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Low back pain (LBP) is a global health issue. Intervertebral disc degeneration (IDD) is a
major cause of LBP. Although the explicit mechanisms underpinning IDD are unclear,
endoplasmic reticulum (ER) stress caused by aberrant unfolded or misfolded proteins may
be involved. The accumulation of unfolded/misfolded proteins may result in reduced
protein synthesis and promote aberrant protein degradation to recover ER function, a
response termed the unfolded protein response. A growing body of literature has
demonstrated the potential relationships between ER stress and the pathogenesis of
IDD, indicating some promising therapeutic targets. In this review, we summarize the
current knowledge regarding the impact of ER stress on the process of IDD, as well as
some potential therapeutic strategies for alleviating disc degeneration by targeting different
pathways to inhibit ER stress. This review will facilitate understanding the pathogenesis
and progress of IDD and highlights potential therapeutic targets for treating this condition.
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INTRODUCTION

According to a systematic analysis by the Global Burden of disease study 2019, approximately 80% of
individuals experience low back pain (LBP) during their lifetime. For the increased population and
aging, disability-adjusted life-years (DALYs) caused by LBP increased by 46.9% between 1990 and
2019. Because of the highest prevalence and years of life lived with disability (YLDs) of all
musculoskeletal diseases, LBP has caused a substantial socioeconomic burden on society
(Diseases and Injuries, 2020; Cieza et al., 2021). Intervertebral disc degeneration (IDD), which is
characterized by abnormalities in local physiological structure [reduced hydration of the nucleus
pulposus (NP), disorganization of the annulus fibrosus (AF), and calcification of the cartilage
endplates (CEP)] and radiological evidence [decreased disc height in radiography and reduced T2
signal intensity in magnetic resonance imaging (MRI)], is a major cause of LBP (Luoma et al., 2000;
Brinjikji et al., 2015; Von Forell et al., 2015; Zheng and Chen, 2015; Luoma et al., 2016; van den Berg
et al., 2017; Taylor and Bishop, 2019). The commonly used clinical therapeutic methods focus on
symptomatic relief from pain by conservative treatments (restricted exercise, low-tension traction,
physical therapy, injections, etc.) or surgical measures (disc decompression, disc replacement or
spinal fusion) (Raj, 2008; Urits et al., 2019). However, these interventions possess a number of limits.
As final selections, surgical operations usually bring heavy cost, surgery risks and a long journey of
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rehabilitation to patients. While conservative treatment showed
no effect on inhibiting the progression of IDD or restoring the
dampened IVD structure (Raj, 2008; Urits et al., 2019; O’Keeffe
et al., 2020; Meroni et al., 2021). Thus, seeking new therapeutic
strategies for inhibiting IDD process is a burning question for
clinical researchers.

Intervertebral discs (IVDs) consist of three basic anatomical
parts: the inner NP, outer AF, and superior and inferior CEP,
which connect the vertebrae and offer flexibility to the spine
(Adams and Dolan, 2012; Gopal et al., 2012; Pattappa et al., 2012;
Kepler et al., 2013; Vergroesen et al., 2015). The intact IVD
elements help the spine resist mechanical stress and maintain the
range of motion. While a dampened IVD structure disrupts the
stability of spine and thus leads to the pathogenic progress of IDD
(Urban et al., 2004; Inoue and Espinoza Orias, 2011). The
pathogenesis of IDD is complex and includes various risk
factors, such as genetic variation, disorganized immune system
status, excessive loading, circadian rhythm disorders, and aging
(Ma et al., 2015; Bian et al., 2017; Dudek et al., 2017; Kitis et al.,
2018; Xu et al., 2019). At cellular and molecular levels, these risk
factors induce abnormal mitochondrial and endoplasmic
reticulum (ER) function, impair redox and immunity
homeostasis, and ultimately trigger IVD cell senescence and
apoptosis, resulting in IDD (Chen et al., 2016; Cheng et al.,
2018; Luo et al., 2019a; Liao et al., 2019). Although numerous
factors contribute to the process of IDD, our understanding of its
molecular mechanisms remains limited.

