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Nrf2 and NF-κB are important regulators of the response to oxidative stress and
inflammation in the body. Previous pharmacological and genetic studies have confirmed
crosstalk between the two. The deficiency of Nrf2 elevates the expression of NF-κB, leading
to increased production of inflammatory factors, while NF-κB can affect the expression of
downstream target genes by regulating the transcription and activity of Nrf2. At the same
time, many therapeutic drug-induced organ toxicities, including hepatotoxicity,
nephrotoxicity, cardiotoxicity, pulmonary toxicity, dermal toxicity, and neurotoxicity, have
received increasing attention from researchers in clinical practice. Drug-induced organ injury
can destroy body function, reduce the patients’ quality of life, and even threaten the lives of
patients. Therefore, it is urgent to find protective drugs to ameliorate drug-induced injury.
There is substantial evidence that protective medications can alleviate drug-induced organ
toxicity by modulating both Nrf2 and NF-κB signaling pathways. Thus, it has become
increasingly important to explore the crosstalkmechanism between Nrf2 andNF-κB in drug-
induced toxicity. In this review, we summarize the potential molecular mechanisms of Nrf2
and NF-κB pathways and the important effects on adverse effects including toxic reactions
and look forward to finding protective drugs that can target the crosstalk between the two.
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1 THE OVERVIEW OF NUCLEAR FACTOR ERYTHROID
(NF-E2)-RELATED FACTOR 2 (NRF2) AND NUCLEAR
FACTOR-KAPPA B (NF-κB)
1.1 The Role of Nrf2 and Its Regulation
When our body is continuously exposed to external stresses, it’s easy to produce the excessive
free radicals and reactive oxygen species (ROS) in the mitochondria, peroxisomes, and
endoplasmic reticulum (ER), and downregulate endogenous antioxidants such as enzymes
and antioxidant proteins (may be stress upregulated sometimes, but not enough to resist
oxidative stress), thereby leading to damage of cellular components including proteins, DNA,
and lipids (Tonelli et al., 2018). Antioxidant proteins are substances that can protect cells against
free radical damage. However, supplementation of exogenous antioxidants can target oxidative
stress by inhibiting the production of free radicals and ROS and bolstering the endogenous
antioxidant capacity. Originally characterized as a master regulator of oxidative stress,
the transcription factor Nrf2 continues to emerge as a critical mediator of cellular defense.
Through the ongoing study on the Nrf2 pathway, more researchers find that Nrf2 is beneficial
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for cell survival and proliferation from redox homeostasis,
drug/xenobiotic metabolism to DNA repair (Dodson et al.,
2019).

Nrf2 is a key transcription factor with a basic-region leucine
zipper (bZIP) structure in the Cap-n-Collar (CNC) family, which
controls many aspects of cell homeostasis in response to oxidative
stress and toxic insults in various tissues and cells (Buendia et al.,
2016; Skibinski et al., 2017; Dinkova-Kostova et al., 2018; Qu et al.,
2020). It is a modular protein composed of seven Nrf2-ECH
homology domains (Neh1-7) that perform different functions
(Hayes and Dinkova-Kostova, 2014). Neh2 contains two
important motifs known as DLG and ETGE, which are
essential for the interaction between Nrf2 and its negative
regulator Kelch-like ECH-associated protein 1 (Keap1) (Wang
et al., 2014; Canning et al., 2015). The synthesized Nrf2 will
translocate to the nucleus, and then form heterodimers with
small musculoaponeurotic fibrosarcoma protein (MAF) K, G,
and F. The heterodimer recognizes an enhancer sequence
termed antioxidant response element (ARE) which is located in
the regulatory regions of cellular defense enzyme genes. The target
genes of Nrf2 encode the antioxidant proteins, metabolic enzymes,
transporters, redox balancing factors, and glutathione-conjugated
coenzyme (Ma, 2013; Hayes and Dinkova-Kostova, 2014; Wang
et al., 2014; Canning et al., 2015; Cuadrado et al., 2018).

1.2 Keap1-Dependent Nrf2 Regulation
In the review of previous studies, the regulation of Nrf2 is
considered a beneficial target for patients to release the
disease. The best-characterized mechanism of Nrf2 regulation

is the control of protein stabilization by the keap1-Cullin3 (Cul3)-
Ring-box protein 1 (Rbx1) complex, which acts as a protein level
rheostat. Keap1 binds to Nrf2 via a specific amino acid sequence
on its homodimeric N-terminal domain, including siting with low
(aspartate, leucine, and glycine; DLG) and high (glutamate,
threonine, glycine, and glutamate; ETGE) affinity (hinge and
latch hypothesis) (Cuadrado et al., 2018). Under the physiological
state, Keap1 binds to Nrf2 and promotes ubiquitination and
subsequent proteasomal degradation (Suzuki et al., 2013; Tonelli
et al., 2018). Due to the short half-life of Nrf2 (10–30 min), Nrf2
remains at a very low basal level by sustained inhibition of Keap1.
When stimulated by oxidative stress or Nrf2 activators, the thiol
groups on cysteine residues in Keap1 are modified by
electrophiles, and the function of Keap1 is diminished,
ultimately resulting in the dissociation of Nrf2 from Keap1
and activation of Nrf2 and ARE genes (Hayes et al., 2010).
Studies show that products of the Nrf2/ARE pathway,
including NADPH, NAD (P) H quinone oxidoreductase 1
(NQO1), glutathione peroxidase, and heme oxygenase 1 (HO-
1), protect cells from various injuries and enhance body resistance
through their activation (Ahmed et al., 2017) (Figure 1A).

1.3 Keap1-independent Nrf2 Regulation
Interestingly, Keap1-independent Nrf2 regulation is achieved
through Glycogen synthase kinase 3 (GSK-3)/β-transducin
repeat-containing protein (β-TrCP). β-TrCP is a substrate
receptor for the S-phase kinase-associated protein 1 (Skp1)-
Cul1-Rbx1/Roc1 ubiquitin ligase complex that targets Nrf2 for
ubiquitination and proteasomal degradation (Chowdhry et al.,

FIGURE 1 | Keap1-dependent and -independent regulation of Nrf2. (A) Keap1-dependent Nrf2 regulation. Under normal conditions, Nrf2 is sequestered in the
cytoplasm by Keap1. Under oxidative stress, Nrf2 dissociates from Keap1, translocates to the nucleus and activates the ARE-gene battery. (B) Keap1-independent Nrf2
regulation. Phosphorylation of Nrf2 by GSK facilitates the recognition of Nrf2 by β-TrCP for CUL1-mediated ubiquitination and subsequent proteasome degradation. (C)
P62-dependent Nrf2 regulation. p62 is sequestered with Keap1 and increased Nrf2 signaling. Abbreviations: Keap1, Kelch-like ECH-associated protein 1; Nrf2,
Nuclear Factor Erythroid (NF-E2)-Related Factor 2; ARE, antioxidant response element; GSK-3, Glycogen synthase kinase 3; β-TrCP, β-transducin repeat-containing
protein; Ub, ubiquitin.
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2013). GSK-3 is responsible for phosphorylating a domain of
Nrf2 (aspartate, serine, glycine, isoleucine, serine; DSGIS),
creating a recognition motif for β-TrCP and then presenting
Nrf2 to the Skp1-Cul1-Rbx1/Roc1 complex, finally leading to an
alternative pathway for inhibition of Nrf2 (Rada et al., 2011;
Cuadrado, 2015) (Figure 1B).

1.4 P62-dependent Nrf2 κRegulation
Additional pieces of evidence suggest that other regulators also
may activate the Nrf2 pathway. P62, for example, sequesters Keap1
to its autophagic degradation and ultimately activates Nrf2-
dependent genes (Ma, 2013; Ahmed et al., 2017) (Figure 1C).

2 THE NF-κB CELLULAR FUNCTION AND
REGULATION

The NF-κB family, a regulator of κB light chain expression in
mature B and plasma cells, regulates many genes involved in
different cellular processes, such as cell differentiation,
proliferation, development, and apoptosis. This family is
composed of five structurally related members NF-κB1 (also
called p50), NF-κB2 (also called p52), RelA (also called p65),
c-Rel, and RelB, encoded by NF-κB1, NF-κB2, RELA, REL, and
RELB, respectively. They share an N-terminal Rel homology

domain (RHD) which is responsible for sequence-specific
DNA binding, and homo- and hete-rodimerization (Hayden
and Ghosh, 2008; Liu et al., 2017a; Peng et al., 2020). Based
on the different mediators in the signaling cascade, the NF-κB
signaling pathway can be categorized as either a canonical or
noncanonical (alternative) pathway.

2.1 Canonical Pathway
Activation of the canonical NF-κB pathway relies on its ability to
bind with DNA controlled by the inhibitor of κB (IκB). IκB
protein, a subfamily of the large ankyrin repeat domain (ARD)
containing superfamily, can bind NF-κB dimers to prevent the
activation of NF-κB. The most common member of IκB in
mediating the activation of the typical NF-κB pathway is IκBα,
which plays a central role in subsequent transcription (Hayden
and Ghosh, 2008). Degradation of IκBα involves phosphorylation
of IκB kinase (IκK) which is a trimeric complex composed of two
catalytic subunits, IκKα and IκKβ, and a regulatory subunit, IκKγ
(also named NF-κB essential modulator or NEMO) (Sun and Ley,
2008). In response to external stimulation, NF-κB-bound IκB
protein undergoes specific phosphorylation, ubiquitination, and
proteasome-mediated proteolysis, allowing NF-κB to localize to
the nucleus and bind to DNA (Hoffmann et al., 2006; Siggers
et al., 2011; Wang et al., 2012; Zhao et al., 2014; Cildir et al., 2016)
(Figure 2A).

