lymphoma-2; FADD, Fas-associated death domain; AMPK, AMP activated protein kinase; mTORC1, mammalian
target of rapamycin complex 1; PI3K-1, phosphatidylinositol 3 kinase-1; ATG3, autophagy-related gene 3; LC3, light chain 3; TNF, tumor necrosis factor; TNFR, TNF
receptor; TRAF2, TNF receptor associated factor 2; TRADD, TNFR1-associated death domain protein; cIAP1/2, cell inhibitor of apoptosis protein-1/2; RIPK1/3,
receptor interacting protein kinase 1/3; MLKL, mixed lineage kinase domain-like protein; NLRP3, nod-like receptor protein-3; ASC, apoptosis-associated speck-like
protein; GSDMD, gasdermin D; IL, interleukin; ROS, reactive oxygen species; DMT1, divalent metal ion transporter 1; xCT, cystine/glutamate antiporter SLC7A11; Cys,
cystine; GSH, glutathione; GPX4, glutathione peroxidase 4.
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SCs hinders the therapeutic effects (Saleem et al., 2019). For
example, hyperglycemia increased apoptosis of Adipose-
derived SCs (ADSCs) and decreased their paracrine
function in diabetic retinopathy (Hajmousa et al., 2016; Xu
et al., 2020). Furthermore, BM-MSCs from streptozotocin-
induced diabetic rats showed impaired antiapoptosis,
proliferation and paracrine abilities (Jin et al., 2010).

More importantly, overexpression of hypoxia-inducible
factor 1α (HIF1α), a regulator of oxygen homeostasis,
significantly alleviated the ADSC apoptosis rate and
enhanced diabetic wound closure (Xu et al., 2020).
Norepinephrine can also reverse high glucose-induced
apoptosis in MSCs through the AKT/BCL-2 pathway

(Kong et al., 2019). The peroxisome proliferator-activated
receptor- γ agonist pioglitazone (PGZ) is used for
management of diabetes (Cho et al., 2019). It was reported
that PGZ had a protective effect on compression-mediated
apoptosis in MSCs by suppressing mitochondrial apoptosis
pathway (Hu et al., 2019).

In addition, autophagy played a protective role in ADSC under
high glucose stress (Li et al., 2018). More importantly, the
overexpression of Aurora kinase A (AURKA), a cell cycle-
regulated kinase, enhanced autophagy of ADSCs, decreased
apoptosis, and promoted wound healing in diabetic mice (Yin
et al., 2020). Also, the inhibition of autophagy significantly
promoted high glucose/ROS-mediated apoptosis in ADSCs (Li

TABLE 1 | Current strategies to prevent PCD of SC for transplantation.

Strategy Method Targeting PCD SC Application References

Preconditioning

Hypoxia 1% O2 for 48 h Apoptosis AD-MSCs Tissue regeneration Liu et al. (2013)
1.5% O2 for 24 h Apoptosis MSCs Idiopathic pulmonary

fibrosis
Lan et al. (2015)

5% O2 for 6 h Apoptosis;
autophagy

BM-MSCs Diabetic lower-limb
ischemia

Liu et al. (2015a)

5% O2 for 48 h Apoptosis BM-MSCs Diabetic lower-limb
ischemia

Liu et al. (2015b)

Oxidative stress 100 mM H2O2 for 2 days Apoptosis Cardiac progenitor
cells

Heart failure Pendergrass et al.
(2013)

50 μM H2O2 for 12 h Apoptosis BM-MSCs Wound healing Guo et al. (2020b)
Heat shock 42 C for 1 h Apoptosis UC-MSCs Acute lung injury Lv et al. (2021)

42 C for 1 h Apoptosis BM-MSCs Premature ovarian failure Chen et al. (2018)
Lipopolysaccharide 1.0 l g/mL for 24 h Apoptosis BM-MSCs Hypoxia and serum

deprivation
Wang et al. (2013a)

Melatonin 5 μM for 24 h Apoptosis BM-MSCs Ischemic kidney Mias et al. (2008)
Oxytocin 10 nM for 24 h Apoptosis BM-MSCs Hypoxia and serum

deprivation
Noiseux et al. (2012)

Sevoflurane 2 vol% for 2 h Apoptosis BM-MSCs Hypoxia and serum
deprivation

Sun et al. (2014)

Resveratrol 10 µM for 10 h Autophagy ESCs Enhancing pluripotency
of SC

Suvorova et al. (2019)

10 µM for 2 h Apoptosis ADSC Type 1 diabetes Chen et al. (2019b)
Genetic modification
AURKA Lentivirus vectors transfection Apoptosis;

autophagy
ADSC Diabetic wound healing Yin et al. (2020)