A stable extracellular matrix (ECM) is critical for
maintaining IVD homeostasis. In NP tissue, synthesized
ECM, mainly proteoglycans and type-II collagens, is highly
hydrated, which helps the IVDs resist the axial mechanical
loading. While in AF tissue, type-I collagens constitute the
main components of the ECM, which shows the ability to bear
the lateral deformation (Vergroesen et al., 2015; Bian et al.,
2017). At the subcellular level, the ER plays critical roles in the
synthesis of ECM on account of its function for protein
folding, lipid/ion transfer, signaling, and metabolism.
However, various stimulus for IVDs, such as hypoxia,
starvation, inflammation, abnormal mechanical loading,
imbalances in reactive oxygen species (ROS), and
perturbation of Ca2+ levels, may trigger ER stress by
interrupting protein folding and/or modification and thus
dampen the synthesis of ECM. The evidence mentioned
above implies that ER stress may be involved in the process
of IDD (Wu et al., 2018; Reibe and Febbraio, 2019; Carlton
et al., 2020).

Here, we review the molecular basis for the sensing and
response of ER stress, the involvement of ER stress in the
pathogenesis of IDD, and some promising therapeutic
strategies by targeting ER stress pathway.

MOLECULAR BASIS FOR THE SENSING
AND RESPONSE OF ER STRESS

To respond to ER stress, cells activate an adaptive response
mainly with three distinct arms to reduce the quantity of

mismodified proteins, which is called unfolded protein
response (UPR) (Hetz, 2012; Senft and Ronai, 2015; Shpilka
and Haynes, 2018; Hofmann et al., 2019). As an important
responsive mechanism in cells under ER stress, UPR has been
implicated in many chronic diseases such as cardiovascular
diseases, musculoskeletal disorders, neurodegeneration, and
endocrine disease (Ghosh et al., 2019; Hetz et al., 2019; Naiel
et al., 2019; Pedersen and Maksymowych, 2019; Yang Y. et al.,
2020; Hazari et al., 2020; Ji et al., 2020). Usually, the UPR senses
the protein-folding status within the ER lumen and transduces
this information to the cytosol and nucleus to relieve overloading
of unfolded proteins, which is called adaptive UPR. However,
under sustained ER stress conditions, the UPR triggers
proapoptotic programs to eliminate existing cells and thus
may aggravate the disease course, which is termed as
proapoptotic UPR (Senft and Ronai, 2015; Shpilka and
Haynes, 2018). The UPR signaling pathway involves two main
components: ER stress sensors at the ER membrane and
downstream transcription factors in the cytosol and nucleus.
The whole picture of ER stress sensors and the downstream
transcription factors were detailedly described in Figure 1.

In the absence of ER stress, the ER chaperone binding
immunoglobulin protein [BiP, also known as 78-kDa glucose-
regulated protein (GRP78) or heat shock protein A5 (HSPA5)],
binds to the luminal domain of three ER transmembrane protein
sensors, namely inositol-requiring kinase 1α (IRE1α), protein
kinase RNA-like ER kinase (PERK), and activating transcription
factor 6 (ATF6), and inhibits their activation. Upon ER stress, BiP
binds to excessively accumulated misfolded or unfolded proteins
in the ER and loses the ability to inhibit the three ER sensors,
ultimately resulting in the occurrence of the UPR (Gardner et al.,
2013; Senft and Ronai, 2015; Shpilka and Haynes, 2018;
Koopman et al., 2019; Kopp et al., 2019; Preissler and Ron,
2019; Siwecka et al., 2019). Based on the different sensors, the
UPR is classically divided into three branches: IRE1α, PERK, and
ATF6 (Senft and Ronai, 2015; Hetz and Saxena, 2017; Hofmann
et al., 2019; Koopman et al., 2019; Mogilenko et al., 2019).