FIGURE 2 | Regulation mechanism diagram of NF-κB pathway. (A) Canonical NF-κB signaling pathway. The classical pathway is triggered by TNFα, IL-1, or LPS,
and subsequently activates the IκK complex, which induces phosphorylation of IκBα and promotes its degradation. This leads to the release of the NF-κB heterodimer
RelA/p50, which then translocates to the nucleus and induces the transcription of target genes. (B)Non-canonical NF-κB signaling pathway. This pathway is activated by
CD40L, LTβR, RANKL and BAFF gene, and mediated by NIK and the IκK complex containing two IκKα subunits, but not NEMO. In the non-canonical pathway,
receptor binding leads to activation of the NF-κB-inducible kinase NIK, which phosphorylates and activates the IκKα complex, which in turn phosphorylates two serine
residues adjacent to the C-terminal IκB domain of the p100 ankyrin repeat, resulting in its partial proteolysis and release of the p52/RelB complex. Abbreviations: NF-κB,
Nuclear Factor-kappa B; TNFα: tumor necrosis factor α; IL-1: interleukin-1; LPS: lipopolysaccharide; IκB, an inhibitor of κB; IκK, IκB kinase; CD40L, CD40 ligand;
RANKL, receptor activator of nuclear factor kappa-B ligand; LTβR, lymphotoxin beta; BAFF, B cell-activating factor; NIK, NF-κB inducing kinase.
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2.2 Non-Canonical Pathway
On the contrary, activation of the non-canonical NF-κB pathway
is slow and depend on a different set of protein synthesis,
including CD40 ligand (CD40L), receptor activator of nuclear
factor kappa-B ligand (RANKL), lymphotoxin beta (LTβR), and
B cell-activating factor (BAFF) (Sun and Liu, 2011; Sun, 2012). In
addition, the non-canonical NF-κB pathway relies on the
processing of the NF-κB2 precursor protein, p100 rather than
the degradation of IκBα. The NF-κB inducing kinase (NIK)
phosphorylates and activates IκKα, then synergistically
regulating the phosphorylation of p100 (Senftleben et al., 2001;
Sun, 2011; Sun, 2012). After that, this phosphorylation in turn
induces the ubiquitination and proteasome-mediated partial
degradation of p100 to generate p52. Meanwhile, the
degradation processing of p100 not only forms p52 but also
allows the nuclear translocation of the noncanonical NF-κB
complex p52/RelB and then activates the NF-κB (Senftleben
et al., 2001; Xiao et al., 2001; Sun, 2012; Cildir et al., 2016; Liu
et al., 2017a). In the nucleus, p65 coordinates gene transcription
by recruiting coactivators (e.g., CREB-binding proteins (CBP)) or
corepressors (e.g., histone deacetylases (HDACs)) (Liu et al.,
2008) (Figure 2B).

In the review of previous clinical and experimental studies, we
find that tissues after external stimulation secrete cytokines
including interleukin-1 (IL-1) and tumor necrosis factor-alpha
(TNF-α), of which TNF-α stimulates the activation of other
inflammatory mediators (including NF-κB), resulting in the
release of inflammatory genes, and then leading to the
persistence and deterioration of inflammation (Liu, 2005; Ju
et al., 2020).

3 THE INTERPLAY BETWEEN NRF2 AND
NF-ΚB PATHWAYS

The Nrf2 and NF-κB pathways co-regulate cellular responses to
oxidative stress and inflammation. The underlying complex
molecular mechanisms between these two important pathways
remain to be further elucidated.

3.1 NF-κB Inhibits the Nrf2 Pathway
The NF-κB p65 subunit can directly inhibit the Nrf2 pathway at
the transcriptional level. On the one hand, the NF-κB p65 subunit
competes with Nrf2 for the CH1-KIX domain of the
transcriptional co-activator CBP, leading to the inactivation of
the Nrf2 pathway (Figure 3A). On the other hand, NF-κB recruits
HDAC3 by promoting the interaction of HDAC3 with CBP or
MafK, causing local hypoacetylation and impeding Nrf2 signaling
(Liu et al., 2008; Bellezza et al., 2010) (Figure 3B). Interestingly, a
large number of anti-inflammatory agents can activate the Nrf2
pathway by interfering with NF-κB activation (Li et al., 2008;
Minelli et al., 2012; Kim et al., 2013; Grottelli et al., 2016).

3.2 Nrf2 Inhibits the NF-κB Pathway
Nrf2 deficient mice subjected to severe head injury showed higher
NF-κB activity compared to wild-type Nrf2 mice (Jin et al., 2008)
(Figure 3C). A study explored the effect of Nrf2 on the activation
of NF-κB and expression of inflammatory cytokine by using
primary cultured astrocytes from Nrf2 wild-type (WT) or
knockout (KO). The activity of NF-κB and the expression of
inflammatory cytokines including TNF-α, IL-1β, interleukin-6
(IL-6), and matrix metallopeptidase9 (MMP9) were upregulated

FIGURE 3 | The mechanism of crosstalk between Nrf2 and NF-κB pathways. (A) Nrf2 and NF-κB compete for CBP binding in the nucleus; binding of either
transcription factor to CBP is dependent on the relative amount of translocated Nrf2 and NF-κB. (B) NF-κB-recruited HDAC3 deacetylates Nrf2 inhibiting ARE-
dependent gene expression. (C) Nrf2 is indirectly activated by anti-inflammatory compounds that suppress NF-κB activity; likewise, NF-κB is indirectly activated by Nrf2
inhibitors. (D) HO-1, a downstream gene of Nrf2, can inhibit NF-κB transcription. Abbreviations: CBP, CREB-binding proteins; HDACs, histone deacetylases; Ac,
deacetylation; HO-1, heme oxygenase 1.
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inNrf2 KO astrocytes andWT astrocytes, but the increase of which
was more apparent in Nrf2 KO astrocytes. These results suggest
that loss of Nrf2 may induce more aggressive inflammation by
activating NF-κB and downstream pro-inflammatory cytokines
(Pan et al., 2012). However, NF-κB-DNA-binding activity was
significantly inhibited in a diabetic mouse model with Nrf2
overexpression (Song et al., 2009). These studies suggest that we
should also notice the negative regulation of NF-κB by Nrf2.

There are results indicated that the Nrf2 gene has an NF-κB
binding site which p65/p50 heterodimer is recruited, and IκK-β
plays a core role in NF-κB signaling, contains an ETGEmotif that
enables it to bind to Keap1 (Lee et al., 2009; Jiang et al., 2013).
Thereby, the selective recognitionmechanism of Keap1 with IκKβ
or Nrf2 is vital to the crosstalk betweenNF-κB andNrf2 signaling.
Besides, the Rho GTPase protein (RAC1) through IκBα induces
the increase of the transcriptional level of NF-κB, which in turn
up-regulates the expression of Nrf2. However, Nrf2 deficiency
induces IκBα phosphorylation and subsequent degradation,
increasing NF-κB levels and inducing inflammation (Cuadrado
et al., 2014). Collectively, Nrf2 inhibits NF-κB as a regulatory
feedback loop. Moreover, much evidence indicates that Nrf2
downstream gene HO-1, one of the centers of the crosstalk
between Nrf2 and NF-κB, plays a vital role in regulating
inflammatory responses (Figure 3D). HO-1 may inhibit the
nuclear translocation of the NF-κB pathway to mediate
inflammation via its end-products, i.e., carbon monoxide and
bilirubin which have been reported to prevent the activation of
NF-κB (Lee et al., 2003; Rushworth et al., 2008; Bellezza et al.,
2012). Also, a study demonstrates that HO-1 inhibits LPS-
induced TNF and IL-1β expression through suppression of
NF-κB activation (Rushworth et al., 2008).

4 TOXIC REACTIONS

4.1 Hepatotoxicity
The liver is an important central organ for metabolism and
detoxification in the human body and is susceptible to many
factors, such as excessive alcohol consumption, hepatoviruses,
various toxins, and drugs, leading to the development of liver
diseases. Among them, drug-induced liver injury (DILI) and liver
failure have high morbidity and mortality worldwide and it
deserves further to explore the mechanisms and new targets
against drug-induced hepatotoxicity (Andrade et al., 2019).
Transcriptomic analysis of a variety of DILI compounds in
primary hepatocytes showed that NF-κB inhibition coincided
with a strong Nrf2 stress response, which might sensitize
hepatocytes to pro-apoptotic signaling cascades induced by
endogenous cytotoxic proinflammatory cytokines and play a
key role in the regulation of DILI (Herpers et al., 2016).