VEGF165 Bi-Tet transfection Apoptosis ESCs Cardiac function Xie et al. (2007)
HGF Adenoviral vector transfection Apoptosis UC-MSCs Acute liver failure Tang et al. (2016)

Adenoviral vector transfection Apoptosis BM-MSCs Hepatocirrhosis Zhang et al. (2018)
ERBB4 Lentivirus vectors transfection Apoptosis MSCs Myocardial infarction Liang et al. (2015)
HIF1α Lentivirus vectors transfection Apoptosis ADSC Diabetic wound healing Xu et al. (2020)

Adenoviral vector transfection Apoptosis MSCs Myocardial infarction Huang et al. (2014)
3D cell culturing
3D-dynamic system Culturing for 48 h Apoptosis BM-MSCs Myocardial infarction Wang et al. (2018a)
3D floating culture Culturing for 3 days Apoptosis MSCs Enhancing survival of SC Komatsu et al. (2020)
3D organ culture Culture with D-serine and RA for

3 weeks
Apoptosis Spermatogonial SCs Spermatogenesis Modirshanechi et al.

(2020)
Co-transplantation
NSCs and OECs NSCs: OECs � 1:1 Apoptosis NSCs Traumatic brain injury Liu et al. (2014)
EPI-NCSCs and OECs EPI-NCSCs: OECs � 1:1 Apoptosis EPI-NCSCs Peripheral nerve injury Zhang et al. (2019b)
BM-MSCs and

monocytes
BM-MSCs: monocytes � 1:30 Apoptosis BM-MSCs Facial nerve axotomy Wu et al. (2020a)

Abbreviations: SCs, stem cells; MSCs, mesenchymal stem cells; ESCs, embryonic stem cells; AD-MSCs, adipose-derived mesenchymal stem cells; BM-MSCs, bone marrow-derived
mesenchymal stem cells; UC-MSCs, umbilical cord-derived mesenchymal stem cells; ADSC, Adipose-derived stem cells; NSCs, neural stem cells; EPI-NCSCs, epidermal neural crest
stem cells; OECs, olfactory ensheathing cells; RA, retinoic acid; AURKA, Aurora kinase A; VEGF165, vascular endothelial growth factor 165; HGF, hepatocyte growth factor; ERBB4, v-erb-
b2, avian erythroblastic leukemia viral oncogene homolog 4; HIF1α, hypoxia-inducible factor 1α.
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et al., 2018). Furthermore, upregulating autophagy in periodontal
ligament SCs partially recovered periodontium tissues in a
diabetic rat periodontal trauma model, suggesting the
protective role of autophagy for SC transplantation (Zhang K.
et al., 2019). Additionally, exosomes derived from MSCs
ameliorated type 2 diabetes by activating autophagy via
AMPK pathway (He Q. et al., 2020). Moreover, pyroptosis
contributed to the cell death of hCSCs in an acute
hyperglycemic microenvironment, which impaired cardiac
regeneration in diabetic hearts (Yadav et al., 2020).

Although emerging evidence indicates that many forms of
PCD play vital roles in the cell death of SCs for treating diabetes
and diabetes-related diseases, the identification of necroptosis
and ferroptosis remains to be explored further.

Current Strategies to Prevent PCD OF SC
for Transplantation
Preconditioning
The benefit of preconditioning of SC was first described in
ischemic myocardium, and to date, a variety of
preconditioning strategies have been shown to improve SC
survival (Table 1) (Sart et al., 2014; Hu and Li, 2018).
Hypoxic preconditioning could decrease apoptosis and
increased autophagy in MSCs and BM-MSCs (Liu et al.,
2013; Liu et al., 2015a; Lan et al., 2015). Exposure to
oxidative stress decreased apoptosis of BM-MSCs upon
serum withdrawal and oxidative stress (Pendergrass et al.,
2013; Guo L. et al., 2020). Furthermore, heat shock
pretreatment enhanced repair effects of MSCs for acute
lung injury and premature ovarian failure via reducing
apoptosis and macrophages (Chen et al., 2018; Lv et al.,
2021).

Preconditioning of SCs with pharmacological or chemical
agents also improved SCs survival via preventing PCD. For
example, lipopolysaccharide (LPS) preconditioning protected
MSCs against apoptosis induced by hypoxia and serum
deprivation via suppressing the extracellular signal-
regulated kinase signaling pathway (Wang J. et al., 2013;
Hu and Li, 2018). Preconditioning with melatonin,
oxytocin, and sevoflurane also increased the resistance of
MSCs to apoptosis and their paracrine activity (Mias et al.,
2008; Noiseux et al., 2012; Sun et al., 2014). In addition,
pretreatment with resveratrol induced autophagy in ESCs via
activation of AMPK/ULK1 pathway (Suvorova et al., 2019).
Moreover, TNF-α and other inflammatory mediators
preconditioning could increase the survival, proliferation
and immunomodulatory effects of MSCs and EPCs (Song
et al., 2019; Beldi et al., 2020a; Ferreira et al., 2021; Nouri
Barkestani et al., 2021).