IRE1α, which is evolutionarily conserved in eukaryon,
contains RNase and kinase functions under ER stress. Upon
activation, IRE1α dimerizes and autotransphosphorylates, acting
as a UPR transducer that leads to excision of a 26-nucleotide
intron from the mRNA encoding the transcription factor X box-
binding protein 1 (XBP1) within the cytosol. After excision, the
reading frame of XBP1 mRNA transforms into an active and
stable form, which is termed spliced XBP1 (XBP1s). XBP1s
translocates to the nucleus to upregulate its target genes,
which support cell survival, restore proteostasis, and activate
ER-associated degradation (ERAD) (Calfon et al., 2002; Walter
and Ron, 2011; Senft and Ronai, 2015; Chalmers et al., 2017; Hetz
and Saxena, 2017). During the ERAD, the misfolded/unfolded
proteins are transferred out of ER lumen and then degraded via
proteasome-dependent pathway. In addition, IRE1α targets a
group of endogenous mRNAs for degradation of ER-located
proteins and certain microRNAs due to its RNase activity, a
process termed regulated IRE1α-dependent decay (RIDD). In
RIDD process, decreased mRNA abundance may result in a
decreased level of protein folding and thus recover the ER
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homeostasis (Maurel et al., 2014; Carew et al., 2018; Huang et al.,
2019).

In addition, ER stress also triggers the activation of PERK
through the dimerization, oligomerization and
autophosphorylation of PERK, which inhibits protein synthesis
via direct phosphorylation of eukaryotic translation initiator
factor 2α (eIF2α) (Back et al., 2009; Feng et al., 2014; Abdel-
Nour et al., 2019; Balsa et al., 2019). Phosphorylation of eIF2α by
PERK subsequently leads to the transcription of the mRNA
encoding activating transcription factor 4 (ATF4), which
promotes ER adaptation and cell survival (B’Chir et al., 2013;
Balsa et al., 2019). PERK signaling also regulates the expression of
several microRNAs that attenuate protein translational load or
expand ER capacity. For example, miR-30c-2-3p is induced by the
PERK pathway of the UPR and governs the expression of XBP1,
which promotes secretory capacity and cell survival in the
adaptive UPR (Byrd et al., 2012). In addition, PERK-
dependent miR-211 induction directly targets the Chop
promoter to repress C/EBP homologous protein (CHOP)
expression and thereby protects cells from apoptotic
commitment (Chitnis et al., 2012).

Moreover, ER stress also leads to the activation of ATF6, a
member of the transcription factor family containing a basic Leu
zipper (bZIP) structure. The ATF6 has two main isoforms,
ATF6α and ATF6β (Glembotski et al., 2019). When cells
undergo ER stress, ATF6 is readily trafficked from the ER to
the Golgi apparatus. After being processed by site 1 protease
(S1P) and site 2 protease (S2P), ATF6 is transformed into a
cytosolic fragment termed ATF6f and transcriptionally

upregulates genes encoding components involved in ERAD
and XBP1 within the nucleus (Fass, 2019; Glembotski et al.,
2019; Oka et al., 2019; Waldherr et al., 2019). Although the
activation of ATF6 and XBP1 belong to different arms of UPR,
they can both promote the transcription of genes encoding ER
chaperones, and enzymes that help the protein secretion or the
degradation of misfolded protein, indicating a potential
synergistic effect of different arms of UPR (Shoulders et al., 2013).

Although all three arms of the UPR are crucial for cells to
respond to ER stress, these sensors may be differentially
activated in different conditions. For example, IRE1α and
PERK are rapidly activated when the ER calcium content is
depleted in CHO cells (DuRose et al., 2006), whereas reduced
glycosylation or altered redox metabolism in HeLa-TetOff cell
line preferentially activate ATF6 arm of UPR (Maiuolo et al.,
2011). Consequently, it is necessary to distinguish different
inducers of ER stress in different disease models.