Nrf2 signaling pathway is an important way to regulate cellular
oxidative stress, which plays an important role in DILI (Tong
et al., 2006). Various regulatory factors are affecting the Nrf2
pathway. A study suggests that intestinal microorganisms
modulate hepatic susceptibility to oxidative injury via the Nrf2
signaling pathway (Saeedi et al., 2020). Also, anti-inflammatory
agents contribute a lot against hepatotoxicity.

4.1.1 Acetaminophen (APAP)-Induced Hepatotoxicity
Most DILI is caused by an intentional or unintentional overdose
of APAP, which accounts for approximately 50% of all cases of
liver injury in the United States (Larson et al., 2005). APAP, also
known as N-acetyl-p-aminophenol, or paracetamol, is one of the
most widely used over-the-counter analgesics and antipyretics
and is considered safe at recommended therapeutic
concentrations. However, excessive APAP can cause severe
liver dysfunction, which threatens patients’ lives (Buckley
et al., 1999). Many studies have shown that Nrf2 KO mice are
highly sensitive to APAP treatment compared to controls, and the
cause of death is the inability to supply glutathione, a product
downstream of Nrf2, promptly (Chan et al., 2001; Enomoto et al.,
2001). Meanwhile, it has been reported that some protective
agents could reduce mitochondrial oxidative stress, the
inflammatory response by inhibiting signaling axes such as
Keap1/Nrf2/HO-1, and thus protecting hepatocytes from
APAP-induced injury (Wang et al., 2019a; Lv et al., 2019; Wu
et al., 2019). Among them, corilagin and farrerol, the common
hepatoprotective preconditioners, can effectively protect liver
cells from APAP-induced acute liver failure (ALF) by
activating Nrf2 or upregulating the AMPK/GSK3β-Nrf2
signaling pathway, which in turn is involved in the prevention
of hepatotoxicity (Wang et al., 2019a; Lv et al., 2019).

Meanwhile, the role of NF-κB in hepatoprotection cannot be
ignored. Maltol, a food-flavoring agent, was found to mitigate
APAP-induced inflammatory responses by restraining the
phosphorylation of IκKα, IκKβ, and I-κBα in a dose-
dependent manner, which exerted a significant liver protection
effect (Wang et al., 2019b). And one study demonstrated that
corilagin exerted protective effects against APAP-induced
hepatotoxicity by inhibiting ERK/JNK mitogen-activated
protein kinases (MAPK) and NF-κB signaling pathways (Liu
et al., 2020). At the same time, a large number of hepatoprotective
reagents (e.g., rutaecarpine, tovophyllin A) have been
demonstrated to have significant therapeutic effects by up-
regulating Nrf2 transcript levels and inhibiting NF-κB
expression (Ibrahim et al., 2018; Choi et al., 2021). In
addition, in APAP-induced hepatotoxicity models, the protein
levels of Sirt1 are downregulated by IL1β/NF-κB signaling,
resulting in inflammation and oxidative stress (Rada et al.,
2018). However, the limonin can alleviate APAP-induced
hepatotoxicity by activating Nrf2 antioxidative signals and
inhibiting NF-κB inflammatory response via upregulating Sirt1
(Yang et al., 2020).

4.1.2 Carbamazepine and Azathioprine-Induced Liver
Injury
Carbamazepine is a widely used antiepileptic drug that causes
acute cholestatic injury and leads to hepatotoxicity. Using the
live-cell imaging of the green fluorescent protein (GFP)-based
reporter models for Nrf2 and NF-κB signaling, the researchers
found that treatment with carbamazepine could cause DILI
through an interconnected network of temporal changes in
Nrf2 and NF-kB signaling, which influence each other and
bring about phenotypes (slightly higher cell death) (Herpers
et al., 2016). A study on the gene regulatory networks (GRNs)
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tells us that in azathioprine-induced liver injury, Nrf2 is widely
activated and the activity of NF-κB is inhibited. At the same time,
the inferred network reveals the overlap of regulatory genes
between NF-κB and Nrf2, demonstrating the relationship
between NF-κB, Nrf2, and hepatotoxicity (Souza et al., 2017).

4.1.3 Isoniazid (INH)-Induced Liver Injury
Anti-tuberculosis drugs (e.g., INH)-induced hepatotoxicity
(ATDH) is a serious problem in tuberculosis treatment and
hepatotoxicity management. INH reduced the phosphorylation
of ERK1, then prevented Nrf2 translocation into the nucleus, and
raised the cytosolic Nrf2 protein levels, thereby inhibiting
Hep3B cell cytoprotection produced by the ARE response
(Verma et al., 2015). Further studies revealed that INH
increased ROS levels, promoted apoptosis, and decreased Nrf2
importer Karyopherin β1 expression levels, thereby inhibiting the
Nrf2 pathway (Verma et al., 2015; Verma et al., 2018).
Accordingly, some protective candidates may target Nrf2
against INH-triggered hepatotoxicity or ALF. Sagittaria
sagittifolia (SSP), a protectant against hepatotoxicity, increased
the expression of Nrf2, glutamate-cysteine ligase, and HO-1,
whereas that of keap1 was inhibited in INH-caused liver
injury models (Wang et al., 2018). Interestingly, a new sight
against hepatotoxicity may be to promote the stress activation of
Nrf2 (Jia et al., 2019; Zhang et al., 2019). A study observed a
significant increase in the mRNA expression of Nrf2 and the
promotion of downstream factors such as HO-1 during INH-
induced liver injury in zebrafish larvae (Jia et al., 2019). The Nrf2
signaling pathway was activated in the early stage of INH-
triggered hepatotoxicity, as a stress compensatory mechanism,
but just partially counteracting hepatotoxicity. Then when the
liver injury was aggravated, the activation of the Nrf2 pathway
was not enough to resist oxidative stress. Instead, a continuous
accumulation of Nrf2 in the nucleus leads to more severe
oxidative stress (Zhang et al., 2019).

Meanwhile, some results suggested that the expression of
inflammatory mediators NF-κB was also upregulated in INH-
induced liver injury. In rat models, pyrrolidine dithiocarbamate
significantly reduced hepatic biochemical and histological
damage by inhibiting the activation of NF-κB and oxidative
stress caused by INH in a rat model demonstrating its
hepatoprotective effect (He et al., 2020). Other
hepatoprotective agents have also been shown to exert the
same therapeutic effect (Joseph Martin and Evan Prince,
2017). What’s more, other drugs like gallic acid and quercetin
attenuate INH-induced liver injury by improving hepatic redox
homeostasis through influence on Nrf2 and NF-κB signaling
cascades in Wistar rats (Sanjay et al., 2021a; Sanjay et al.,
2021b). So in conclusion, many drugs protect against anti-
tuberculosis-induced liver injury by activating Nrf2 and
blocking NF-κB, and it is of greater clinical significance to
investigate the interaction between Nrf2 and NF-κB.

4.1.4 Triptolide (TP)-Induced Liver Injury
TP is one of the main biological activities and active ingredients of
Tripterygium wilfordii Hook F, which has excellent
immunoregulatory and anti-tumor activities and can be used

to treat nephrotic syndrome, cancer, rheumatoid arthritis, and
other autoimmune inflammatory diseases (Li et al., 2014a; Li
et al., 2015). However, the widespread use of TP remains limited
by the narrow therapeutic window and hepatotoxicity (Li et al.,
2014a; Xi et al., 2017). To better understand the causes of TP-
induced hepatotoxicity, we focused specifically on the role of Nrf2
and NF-κB in TP-induced hepatotoxicity, which also provides
direction for future therapeutic targets. MiR155, a regulator of the
Nrf2 antioxidant pathway, was significantly activated and then
inhibited the activity of the Nrf2 pathway in TP-induced
hepatotoxicity (Li et al., 2021a). TP indeed decreased the
protein expressions of the Nrf2 pathway including HO-1,
NQO1, and Nrf2 associated with the oxidative stress pathway
(Zhou et al., 2020). And a study found that TP-induced oxidative
stress and cell damage in HepG2 cells could be aggravated by Nrf2
knockdown or counteracted by overexpression of Nrf2 (Li et al.,
2014b). In addition, treatment with sulforaphane (SFN), a typical
Nrf2 agonist, attenuated TP-induced toxic effects such as liver
dysfunction, structural damage, and glutathione depletion in
mice by activating Nrf2 and its downstream targets (Li et al.,
2014b). To illustrate a deeper mechanism, some scholars have
found that catalpol (CAT), the main active ingredient of
Rehmannia Glutinosa (RG), enhanced Nrf2 transcript
expression by reversing TP-induced Nrf2 transcriptional
repression. The idea further proved that CAT induced
UGT1A6, a phase II detoxifying enzyme of TP, through the
Nrf2 pathway, thereby increasing TP metabolic conversion and
reducing TP hepatotoxic effects (Fu et al., 2020). Meanwhile,
another agent panax notoginseng saponins (PNS) significantly
increased Nrf2 phosphorylation for relieving the potential
inhibition of TP-induced Nrf2/ARE binding activity. These
results highlight the necessity of the Nrf2/ARE pathway in the
TP-triggered hepatotoxicity (Feng et al., 2019).