Genetic Modification
Accumulated studies have identified promising therapeutic
molecular targets for genetic modification to prevent PCD
of SCs. Regarding cardiovascular disease, ESCs transfected
with inducible VEGF inhibited apoptosis of transplanted
cell and significantly improved the cardiac function (Xie

et al., 2007). In addition, overexpressing hepatocyte growth
factor (HGF) modulated apoptosis of UC-MSCs and protected
animals from acute liver failure (Tang et al., 2016). Also, HGF
overexpression enhanced the therapeutic effect of BM-MSC
for hepatocirrhosis (Zhang et al., 2018). The transduction of
ERBB4 into MSCs also increased apoptotic resistance via
activating PI3K/AKT signaling pathway (Liang et al., 2015).
Moreover, HIF1α transfection improved the cardiac repair
efficiency of MSCs by decreasing cardiomyocytes apoptosis
(Huang et al., 2014). Importantly, the genetic upregulation of
several pro-survival factors, including Bcl-2, Bcl-xl and Akt1,
could increase the long-term survival of transplanted human
NSCs (Korshunova et al., 2020).

3D Cell Culturing
Cell culture is conventionally conducted by a two-dimensional
(2D) system that often does not adequately replicate the three-
dimensional (3D) environment, and it is deficient in cell-to-cell
interactions (Madl et al., 2018; Seo et al., 2019). The 3D culturing
of bone marrow MSCs using a 3D-dynamic system exhibited
decreased apoptosis and improved therapeutic effect for cardiac
function (Wang Y. et al., 2018). A recently developed 3D culture
clump of MSCs/extracellular matrix complexes also showed
resistance against apoptosis (Komatsu et al., 2020).
Furthermore, the presence of D-serine and retinoic acid in the
3D organ culture of spermatogonial SCs enhanced its therapeutic
effect on spermatogenesis via suppressing apoptotic signaling
(Modirshanechi et al., 2020). Moreover, exosomes derived from
UC-MSCs under 3D culturing exerted improved osteochondral
regeneration activity (Yan and Wu, 2020).

Co-Transplantation
Co-transplantation of SC with other SCs or adult cells can also
restore SCs via suppressing PCD. Co-transplantation of NSCs
with olfactory ensheathing cells (OECs) attenuated neuronal
apoptosis in traumatic brain injury (Liu et al., 2014). Also, the
co-transplantation of OECs with epidermal neural crest SCs
exerted a beneficial effect upon peripheral nerve injury (Zhang
L. et al., 2019). Regarding repairing facial nerve axotomy, the co-
transplantation of BM-MSCs and monocytes reduced apoptosis
of facial nerve nucleus (Wu L. et al., 2020). Moreover, co-
transplantation of ADSCs and stromal vascular fractions
improved parathyroid transplantation survival in vitro and in
vivo for treating hypoparathyroidism (Cui et al., 2020).

Studies on Promoting SC Survival for
Diabetes and Diabetes-Related Diseases
Regarding treating diabetes and diabetes-related diseases,
multiple strategies have also been applied to improve cell
survival after SC transplantation. It was reported that the
hypoxic preconditioning of BM-MSCs upregulated the anti-
apoptotic protein Bcl-2, thus promoting endothelial cell
proliferation and decreasing the apoptosis of endothelial
cells in diabetic rats (Liu et al., 2015b). Also, exposure to
short-term hypoxia enhanced islet protective potential of
adipose-derived MSCs (AD-MSCs) (Schive et al., 2017). In
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addition, hypoxia pretreatment promoted the AD-MSCs
based repair of diabetic erectile dysfunction by increasing
the survival of transplanted SCs in host tissues and their
expression of regenerative factors (Wang et al., 2015).