ER STRESS AND THE UPR IN IDD

Previous studies have reported that ER stress is a major
underlying mechanism involved in various musculoskeletal
system disorders, such as rheumatoid arthritis (RA) (Yoo
et al., 2012; Savic et al., 2014; Rahmati et al., 2018),
osteoarthritis (OA) (Hosseinzadeh et al., 2016; Tang et al.,
2017), myodegenerative disorders (Kustermann et al., 2018),
abnormal bone mass (Collison, 2018; Li et al., 2018), and
certain developmental diseases (dwarfishness, spondylolisthesis,

FIGURE 1 | ER stress-sensing and three arms of UPR. Upon ER stress, BiP binds to unfolded proteins in the ER lumen and activates three ER sensors, ultimately
resulting in the occurrence of the UPR. The three arms of UPR (PERK, IRE1α and ATF6) activate a series of downstream transcription factors in the cytosol and nucleus,
which thus reduce the protein synthesis or promote protein degradation, or ultimately result in cell apoptosis.
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etc.) (Woodman, 2013; Mullan et al., 2017; Zheng et al., 2019).
Due to abundant synthesis and the secretion of matrix proteins,
the ER in IVD cells is highly vulnerable to external stimuli.
Moreover, the microenvironment of IVDs is quite complicated,
suffering from high osmotic pressure, low pH, oxidative stress
and mechanical load (Vergroesen et al., 2015). The increased
expression of ER stress-related proteins and ER stress-related
apoptosis markers, such as GRP78, CHOP, and caspase 12, have
been reported in NP tissues of IDD patients (Zhao et al., 2010;
Liao et al., 2019). The comparison of human NP samples with
different degrees of degeneration revealed that increased
expression levels of GRP78 and CHOP were positively
correlated with the Pfirrmann grades of IDD (Liao et al.,
2019). These research results strongly indicate that ER stress
participates in the process of IDD.

Oxidative stress and inflammatory reaction are two major
factors involved in IDD pathogenesis. Accumulation of ROS and
proinflammatory factors can induce the degradation of ECM and
reduce the number of IVD cells, which leads to the occurrence
and development of IDD (Chen et al., 2016; Cheng et al., 2018).
H2O2, a classic oxidative stress inducer, upregulates GRP78,
CHOP, and caspase 12 in vitro and switches NP cells towards
apoptosis, indicating oxidative stress is an ER stress inducer in
IDD process (Luo et al., 2019a). Although it is still unclear how
ROS signaling induces ER stress in IVDs, some possible
mechanisms should be taken into consideration. On one hand,
ROS disturbs the correct disulfide bond formation and proper
protein folding, which may initiate the ER stress (Wang et al.,
2016; Ochoa et al., 2018). On the other hand, ER-mitochondrial
Ca2+ crosstalk may also play an important role in ROS-induced
ER stress (Ochoa et al., 2018; Lin et al., 2021). Moreover, both IL-
1 and TNF-α, two well-established proinflammatory cytokines
involved in the development of IDD, can also induce ER stress
and bias towards apoptotic signaling of IVD cells. Xiaotao Wang
et al. verified that 10 ng/ml TNF-α for 24 h triggered the increased
expression of BiP and the apoptosis of rat NP cells (Chen et al.,
2018; Chen et al., 2019b). Xiangyang Wang et al. reported that
24 h treatment with 75 ng/ml IL-1β caused an increase in two
UPRmarkers, CHOP and ATF6, in passage 2 humanNP cells (Xu
et al., 2017). Contrary to these findings, Olga et al. reported that
TNF-α (5 and 10 ng/ml) did not activate ER stress, whereas IL-1β
(5 and 10 ng/ml) activated gene and protein expression of GRP78
but did not influence [Ca2+]i flux and expression of CHOP in
human primary NP cells (Krupkova et al., 2018). These
discrepancies may be due to the distinct resources of NP cells
or different dosages of IL-1β used.