As an upstream regulator, Nrf2 not only regulates the
oxidative stress response but also suppresses inflammation by
regulating cytokine production and cross-talk with the NF-κB
signaling pathway (Keleku-Lukwete et al., 2018). It has been
previously reported that the alleviation of TP-induced
hepatotoxicity was involved in the inactivation of the NF-κB
pathway (Wei et al., 2017). Besides, TP treatment might disrupt
immune homeostasis and induce liver hypersensitivity through
the regulation of NF-κB-dependent pro-survival genes (Yuan
et al., 2020). These shreds of evidence support the close
correlation among unbalanced expression of Nrf2, NK-κB, and
hepatotoxicity.

4.1.5 Polygonum Multiflorum (PM)-Induced Liver
Injury
PM, the root of P. multiflorum Thunb, has been used to treat
various diseases, such as constipation, early graying of the hair,
and hyperlipemia for several decades (Dong et al., 2014). The
hepatotoxicity caused by PM treatment has attracted attention in
recent years, which was initially considered to be non-toxic (Yu
et al., 2011). As one of the main active components of PM, rhein
could up-regulate the mRNA and protein levels of Nrf2, HO-1,
and glutamate-cysteine ligase catalytic subunit (GCLC), down-
regulate the protein expression of NF-κB, TNF-α and caspase-3,
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increase the survival rate of LO2 cells, decreasing the apoptosis
rate and acting as a hepatoprotective drug (Li et al., 2021b).
However, there is evidence to confirm that rhein has potential
hepatorenal toxicity. A study clarified that immunological
idiosyncratic hepatotoxicity induced by PM was associated
with inhibition of the NF-κB pathway (Meng et al., 2017). We
know that abnormal activation of the TLR4/NF-κB signaling
pathway in response to external stimulation can trigger severe
liver injury. Also, a large number of results support that PM
regulates the Nrf2 pathway, but the specific toxicological
mechanism remains to be explored in PM-induced liver injury
models (Lin et al., 2018; Wang et al., 2020; Yu et al., 2020).

Overall, Nrf2 and NF-κB interact with each other to
coordinate antioxidant and inflammatory responses. There is
evidence indicating that Nrf2/HO-1 pathway and NF-κB
pathway are involved in olaquindox (OLA)-induced
hepatotoxicity. Meanwhile, curcumin can efficiently alleviate
OLA-induced hepatotoxicity by further activating Nrf2/HO-1
pathway and inhibiting the p53 and NF-κB pathways to
inhibit oxidative stress, apoptosis, and mitochondrial
dysfunction (Li et al., 2020a). In the previous study,
teicoplanin (TIL) treatment significantly upregulated the
relative hepatic expression of HSP70 and NF-κB mRNAs and
blocked Nrf2/HO-1 mediated responses, indicating that TIL
could induce oxidative stress and hepatotoxicity by blocking
Nrf2 mediated defense responses and increasing NF-κB
signaling pathways. On the other hand, the combination of
astragalus polysaccharide (APS) and TIL improved the
expression of the Nrf2 pathway, suggesting that the crosstalk
between Nrf2 and NF-κB could be a new therapeutic target
against hepatotoxicity (Farag et al., 2019). These pieces of
evidence strongly complement our above discussion on the
crosstalk of Nrf2 and NF-κB in drug-induced hepatotoxicity,
demonstrating that this connection may provide an insight into
the development of future hepatoprotective agents.

5 NEPHROTOXICITY

Among the adverse effects, there is a great association between
nephrotoxicity and the crosstalk between Nrf2 and NF-κB. Next,
we will elaborate in-depth on typical drug-induced
nephrotoxicity.

5.1 Cisplatin-Induced Nephrotoxicity
Cisplatin, a potent chemotherapeutic agent used for treating
various types of solid organ tumors, is limited by its serious
side effects in clinical application (Yu et al., 2018; Deng et al.,
2020). Cisplatin can cause an increase in the expression of NF-κB
and TNF-α in the liver and kidney (Park et al., 2018). And
abundant evidence suggests that antioxidant agents promote the
anti-inflammatory effect by inhibiting the production of NF-κB
in the kidney even in the liver (Taghizadeh et al., 2020; Un et al.,
2020). Celastrol, a potent chemotherapeutic agent, could
ameliorate cisplatin-induced nephrotoxicity through
suppressing NF-κB and protecting mitochondrial function
in vitro and in vivo (Yu et al., 2018). Similarly, polysulfide and

H2S could afford protection against cisplatin-caused
nephrotoxicity via persulfidating STAT3 and IκKβ and
inhibiting NF-κB-mediated inflammatory cascade (Sun et al.,
2020). In addition, Nrf2 is a key molecule involved in
targeting specific proteins in the NF-κB pathway and may be
implicated in inflammatory regulation (Deng et al., 2020).
Cisplatin can down-regulate Nrf2 and HO-1 while
upregulating inflammatory factors. And embelin, an anti-
inflammatory drug, can alleviate cisplatin-induced
nephrotoxicity by activating the signaling pathway of Nrf2/
HO-1 and impeding NF-κB (Qin et al., 2019). Some studies
have found that vinorelbine protects against cisplatin-induced
acute kidney injury (AKI) by activating Nrf2/HO-1 signaling
pathway and hindering TLR4-IFN-γ-CD44 cell inflammatory
cascade when investigating the molecular mechanism of renal
protection against nephrotoxicity (El-Sayed et al., 2021).
Accumulating evidence suggests that the antioxidant
mechanism protecting against enucleation-induced
nephrotoxicity involves the Nrf2/HO-1 signaling pathway
(Younis et al., 2020).

Some scholars have found that in the cisplatin-induced AKI
mice, the C. cicadae mycelium extract regulated the inflammatory
response by inhibiting renal pathological changes, inflammatory
cell infiltration, and the release of a variety of inflammatory
cytokines such as TNF-α, IL-1β, and IL-6. Further data revealed
that the C. cicadae mycelium extract exerted potent detoxifying
effects by inhibiting TLR4/NF-κB/MAPK and regulating the HO-
1/Nrf2 signaling pathway while regulating autophagy and
inhibiting apoptosis to alleviate renal injury (Deng et al.,
2020). Furthermore, thymoquinone and curcumin
combination also prevented cisplatin-induced kidney injury by
attenuating NF-κB, KIM-1 and ameliorating Nrf2/HO-1
signaling (Al Fayi et al., 2020).

5.2 Aristolochic Acid (AA)-Induced
Nephrotoxicity
Ingestion of Chinese herbal medicines containing AA can induce
aristolochic acid nephropathy (AAN) which is a rapidly
progressive tubulointerstitial disease (Vanherweghem et al.,
1993). Earlier evidence supports that AA-induced AKI is
associated with impaired activation of Nrf2 and its
downstream target gene expression (Wu et al., 2014).
Therefore, we boldly guess that nephrotoxicity can be
alleviated by activating the Nrf2 signaling pathway and
increasing the expression of downstream target genes.
Unsurprisingly, enhancement of the Nrf2 signaling pathway
ameliorated AA-induced tubular epithelial cell injury, while
down-regulation of the Nrf2 signaling pathway caused the
opposite results, fully demonstrating that Nrf2 plays an
important role in the AA-induced nephrotoxicity (Huang
et al., 2020). Furthermore, a study has found that
methylbarbadenolone (BARD), an antioxidant modulator,
could play a renoprotective role through the Nrf2 signaling
pathway (Song et al., 2019). It significantly ameliorated AA-
induced tubular necrosis and interstitial fibrosis by up-regulating
the renal expression of Nrf2 and Smad7 (Song et al., 2019).
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In addition, NF-κB is also significantly activated in AA-
induced nephropathy (Zhao et al., 2015). Notably, AA
exhibited cytotoxicity in a dose-dependent and time-dependent
manner. At a safe dose, AA could significantly inhibit the activity
of NF-κB in HK2 cells and show the pharmacological effect (Chen
et al., 2010). However, in the AA-induced renal injury model, the
expression of NF-κB was abnormally elevated, suggesting that the
dual effects of NF-κB may be one reason for the different
properties of AA on the kidney. Demonstrating our idea from
the reverse aspect, the Chinese herb Sedum sarmentosum extract
(SSB) reduced the activity of the NF-κB signaling pathway when
exerting renoprotective effects (Bai et al., 2014). Also, AA may be
involved in the alteration of matrix homeostasis during renal
fibrosis in vivo, including the imbalance of extracellular matrix
(ECM) accumulation and matrix metalloproteinase (MMP)
activation involving NF-κB (Tsai et al., 2014). Therefore, we
can improve renal fibrosis by regulating the activity of the NF-κB
pathway, and providing new ideas for drug therapy of
nephropathy (Tsai et al., 2014). All the above evidence
suggests that in AA-induced nephrotoxicity, NF-κB is a
network core molecule that can modulate the immune and
inflammatory responses that occur in the kidney.

5.3 Contrast-Induced (CI) AKI
As the third most common cause of AKI, the use of contrast
agents and contrast-induced nephropathy (CIN) have become
the focus of global public health attention (Yang et al., 2015). This
event has been reported to occur in about 30% of patients
receiving invasive image examinations and is strongly
associated with a high risk of death, long hospital stays, and
adverse outcomes such as a high risk of chronic kidney disease
(Nash et al., 2002; Finn, 2006). In exploring possible therapeutic
options for CIN, researchers have found that a renal protective
drug could increase the activation of the Nrf2 antioxidant defense
pathway (Khaleel et al., 2017). Further mechanism elaboration,
the protective effect against CIN could be exerted through Nrf2/
Sirt3/SOD2 or Nrf2/HO-1 pathways (Khaleel et al., 2019; Zhou Q
et al., 2019). Moreover, recent studies have found that STC1, a
conserved glycoprotein with anti-apoptosis and function, could
target Nrf2 to reduce kidney injury and provide a promising
preventive target for the treatment of CI-AKI (Zhao et al., 2020).