Preconditioning with pharmacological or chemical agents
has promoted SCs survival for treating diabetes.
Preconditioning with resveratrol significantly enhanced the
viability and therapeutic effect of ADSC and increased
expression of the survival marker p-Akt for the treatment
of damaged pancreas and liver dysfunction in diabetic rats
(Chen et al., 2019a; Chen et al., 2019b). In addition,
pretreatment with mitoTEMPO, a mitochondrial ROS
scavenger, improved the survival of ADSC in diabetic mice
and decreased the limb injury (Lian et al., 2019). Moreover,
treatment of MSCs in combination with melatonin decreased
the rate of islet cell apoptosis via suppressing apoptotic
signaling (Kadry et al., 2018). Also, melatonin
preconditioning enhanced the effect of MSCs-derived
exosomes on diabetic wound healing by regulating
macrophages and targeting the PTEN/AKT pathway (Liu
W. et al., 2020). Notably, although metformin, the most
commonly used antidiabetic drug, and BM-MSCs
treatment individually improve cardiac function in diabetic
cardiomyopathy, metformin can reduce the efficacy of MSCs
therapy for cardiac repair during diabetic cardiomyopathy by
decreasing the survival of transplanted SCs (Ammar et al.,
2021).

Genetic modification improved the survival of SCs for treating
diabetes and diabetes-related diseases. The overexpression of
HIF1α reduced ADSC apoptosis upon high glucose conditions
and enhanced the therapeutic effects on diabetic wound healing
(Xu et al., 2020). The preconditioning of MSCs with
deferoxamine, an iron chelator, increased the stability of
HIF1α protein and homing of MSCs in streptozotocin-diabetic
rats (Najafi and Sharifi, 2013). Moreover, the overexpression of
AURKA promoted the effect of ADSCs on wound healing in
diabetic mice via enhancing autophagy of ADSCs and decreasing
apoptosis (Yin et al., 2020).

It was also demonstrated that co-culturing and co-
transplanting of BM-MSCs and islet reduced islet
destruction in vitro and increased anti-inflammatory
effects in vivo (Yoshimatsu et al., 2015). Another study
reported that islets co-cultured with ADSC reduced
apoptosis and improved glucose-stimulated insulin
secretion compared with the control group (Gamble et al.,
2018). Moreover, the co-transplantation of MSCs and fetal
HSCs enhanced engraftment of HSCs and promoted the
therapeutic effect in T1DM (Arjmand et al., 2019).

Implications for Future Strategies to
Improve SC Therapy for Diabetes and
Diabetes-Related Diseases
Although the necroptosis and ferroptosis in SCs for treating
diabetic diseases are rarely reported, recent studies indicated
these two types of PCD are primary mechanisms of cell death
in islet transplantation, suggesting the potential value of

targeting necroptosis and ferroptosis for SC therapy (Zhao
et al., 2015; Yao et al., 2020). As mentioned in this review,
interactions between different types of PCD also need further
study and novel regulators, such as AMPK/mTOR, which
coordinate multiple cell death are promising therapeutic
targets to improve SC therapy for diabetes and diabetes-
related diseases (Zhang et al., 2016).

Although genetic modification is an efficient method to
target PCD, the use of genetic techniques raises some safety
concerns (Hu C. et al., 2020). Preconditioning strategies of
SCs for transplantation are an attractive alternative to
overcome this potential limitation. Increased oxidative
stress is considered a major factor to compromise MSCs in
diabets models (Fijany et al., 2019). Evidence supporting the
benefit of acute preconditioning of SCs with oxidative stress
suggests that the application of preconditioning may reduce
oxidative stress-induced PCD in diabetic diseases
(Pendergrass et al., 2013). Moreover, preconditioning with
melatonin showed a significant protective effect on SCs via
targeting multiple types of PCD, and melatonin suppressed
osteoblasts ferroptosis induced by high glucose in type 2
diabetic osteoporosis (Liu W. et al., 2020; Zhao et al.,
2020b; Ma et al., 2020). Thus, melatonin is a promising
agent to improve SC survival in transplantation for
treating diabetes and diabetes-related diseases.

As 3D culture systems become more relevant to innate
structure and physiology, the ability to adequately replicate
the 3D environment experienced by transplanted SCs
becomes possible. Studies of 3D cell culturing developed
to reduce PCD of SCs and improve their therapeutic
effects have rapidly advanced (Shimony et al., 2008;
Modirshanechi et al., 2020). In addition, a 3D capacitance
cell sensor has been developed to monitor cell apoptosis in
real-time for 3D cell cultures (Lee et al., 2016). Although
methods of 3D cell culturing of SCs that can be used for
treating diabetic diseases have been established, the
application of these methods and their benefit requires
further exploration.

CONCLUSION

Extensive and increasing evidence demonstrates that distinct
types of PCD contribute to the cell death of SCs, and the
inhibition of PCDs can promote the survival of SCs and their
therapeutic effects in diabetes and diabetes-related diseases.
These findings provide deep insights into the cell death of
SCs-based therapy for diabetes and diabetes-related diseases
and shed light on the future development of therapeutic
strategies.
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