Although ER stress have been verified an important mediator
between inflammation/ROS and IDD, the ER stress can also
induce inflammatory condition or ROS accumulation, whichmay
in turn exacerbate the process of IDD induced by these factors.
For examples, ER stress can initiate the ligand-independent
activation of TRAIL receptors, which then results in caspase-8/
FADD/RIPK1-depezndent nuclear factor-kappa B (NF-κB)
activation and inflammatory cytokine production (Sullivan
et al., 2020). NOD1 and NOD2, two members of the NOD-
like receptor family, can also mediate ER stress-induced
inflammation (Keestra-Gounder et al., 2016). Lu Chen et al.

reported that the activation of XBP1 pathway favored the
phosphorylation and nuclear translocation of p65 subunit of
NF-κB in NP cells, indicating a potential crosstalk between ER
stress and inflammation in the process of IDD (Chen et al.,
2019c). In addition, ER stress can also promote ROS production.
CHOP was reported to transcriptionally activate Ero1α and thus
increase ROS level during ER stress. Moreover, Ero1α causes
inositol-1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+

leakage from the ER (Anelli et al., 2012). An excess of Ca2+

released from the ER can be taken up by mitochondria, which
may result in an excessive release of cytochrome C from the
mitochondrial matrix and thus enhance the production of ROS
(Boehning et al., 2003;Wozniak et al., 2006). ER stress induced by
impaired calcium homeostasis was also observed in NP cells,
indicating a potential crosstalk between oxidative stress and ER
stress in the process of IDD (Luo et al., 2019b).

Excessive mechanical loading is positively correlated with the
process of IDD (Adams et al., 2000; Von Forell et al., 2015;
Desmoulin et al., 2019). It has been reported that 1.0 MPa static
compression was sufficiently high to induce an increase in CHOP,
caspase12, and cleaved caspase12, resulting in apoptosis in rat NP
cells (Wang et al., 2018). Li et al. reported that 20% surface
elongation at a frequency of 6 cycles/min was also an external
factor triggering ER stress and promoting NP cells apoptosis (Li
et al., 2017). Moreover, supraphysiological tension also increased
the expression of CHOP and triggered apoptosis in AF cells
(Zhang et al., 2011). These studies indicated that mechanical
stress was an ER stress inducer for IVD cells and excessive
loading-induced ER stress resulted in the process of IDD. At
molecule level, mechanical signaling transduction may mediate
the excessive loading-induced ER stress. Piezo type
mechanosensitive ion channel component 1 (Piezo1) protein,
an important mechanosensitive ion channel, has been reported to
participate in the mechanical signal transduction of eukaryotic
cells (Zhao et al., 2018). Cao Yang et al. reported that increased
ECM stiffness promoted the expression of mechanosensitive ion
channel PIEZO1 and ER stress markers (GRP78 and CHOP).
Piezo1 knockdown attenuated stiff ECM-induced ER stress and
thus inhibited NP cell senescence and apoptosis (Wang et al.,
2021). Furthermore, some other mechanosensitive molecules,
such as transient receptor potential vallinoid-4 (TRPV4),
N-cadherin adhesions, connexin 43 connexons or integrins,
were reported to participate in the mechanical signal
transduction of IVD cells and disfunction of which was
connected with the process of IDD. Whether the
mechanosensitive molecules mentioned above involves in
mechanical loading-induced ER stress remains to be seen in
further experiments.

Metabolic disturbance is another common incentive for the
process of IDD. Due to hypoxia, anaerobic glycolysis is the main
energy source of NP tissue, which results in an increased lactate
production and a decreased pH level. High lactic acid
concentration reduces the synthesis rates of matrix protein
and promotes the apoptosis of NP cells, which leads to the
process of IDD (Wu et al., 2014). Acidic environment was
reported to result in an increase in GRP78, CHOP, caspase12,
while the blockade of acid-sensing ion channel 1a (ASIC1a)
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partially alleviated IDD by the inhabitation of ER stress (Xie et al.,
2017; Xie et al., 2018). These results indicate acid-sensing ion
channel is enrolled in low pH-induced ER stress in IVDs.
Moreover, abnormal glucose level is also involved in the
occurrence of IDD (Zhang et al., 2019a). In hyperglycemic
condition, advanced glycation end products (AGEs)
accumulate in peripheral tissue and thus reduce collagen
affinity for some key molecules (Gautieri et al., 2014).
Addition of AGEs has been proved to increase the expression
of ER stress as well as UPRmarkers and thus induce the apoptosis
of NP cells. In addition, glucose deprivation time-dependently
upregulated the levels of p-eIF2α and ATF4 in NP cells,
suggesting that ER stress is triggered by nutrient deprivation
via the eIF2α/ATF4 pathway (Chang et al., 2017).