Similarly, NF-κB is aberrantly activated in CIN, but NF-κB
expression is decreased and renal tissue hyalinization,
hemorrhagic casts, and necrosis are reduced after infliximab
treatment (Saritemur et al., 2015). And TLR4/Myd88/NF-κB is
also involved in the protective pathway (Yue et al., 2017). In
addition, a study has revealed that overexpression of miR429
inhibits the NF-κB signaling pathway by targeting programmed
cell death 4 (PDCD4) to reduce apoptosis and improve cell
viability in a CI-AKI cell model (Niu et al., 2021).

5.4 Gentamicin (GM)-Induced AKI
GM is an aminoglycoside antibiotic commonly used to treat acute
gram-negative bacterial diseases. However, at least 30% of
patients who received GM for more than 7 days had an
increased risk of AKI (Cuzzocrea et al., 2002). Melatonin
(MT) restores antioxidant enzyme activity and blocks NF-κB

and nitric oxide synthase (iNOS) activation in rat kidneys,
thereby preventing GM-induced nephrotoxicity, and these
experimental results confirm that MT protects the kidney as a
potent antioxidant (Lee et al., 2012). Besides, GM was found to
promote nuclear NF-κB (p65) expression and inflammatory
cytokine cytokines (TNF-α and IL-6) and upregulate NF-κB-
DNA-binding activity in kidney cells. In contrast,
nephroprotective drugs can attenuate the abnormity of these
genes, thereby reducing the degree of histological damage and
neutrophil cell infiltration in renal tubules (Ansari et al., 2016).
Also, NF-κB inhibitors have the same effect (Tugcu et al., 2006).
On the other side, both Keap1/Nrf2/ARE and PKC/Nrf2
antioxidant pathways can be activated to enhance the
attenuation function of the kidney (Arjinajarn et al., 2016; Ali
et al., 2021). In addition, Nrf2 and NF-κB pathways can be
simultaneously regulated in GM-induced nephrotoxicity
models, and which provides direct evidence between the
crosstalk of Nrf2 and NF-κB and drug-induced toxicity
(Kalayarasan et al., 2009; Mahmoud, 2017). In future
therapeutic strategies, increasing the nuclear immunoreactivity
of Nrf2 and decreasing that of NF-κB could be taken into account.

5.5 Methotrexate (MTX)-Induced AKI
MTX is an anti-proliferative folic acid antagonist widely used in
clinical treatment for cancers and chronic inflammatory diseases,
but its nephrotoxicity limits its use. Some researchers have found
that MTX-induced nephrotoxicity could be attenuated by
vincamine, playing a protective role in the already peripheral
and central nervous systems of the kidney. The therapeutic effect
of vincamine against MTX-induced renal injury was through
inhibiting oxidative stress while decreasing the expression of the
NF-κB pathway by increasing the expression of Nrf2 and HO-1
(Shalaby et al., 2019). And some other nephroprotective agents,
such as chicoric acid, umbelliferone and berberine, also exert their
protective effects by the same mechanism (Hassanein et al., 2018;
Abd El-Twab et al., 2019; Hassanein et al., 2019). Indeed, the
importance regarding the modulation of NF-κB and Nrf2
pathway activity in MTX-induced AKI has been efficiently
shown (Sherif et al., 2020), especially Nrf2. Activation of the
Nrf2/HO-1 signaling pathway can effectively protect kidney
structure from destruction, while various factors lead to the
elevated activity of Nrf2/HO-1, such as the expression level of
miR145-5p which directly targets Sirt5 (Mahmoud et al., 2018;
Aladaileh et al., 2019; Li et al., 2021c).

Let us pay attention to whether, the body affected by
nephropathy also causes further nephrotoxicity by breaking
the balanced relationship between the two pathways, in
addition to nephrotoxicity caused by the crosstalk of Nrf2 and
NF-κB. When exploring whether diabetes aggravates I/R-induced
AKI in rats, some results have shown that diabetes aggravated
oxidative stress, inflammatory response, and apoptosis after renal
I/R by enhancing TLR4/NF-κB signaling and blocking the Nrf2/
HO-1 pathway. However, pretreatment with tBHQ (an Nrf2
agonist) inhibited NF-κB signaling and enhanced the function
of anti-apoptosis (Gong et al., 2019). These results indicate that
the crosstalk between Nrf2 and NF-κB is involved in the
development of nephrotoxicity.
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6 CARDIOTOXICITY

As same as nephrotoxicity, there are lots of results that have
shown a tight association between the crosstalk and drug-induced
cardiotoxicity.

6.1 Doxorubicin (DOX)-Induced
Cardiotoxicity
DOX, an anthracycline antibiotic, has been widely used to treat
both solid and hematologic malignancies (Octavia et al., 2012).
However, DOX can lead to myocardial cell loss, mitochondrial
dysfunction, myelofibrosis, and congestive heart failure in the
body, triggering cardiotoxicity after long-term use (Eschenhagen
et al., 2011; Brown et al., 2015; Varga et al., 2015; Chung and
Youn, 2016; Zagar et al., 2016). DOX-induced cardiotoxicity is
mediated by ROS production and the Nrf2/ARE pathway.
Natural compounds (NCs), such as Asiatic acid, α-linolenic
acid, apigenin, and β-LAPachone, were confirmed to
ameliorate DOX-induced cardiac injury by activating Nrf2 in
different pathways (Yarmohammadi et al., 2021). For example,
cardamonin (CAR), a flavone found in Alpinia plants, can reduce
the NF-κB signaling pathway and improve Nrf2 signaling to
suppress oxidative stress, apoptosis, and inflammatory response,
ameliorating DOX-induced cardiotoxicity (Qi et al., 2020). And
previous studies have shown that miR140-5p increases DOX-
induced myocardial oxidative damage by inhibiting Nrf2 and
Sirt2 signaling pathways (Zhao et al., 2018). Conversely, miR200a
protects against DOX-induced cardiotoxicity by activating the
Nrf2 signaling pathway (Hu X et al., 2019). This suggests that
microRNA acts as a regulatory medium to modulate the Nrf2
pathway to aggravate or ameliorate DOX-induced cardiotoxicity.

Notably, DOX induced the expression of NF-κB p65 and
caspase-3 in myocardial nuclei in a DOX-induced
cardiotoxicity model. Interestingly, NF-κB p65 and caspase-3
were significantly inhibited by trifluoperazine, a strong
calmodulin antagonist, suggesting that the cardioprotective
effect conferred by trifluoperazine involves inhibition of NF-
κB and apoptosis. Furthermore, biochemical and
histopathological examinations revealed that trifluoperazine
ameliorated DOX-induced renal and hepatic injury both
functionally and structurally (Goda et al., 2021). Similarly,
another drug geraniol may function as a potential activator of
Nrf2, subsequently improve Nrf2 dependent antioxidant
signaling, reduce apoptosis, and attenuate inflammatory
responses (Younis et al., 2021). Antioxidant drugs may be a
potential therapeutic target to prevent the development of DOX-
induced cardiotoxicity by inhibiting oxidative stress and NF-κB
pathways (Sahu et al., 2019; Xu et al., 2020).

The study suggests the necessity and importance of discussing
the crosstalk between Nrf2 and NF-κB in drug-induced
cardiotoxicity. On top of that, among the organ injuries, the
rising morbidity and mortality of highlighting cardiovascular
diseases (CVDs) make cardiac injury attract people’s attention.
Some studies have found that aging is a major risk factor for
CVDs (Niccoli and Partridge, 2012; Jaul and Barron, 2017;
Franceschi et al., 2018). Under physiological conditions, Nrf2

and NF-κB are degraded via the proteasome without
cardiotoxicity. When aging disrupts the balance of Nrf2 and
NF-κB, it can increase ROS/RNS and activate inflammatory
signaling pathways, thereby damaging cellular components and
leading to cardiac injury (de Almeida et al., 2020). Also, the ability
of adhesion, proliferation, migration, and formation of capillary-
like structures is compromised by dysfunction of Nrf2 signaling
and it revealed Nrf2 might be a prominent target to release
angiogenesis and microvascular rarefaction (Valcarcel-Ares et al.,
2012). It has earlier been reported that the NF-κB p65 subunit
inhibits the Nrf2/ARE pathway at the transcriptional level (Liu
et al., 2008), so there may be crosstalk between NF-κB and Nrf2 in
the decrease of Nrf2 expression.

7 PULMONARY TOXICITY

7.1 Bleomycin (BLM)-Induced Lung Injury
BLM, a glycopeptide antibiotic, is an effective antineoplastic agent
commonly used to treat breast, ovarian, lung, and different types of
leukemia (Levine et al., 1985). However, the effective use of BLM in
chemotherapy remains limited, as it precipitates dose-dependent
interstitial pneumonia, resulting in pulmonary fibrosis in at least
10% of individuals treated with BLM, ultimately leading to
irreversible lung structural damage (Yen et al., 2005; Di Paola
et al., 2016). BLM aggravates pulmonary inflammation and
apoptosis by up-regulating the expression of NF-κB signaling
pathway and apoptosis regulator caspase-3, and substantially
reducing the activity of antioxidant enzymes in a rat model of
BLM-induced pulmonary fibrosis (Beigh et al., 2017).
Furthermore, NF-κB p105 and NF-κB p65 are involved in the
progression of acute lung injury (ALI) and play important roles in
tumorigenesis, inflammation, and immunity, which are important
for elucidating therapeutic strategies for ALI (Shaikh and
Prabhakar Bhandary, 2020). Juglans regia extract can inhibit
NF-kB activation and reduce the expression of proinflammatory
biomarkers such as cyclooxygenase 2 (COX-2) and iNOS to slow
down pulmonary fibrosis. The protective effect is to reduce BLM-
induced oxidative stress and pulmonary inflammation by
regulating the inflammatory response of rat alveolar
macrophages (Beigh et al., 2017). Meanwhile, the involvement
of the Nrf2 pathway in the process of BLM-induced lung injury has
also been mentioned (Liu et al., 2017b). It has become clear that
artemisinin, a novel Nrf2 activator, activates the Nrf2 pathway by
reducing Nrf2 ubiquitination and improving its stability (Chen
et al., 2016). On the other hand, the subsequent antioxidant
protection can be achieved by regulating the Nrf2/HO-1
signaling pathway (Ahmad et al., 2020).

The hepatoprotective effects of NF-κB and Nrf2 have been
demonstrated in BLM-treated animals. It is curious whether there
are potential interaction mechanisms between the two genes that
together regulate antioxidant levels to protect against lung injury?
Earlier studies have shown that NF-κB and Nrf2 expression
levels are simultaneously regulated by hepatoprotective drugs.
In BLM-treated pneumonocytes, salidroside inhibits IκBα
phosphorylation and the nuclear accumulation of NF-κB p65
while activating Nrf2-antioxidant signaling (Tang et al., 2016). In
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addition, hesperidin attenuates BLM-induced lung toxicity by
inhibiting the IκBα/NF-κB pathway, which in turn improves the
regulation of oxidative inflammatory markers (Nrf2 and HO-1)
and pro-inflammatory markers (TNF-α, IL-1β, and IL-6) to
reduce collagen deposition during pulmonary fibrosis (Zhou Z
et al., 2019). Besides, treatment of Glycyl-L-histidyl-L-lysine
(GHK)-Cu complexes modulates the Nrf2 and NF-κB
pathways, and Smad2/3 phosphorylation partially prevents the
development of epithelial-mesenchymal transition (EMT) and
has a protective effect against BLM-induced inflammation and
oxidative stress. However, the specific interaction mechanism
between the two remains to be elucidated (Ma et al., 2020). A
study revealed that the activation of NF-κB and Nrf2 pathways
played opposite roles in lung injury, respectively. And in the
hepatoprotective mechanism, the activity of Nrf2 increases,
which has a potential inhibitory effect on the NF-κB pathway,
plays a better protective effect (Kang et al., 2020).

8 DERMAL TOXICITY

Psoriasis is a skin disease mediated by immune response
disorders, with a prevalence of 2–3% in the world’s population
(Brück et al., 2018; Lee et al., 2020). And the patients are suffered
from skin itching, pain, seriously affecting the quality of life of
patients (Nestle et al., 2009; Boehncke and Schön, 2015). While
the etiology of psoriasis remains to be fully elucidated, studies are
revealing the crosstalk between Nrf2 and NF-κB in psoriasis
(Sangaraju et al., 2021).

8.1 Imiquimod (IMQ)- Induced Psoriasis
The results from IMQ-induced psoriasis models in vitro confirm
the involvement of NF-κB1 in psoriasis pathogenesis through
mediated T cell (Th1 and Th17) activation (Zhou et al., 2018).
The role of Nrf2 and NF-κB pathways in psoriasis has been
previously documented, but the exact interaction between the two
has not been elucidated (Li et al., 2020b; Sangaraju et al., 2021).
Tussilagonone (TGN), a sesquiterpenoid isolated from
Tussilagofarfara, has been used to treat IMQ-induced
psoriasis-like dermatitis mice when further exploring
transcription factors associated with psoriasis pathogenesis. As
a potent Nrf2 activator, TGN can significantly activate the Nrf2
pathway and induce the expression of its downstream target gene
HO-1 by inhibiting NF-κB and STAT3. In turn, activation of
Nrf2/HO-1 by TGN also inhibits activation of NF-κB and STAT3
which are the key transcription factors in psoriasis pathogenesis
and promote the skin defense system while reducing the
expression of immune mediators and epidermal proliferation
(Lee et al., 2020). Further proving our subject, 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) aggravated IMQ-induced
psoriasis by increasing the expression of phosphorylated NF-κB
p65 and inhibiting the antioxidant marker Nrf2 (Kim et al., 2021).
These studies have provided a novel and clinically meaningful
perspective on the pathogenesis and therapeutic targets of
psoriasis in the world.

Experimental results from other perspectives have also
demonstrated the importance of the Nrf2 and NF-κB

pathways in skin inflammation, especially psoriasis. Fumarate
esters (FAEs) such as dimethyl fumarate (DMF) and its active
metabolite monomethyl fumarate (MMF) can play a vital role in
the treatment of psoriasis because of their immunomodulatory
effects (Brück et al., 2018). On the one hand, the binding of DMF
and MMF to the cysteine residues of Keap1 induces a
conformational change that dissociates Nrf2 from Keap1 and
enters the nucleus, thereby activating cytoprotective and anti-
inflammatory genes (Linker et al., 2011). On the other hand,
DMF can also directly or indirectly inhibit the nuclear activity of
NF-κB, affecting cytokine production in human T cells, human
breast cancer cell lines, and mouse dendritic cells (Gerdes et al.,
2007; Ghoreschi et al., 2011; Kastrati et al., 2016).

Interestingly, some researchers have found that synchronized
circadian clocks could not only enhance the protective role of
Nrf2 but also attenuate the validated response through the NF-κB
signaling pathway when testing the differential responses of
keratinocytes clock synchronized or desynchronized in
challenged keratinocytes by O3. The synchronized circadian
clocks can strengthen the cellular defense function and
alleviate skin inflammation, which provides new insight into
the crosstalk of Nrf2 and NF-κB (Frigato et al., 2020).

9 NEUROTOXICITY

Chemotherapy agents such as oxaliplatin, cisplatin, paclitaxel,
and bortezomib frequently cause severe peripheral neuropathy
and there is currently no effective strategy to prevent drug-
induced toxicity.

9.1 Cisplatin-Induced Neurotoxicity
Cisplatin can cause not only nephrotoxicity but also cause severe
neurotoxicity, which significantly limits its clinical use. A study
showed that a continuous high dose of cisplatin stimulation
disrupted the blood-brain barrier, leading to brain cell edema
and neuronal necrosis (Namikawa et al., 2000). Regarding the
study of prevention and treatment of cisplatin-induced
neurotoxicity, the neuroprotective effects exerted by many
agents are closely related to the Nrf2 and NF-κB pathways.
Schisandrin B (Sch B) has been reported earlier to effectively
inhibit the activation of NF-κB, p53 and cleave caspase-3
expression in cisplatin-treated mice, thereby exerting the
efficacy of protective drugs (Giridharan et al., 2012). Recently,
a large number of articles have found that agents including
edaravone and epigallocatechin-3-gallate (EGCG) prevented
the development of cisplatin-related brain inflammation and
oxidative damage by up-regulating the gene expression level of
the Nrf2/HO-1 pathway and preventing the cisplatin-induced
NF-κB activation (Jangra et al., 2016; Arafa and Atteia, 2020).

9.2 Bortezomib-Induced Neurotoxicity
Bortezomib was the first proteasome inhibitor approved to treat
multiple myeloma (MM), mantle cell lymphoma, and other solid
tumors. However, peripheral neuropathy (PNP) is one of the
most common side effects of bortezomib and leads to dose
modification and discontinuation of therapy. One hallmark of
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the mechanism of action of bortezomib in tumor cells is NF-κB,
while bortezomib treatment may induce neuropathy by inhibiting
NF-κB in non-neuronal types or targeting other signaling
pathways. It has been found that animals with impaired NF-
κB activation developed significantly less neuropathy, suggesting
that the NF-κB activation played an active role in bortezomib-
induced neuropathy (Alé et al., 2016). There was also evidence to
identify the NF-κB signaling pathway mediating neurotoxicity
when investigating the molecular factors associated with PNP in
patients with MM induced by bortezomib (Campo et al., 2017).
Thus, inhibition of NF-κB may be a promising strategy to protect
against bortezomib-triggered neurotoxicity.