POTENTIAL THERAPEUTIC STRATEGIES
FOR IDD BY TARGETING ER STRESS
AND UPR
Accumulated evidence suggests that IVDs are easily subject to ER
stress, which may play a pivotal role in the process of IDD. Given
the role of ER stress and UPR in IVD function and dysfunction,
targeting molecules in inhibiting ER stress and modulating UPR
is undoubtedly an attractive therapeutic method for disc
degeneration.

Given the effect of stabilizing the folded protein and promoting
the protein transfer out of the ER, chemical chaperones for reducing
the level of unfolded protein in the ER lumen are effective drugs for
inhibiting ER stress (Welch and Brown, 1996; Xie et al., 2002).
Zengwu Shao et al. reported that tauroursodeoxycholic acid
(TUDCA), a FDA-approved bile acid with chaperone properties,
was able to alleviate the 1.0MPa compression-induced apoptosis and
necroptosis of NP cells by inhibiting ER stress (Wang et al., 2018).
Another FDA-approved chemical chaperone, 4-phenylbutyricacid
(4-PBA), has also been verified to alleviate IDD by inhibiting ER
stress in different experiment condition, such as the application of
cyclic tension on AF cells and the treatment of AGEs, H2O2, or TNF-
α on NP cells (Chen et al., 2018; Chen J. et al., 2019; Luo et al., 2019a;
Luo et al., 2019b). These results indicated that inhibiting ER stress by
these chemical chaperones is a promising strategy for ameliorate the
process of IDD.

Targeting molecules in the three arms of UPR to inhibit IVD
cell death induced by excessive ER stress might be promising for
future IDD therapy. Takeshi Fujii et al. reported that the PERK-
ATF4 pathway was activated in human degenerative IVD tissues
(Fujii et al., 2018). Pharmacological inhibition of PERK
(GSK2606414) significantly suppressed the starvation-induced
expression of TNF, ADAMTS5 transcripts and apoptosis in
human AF cells. This result indicated that PERK inhibitors
might be promising drugs for IDD (Fujii et al., 2018).
However, Lu Chen et al. reported that both PERK inhibitor
and IRE1 inhibitor increased cell apoptosis induced by TNF-α
and reduced cell proliferation of NP cells, which seemed
contradicted to the previous result (Chen et al., 2018). On the
one hand, the discrepancy between the two results could attribute
to the different cell types as well as in vitro models. On the other

hand, PERK inhibitor used in the two studies was reported to
inhibit cellular RIPK1 at a lower concentration, indicating some
nonspecific effects of these inhibitors (Rojas-Rivera et al., 2017).
In addition, previous studies showed that silencing some
molecules in the downstream of UPR, such as ATF4 and
CHOP, successfully reduced the expression of IL-6 and
prevented the process of IDD, indicating that manipulating
some molecules in UPR pathway could be a potential
molecular target for IDD prevention (Fujii et al., 2018;
Krupkova et al., 2018). Recently, Dike Ruan et al. reported
that knockdown of IRE1-α or PERK was able to recover the
dampened ECM synthesis induced by TNF- and IL-1, while
knockdown of ATF6 showed no protective effect in this
inflammation-induced model (Wen et al., 2021). However,
ATF6 small interfering RNA (siRNA) markedly inhibited the
tert-butyl hydroperoxide-induced apoptosis of CEP cells,
indicating its protective effect in an oxidative stress-induced
model (Xie et al., 2020). These results implied that not all
three arms of UPR were simultaneously involved in the IDD
induced by single pathogenic factor. It is very important to
determine which sub-pathway is involved in a certain
pathogenic process and provide personalized treatment.