9.3 Paclitaxel (PTX) and Qxalipatin-Induced
Neurotoxicity
PTX is an anti-tumor drug with high efficacy, especially for breast
cancer, ovarian cancer, bladder cancer, lung cancer, and other
types of solid tumors (Melli et al., 2006; Malekinejad et al., 2016).
Despite its dramatic effect, PTX can cause severe peripheral
neuropathy (usually manifested as painful neuropathy),
affecting up to 50% of cancer patients (Hu L. Y et al., 2019).
Huangqi Guizhi Wuwu Decoction (HGWD) was found to have a
therapeutic effect on oxaliplatin-induced peripheral neuropathy.
It was revealed that HGWD significantly inhibited PTX -induced
activation of TLR4/NF-κB and decreased the expression of IκKα,
and phosphorylation of NF-κB to inhibit PTX-evoked
inflammatory and oxidative responses in the peripheral
nervous system. It also promoted activation of the PI3K/Akt-
Nrf2 signaling pathway, alleviating PTX-induced oxidative stress
to some extent (Lv et al., 2021). Moreover, other protective drugs
have also been shown to regulate the downstream Nrf2/HO-1
pathway (Yardım et al., 2021). Another chemotherapeutic drug,
oxaliplatin, also often causes peripheral neuropathy afflicting
patients. However, some studies have found that L-carnosine
exerted a neuroprotective effect against oxaliplatin-induced
peripheral neuropathy in colorectal cancer patients via the
Nrf2 and NF-κB pathways (Yehia et al., 2019).

According to the results of another study, we reasonably
hypothesize that the protective mechanism against
chemotherapy-induced neurotoxicity may be that protective
drugs and their metabolites increase the DNA-binding activity of
Nrf2, thereby enhancing the ability to counteract oxidative stress
(Kawashiri et al., 2018). On the other hand, the potential inhibitory
effect of Nrf2 on NF-κB inhibits the inflammatory response and
enhances the alleviation of neurotoxicity. However, it is noteworthy
that elevation of Nrf2 signaling by protective agents can also activate
the phase I, II and III response in tumors. Increased expression of
xenobiotic metabolism and efflux pumps due to compounds
(protective agents mentioned above) that elevate Nrf2 in cancer
maybe diminish anti-cancer agent efficacy. These concerns may be
diminished due to co-administration agents possessing, such as
pharmacokinetic properties which cause differential temporal
effects, and treatment regimens that cause increased metabolism/
efflux transporter expression only after anti-cancer agents have
already bound to their target. Other effects such as organ-specific
compound uptake and other variables could also be explained.

Notably, differences between genetic and pharmacologic activation
of Nrf2 signaling also exist (Kensler and Wakabayashi, 2010).

9.4 The Crosstalk Between Nrf2 and NF-κB
in Neurodegenerative Disorders
Suppression of Nrf2 can cause the development of neurotoxicity
in animal models (Sandberg et al., 2014). Previous studies have
reported that Nrf2 deficient mice developed vacuolar
(spongiform) leukoencephalopathy along with extensive
astrogliosis, revealing a possible physiological role for Nrf2 in
maintaining myelin in the central nervous system (Hubbs et al.,
2007). A dysfunctional Nrf2 system may increase the risk of
chronic diseases in humans, such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD). A study in neurodegenerative
disease showed that the amount of Nrf2 was decreased in
hippocampal astrocytes which were one of the brain regions
where neurodegeneration began in AD patients. Also, in PD
patients, the nuclear localization of Nrf2 is strongly induced, but
this response may not be sufficient to protect neurons from
degeneration (Ramsey et al., 2007). In addition, genetic
variants in the Nrf2 gene have been associated with the
progression of AD and PD (von Otter et al., 2010a; von Otter
et al., 2010b). Several studies have shown that NF-κB activation in
astrocytes could aggravate neuroinflammation and produce
neurotoxic effects (Schwaninger et al., 1999; Acarin et al.,
2001; de Freitas et al., 2002; Brambilla et al., 2005). In
addition, the expression of various NF-κB target genes and
NF-κB DNA-binding activity increased in the brains of AD
patients (Hensley, 2010). Several genetic, cell biology,
biochemical and animal studies supported that inhibiting NF-
κB could play a critical role in preventing the development of AD
pathology (Selkoe, 2001; Ghiso and Frangione, 2002).

Consistent with the above content, a study showed that DMF
is involved in protecting β-amyloid-induced cytotoxicity and
alleviating neurotoxicity by reducing the pro-inflammatory
pathway: NF-κB, as well as regulating the Nrf2 pathway to
increase the production of antioxidant enzymes (Campolo
et al., 2018). A study found that DMF exerted neuroprotective
effects through the crosstalk between Nrf2 and NF-κB pathways
in vitro and in vivo, besides regulating antioxidant enzymes such
as Nrf2, Mn-SOD, and HO-1, thereby reducing the levels of pro-
inflammatory cytokines such as IL-1 and iNOS (Campolo et al.,
2017). The study also has elucidated the crosstalk between Nrf2
and NF-κB pathways in acrylamide-induced neurotoxicity and
found that the protective effect of oxidant N-Acetyl-L-Cysteine
(NAC) against acrylamide was to resist cell injury by activating
the Nrf2 pathway and inhibiting NF-κB pathway. In addition,
MAPKs, as the central mediators that transmit extracellular
signals from cell membrane to nucleus, can regulate the
activation of Nrf2 and NF-κB pathways to reduce cell injuries
(Pan et al., 2018). Vincristine was proved to increase NF-κB levels
in sciatic nerves and consequently cause oxidative stress and
neuroinflammation through the suppression of the Nrf2 pathway.
Meanwhile, the quercetin treatment increased Nrf2 levels and
downregulated NF-κB levels to alleviate oxidative stress and
neuroinflammation (Yardim et al., 2020). Another research
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TABLE 1 | A summary of representative protective agents targeting the crosstalk between the Nrf2 and NF-κB pathway in drug-induced toxicity.

Toxic reaction Representative
drug

Representative
promising candidate

Brief summary of
regulatory mechanisms based

on Nrf2 and NF-κB

References

Hepatotoxicity Acetaminophen Salvianolic acid B/C • Regulating drug-metabolizing enzymes,
transporter and antioxidant genes through the
Nrf2/ARE pathway

Wang et al. (2019a), Lv et al. (2019), Wu et al.
(2019), Wang et al. (2019b), Ibrahim et al. (2018),
Rada et al. (2018), Yang et al. (2020), Choi et al.
(2021), Fan et al. (2014), Jiet al. (2015), Fan et al.
(2018), Lv et al. (2018), Lv et al. (2020), Zhang
et al. (2020)

Corilagin; Isoorientin • Mitigating mitochondrial oxidative stress,
inflammatory response, and caspase-
mediated antiapoptotic effect through inhibition
of Keap1/Nrf2/HO-1 axis

Farrerol; Tanshinone IIA • Exerting antioxidant effects through Nrf2
activation via the AMPK/AKT pathway

Maltol; Wuzhi tablet • Upregulating AMPK/GSK3β-Nrf2 signaling
pathway

Rutaecarpine; Quercetin • Inhibiting oxidative stress and inflammation
response via NF-κB and PI3K/Akt pathway

Tovophyllin A • Activating the Nrf2 pathway and inhibiting NF-
κB inflammatory response via upregulating
Sirt1

Limonin; Daphnetin • Regulating Nrf2/Trx-1 axis via decreasing
ASK1/JNK and Txnip/NLRP3 inflammasomeLicochalcone A

Isoniazid Gallic acid; Quercetin • Increasing the expression of antioxidant
enzymes and decreasing CYP expression
through the activation of the Nrf2/Keap1
pathway

Wang et al. (2018), Jia et al. (2019), Zhang et al.
(2019), He et al. (2020), Sanjay et al. (2021a),
Sanjay et al. (2021b)

Pyrrolidine
dithiocarbamate

• Increasing BSEP expression, and exhibiting +
antioxidant and anti-inflammatory activities

Sagittaria sagittifolia • Improving the redox homeostasis by activating
Nrf2 and blocking NF-κB/TLR-4 axis

Triptolide Arctiin; Quercetin; Licorice • Acting as an upstream activator to regulate
Nrf2 and its downstream target (HO1, NQO1)

Zhou et al. (2020), Feng et al. (2019), Fu et al.
(2020), Wei et al. (2017), Yuan et al. (2020), Li
et al. (2014b), Hou et al. (2018)Panax notoginseng

saponins
• Inducing phase I/II detoxification enzyme via

Nrf2 pathway to increasing metabolic
conversion

Sulforaphane; Catalpol • Restoring Th17/Treg balance through Tim-3
and TLR4-MyD88-NF-κB pathway

Polygonum
multiflorum

Pioglitazone • Decreasing serum TNF-α and other
inflammatory cytokines, liver tissue PPAR-γ
expression, and inhibiting expression of NF-
κB p65

Meng et al. (2017)

Nephrotoxicity Cisplatin Cordyceps cicadae
Mycelia

• Decreasing phosphorylation of STAT3 and IκKβ
STAT3 and IκKβ, inhibiting NF-κB-mediated
inflammatory cascade and improving
mitochondrial function

Yu et al. (2018), Deng et al. (2020), Qin et al.
(2019), Al Fayi et al. (2020), Sun et al. (2020),
Taghizadeh et al. (2020), Younis et al. (2020),
El-Sayed et al. (2021)

Vincamine; Embelin;
Polysulfide

• Diminishing oxidative stress and inflammation
by activating the signaling pathway of Nrf2/HO-
1 and impeding NF-κBCelastrol; Gliclazide;

Vanillin
Thymoquinone and
Curcumin

Aristolochic Acid Bardoxolone methyl • Upregulating Nrf2/Smad7, NQO1, and HO-1
expression and downregulating Keap1
expression

Wu et al. (2014), Song et al. (2019), Bai et al.
(2014)

Sedum sarmentosum
extract

• Decreasing the activity of the NF-κB signaling
pathway, resulting in down-regulated
expression of NF-κB-controlled chemokines
and pro-inflammatory cytokines

Contrast Atorvastatin; Infliximab;
stanniocalcin-1

• Activating the Nrf2/Sirt3/SOD2 or Nrf2/HO-1
pathways

Saritemur et al. (2015), Khaleel et al. (2017), Yue
et al. (2017), Khaleel et al. (2019), Zhou Z et al.
(2019), Zhao et al. (2020)Lansoprazole;

Sulforaphane
• Suppressing the TLR4/Myd88 pathway and

inhibiting the expression of downstream
inflammatory cytokines, such as IL-1β, TNF-α,
IL-6, and MCP-1

(Continued on following page)
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highlights that acrylamide, a common food contaminant formed
during food heat processing, induces oxidative stress in astrocytes
and microglia by regulating the Nrf2/ARE and NF-κB pathways,
leading to neurotoxicity. These results reveal the importance of

the crosstalk of Nrf2 and NF-κB signal pathways in neurotoxicity
(Zhao et al., 2017).

Furthermore, it has been proved that mice bearing Nrf2
deficiency were suffered from neuroinflammation and lost

TABLE 1 | (Continued) A summary of representative protective agents targeting the crosstalk between the Nrf2 and NF-κB pathway in drug-induced toxicity.

Toxic reaction Representative
drug

Representative
promising candidate

Brief summary of
regulatory mechanisms based

on Nrf2 and NF-κB

References

Tert-Butylhydroquinone • Alleviating oxidative DNA damage,
mitochondrial damage and apoptosis via the
Nrf2 pathway

Gentamicin Diallyl sulfide; Diosmin • Restoring antioxidant enzyme activity, and
blocking NF-κB and iNOS activation

Tugcu et al. (2006), Kalayarasan et al. (2009), Lee
et al. (2012), Ansari et al. (2016), Arjinajarn et al.
(2016), Mahmoud (2017), Ali et al. (2021)Melatonin; Kiwi fruit • Upregulating nuclear NF-κB p65 expression,

NF-κB-DNA binding activity, and MPO activity
Pyrolidium
dithiocarbamate

• Activating Keap1/Nrf2/ARE, AKT or PKC/Nrf2
antioxidant pathways

sulfasalazine; Sinapic acid
Riceberry bran extract

Methotrexate Berberine; Chicoric acid;
Dioscin

• Activating Keap1/Nrf2 signaling and
attenuating ROS-induced activation of NF-κB/
NLRP3 inflammasome signaling and apoptosis
pathways

Hassanein et al. (2018), Mahmoud et al. (2018),
Abd El-Twab et al. (2019), Aladaileh et al. (2019),
Hassanein et al. (2019), Shalaby et al. (2019),
Sherif et al. (2020), Li et al. (2021c)

Commiphora molmol;
Vincamine

• Regulating antioxidant pathways and anti-
inflammatory pathways via miR145-5p or
miR29aFormononetin;

Umbelliferone

Cardiotoxicity Doxorubicin Asiatic acid; Apigenin;
Geraniol

• Activating the Nrf2/Keap1/ARE pathway Qi et al. (2020), Yarmohammadi et al. (2021),
Sahu et al. (2019), Goda et al. (2021), Younis
et al. (2021)Cardamonin; Baicalein;

Dioscin
• Inhibiting oxidative stress, MAP kinase

activation, NF-κB pathway, PI3K/Akt/mTOR
impairment, and cardiac apoptosissulforaphane;

tanshinone IIA
Trifluoperazine; Wheat
phenolics

Pulmonary
Toxicity

Bleomycin Artemisitene; Curcumin • Activating Nrf2 by reducing Nrf2 ubiquitination
and improving its stability and inhibit of NF-κB
and TGF-β1/Smad2/3/AMPK pathways

Chen et al. (2016), Tang et al. (2016), Beigh et al.
(2017), Liu et al. (2017b), Zhou Z et al. (2019),
Ahmad et al. (2020), Ma et al. (2020), Shaikh and
Prabhakar Bhandary (2020)Hesperidin; Pirfenidone • Inhibiting the IκBα/NF-κB pathway, which in

turn improves the regulation of oxidative
inflammatory markers (Nrf2 and HO-1) and
proinflammatory markers (TNF-α, IL-1β, IL-6,
COX-2, and iNOS)

Glycyl-L-histidyl-l-lysine
Salidroside;
Thymoquinone
Walnut extract

Dermal toxicity Imiquimod Dimethylfumarate • Attenuating psoriasis-related inflammatory,
regulating cellular anti-oxidant responses and
suppression of keratinocyte hyperproliferation
via activation of Nrf2/HO1 and inhibition of NF-
κB and STAT3

Lee et al. (2020), Sangaraju et al. (2021), Ogawa
et al. (2020)

Tussilagonone (TGN) • Influencing cytokine production by antigen-
presenting cells, inhibiting Th1/Th12
responses, promoting Th2 responses via
indirect and/or direct inhibition of NF-κB

Galangin

Neurotoxicity Cisplatin Epigallocatechin Gallate • Inhibiting NF-κB and p53 activation and
upregulating Nrf2/HO-1 pathway

Giridharan et al. (2012), Jangra et al. (2016),
Arafa and Atteia (2020)Edaravone; Schisandrin B

Bortezomib Dimethyl fumarate • Activating the Nrf2 pathway Kawashiri et al. (2018)
Paclitaxel and
Qxalipatin

Curcumin; Dimethyl
fumarate

• Inhibiting activation of the inflammatory TLR4/
NF-κB pathway and promoting the activation of
PI3K/Akt-Nrf2 signaling pathway

Kawashiri et al. (2018), Yehia et al. (2019), Lv
et al. (2021), Yardım et al. (2021)

Huangqi Guizhi Wuwu
Decoction (HGWD)

• Protecting neural stem/progenitor cells and
neurons from oxidative damage through the
Nrf2-ERK1/2 MAPK pathwayL-Carnosine
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dopaminergic neurons (Lastres-Becker et al., 2012). By
comparison, the neuroprotection appeared in a mutant alpha-
synuclein (αSyn; a small protein with 140 amino acids abundant
in presynaptic nerve terminals) transgenic mouse model with an
overexpression level of Nrf2 gene (Gan et al., 2012). At the same
time, the increased activation of NF-κB is related to the strong
nuclear p65 immunoreactivity in PD patients, which suggests that
NF-κB participates in neurodegenerative disorder (Mattson and
Camandola, 2001). Also, evidence has shown that we could take
NF-κB as an ideal therapeutic target due to its critical role in
forming inflammatory mediators in models of PD-induced
neurotoxicity (Flood et al., 2011). Thus, it is obvious that Nrf2
and NF-κB interplay in neurodegenerative disorders, in which the
increase of NF-κB aggravates neuroinflammation while the
increase of Nrf2 affords neuroprotection (Sivandzade et al., 2019).

10 THERAPEUTICAL STRATEGIES FOR
DRUG-INDUCED ADVERSE REACTIONS

Here, we summarize the protective agents that may alleviate
injury in different organ toxicities as well as their effects in anti-
oxidative and anti-inflammatory systems (Table 1).

11 PERSPECTIVES AND CONCLUSION

In clinical applications, the treatment of many drugs, including
APAP and antineoplastic agents, is limited by their potential organ
toxicity. However, the mechanism of drug-induced tissue injury

and the corresponding protective strategies have not been fully
discussed. Meanwhile, there is increasing interest in investigating
the relevance of Nrf2 and NF-κB signaling pathways in the
development/progression of drug-induced injury. Therefore, this
review summarizes and discusses the role of common agents in the
induction of multiple organ toxicities. We found that the
unbalanced relationship between Nrf2 and NF-κB may induce
or aggravate toxic responses, while substances that regulate the
relationship between Nrf2 and NF-κB may play a protective role-
restoringNrf2 activity, thereby enhancing antioxidant capacity and
reducing NF-κB-mediated inflammatory responses. The crosstalk
of both may serve as a central hub for drug-induced toxic
responses. At the same time, drugs or therapeutic approaches
that target the crosstalk between Nrf2 and NF-κB appear to be
promising pointcuts for future clinical responses to drug-induced
toxicity (Figure 4). In addition, further study and therapeutic
exploration of potential molecular mechanisms will help explain
the specific regulatory mechanisms of Nrf2 and NF-κB signaling
pathways in various drug-induced organ toxicities, and ultimately
standardize rational and safe medicine usage and reduce the
occurrence of toxic reactions. In summary, we urgently need
signaling network studies of Nrf2 and NF-κB in pathological
situations, as well as new treatments and new drugs targeting
the crosstalk between the two.
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