Targeting autophagy-associated molecules might be another
effective method for alleviating the process of IDD induced by
overwhelming ER stress. Once the UPR pathway cannot alleviate
the ER stress, autophagy and even apoptosis are eventually
activated (Hetz, 2012). The PERK-eIF2α-ATF4 pathway has
been confirmed to help the formation of the autophagosome.
ATF4 and CHOP transcriptionally regulate numerous
autophagy-associated genes (ATGs) by binding these factors to
specific promoter cis elements of ATGs (B’Chir et al., 2013). In
addition, the IRE1 arm also plays an important role in the
activation of autophagy. Activation of IRE1α recruits the
adaptor protein TNF receptor-associated factor 2 (TRAF2),
which activates the apoptosis signal-regulating kinase 1
(ASK1) pathway and its downstream target JUN N-terminal
kinase (JNK), enabling the dissociation of Beclin-1 (an
essential autophagy regulator), activation of PI3K signaling,
and triggering autophagy (Deegan et al., 2013; Liu et al.,
2020). Meiqing Wang et al. showed that activating autophagy
by rapamycin, an inhibitor of MTORC1, markedly reduced
p-EIF2AK3-mediated ER stress-apoptosis in flow fluid shear
stress-treated chondrocytes. This result implied that autophagy
activation might be a promising strategy for inhibiting ER stress
in IDD process (Yang H. et al., 2020). It has been reported that
1.0 MPa static compression is sufficiently high to trigger ER stress
and promote the conversion of LC3B-I to LC3B-II (hallmark at
an early stage of autophagy) (Ma et al., 2013; Wang et al., 2018).
Transmission electron microscope (TEM) images also revealed
that both the expansive endoplasmic reticula and
autophagosomes were present in NP cells following exposure
to 1.0 MPa for 36 h (Ma et al., 2013). In addition, knockdown of
ATF4 with siRNA significantly attenuated the conversion of LC3-
I to LC3-II, which also confirmed the link between the UPR and
autophagy in IDD (Chang et al., 2017). Up to now, many small-
molecule modulators of mammalian autophagy have been
verified to alleviated IDD, indicating a huge potential for
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medical application (Chen et al., 2016; Zhang et al., 2019b; Wang
et al., 2020). Exosomes derived from bone marrow mesenchymal
stem cells also showed potential therapeutic effect for IDD model
by activating autophagy and inhibiting ER stress (Liao et al., 2019;
Shi et al., 2021), Some promising therapeutic treatment targeting
ER stress pathway has been listed in Table 1.

DISCUSSION AND PROSPECTS

IDD is a major cause of LBP that presents an important scientific
and social issue and has received substantial attention. DALYs
and YLDs caused by this disc degenerative disease have imposed
huge burden for the individuals and the whole society (Diseases
and Injuries, 2020; Cieza et al., 2021). Due to the lack of efficient
interventions to prevent the occurrence or halt the progression of
IDD, it is necessary for us to figure out molecule mechanism of
IDD and find out some effective therapeutic treatment.

The risk factors of IDD are complicated and its pathogenesis is still
unclear. As large polymerized molecules in the ECM, collagens
undergo extensive post-translational modifications and folding in
the ER, which pose susceptibility to ER stress. Over the past 10 years,
studies have indicated that ER stress results in aberrant IVD cell
functions, such as decreased cell proliferation and ECM synthesis,
increased cell apoptosis, senescence, ECM degradation, and secretion
of various inflammatory cytokines. In order to handle the impact of
ER stress, the activation of the UPR and other defensive processes
orchestrates diverse pathways to recover IVD cell functions (Senft
and Ronai, 2015; Krupkova et al., 2018; Chen et al., 2019b; Liao et al.,
2019; Luo et al., 2019a; Luo et al., 2019b). This review summarized the
relationship between ER stress and IDD and highlighted potential
therapeutic targets for treating this condition (Figure 2). Although
there is still a long way to realize the clinical transformation for these
therapeutic strategies, drugs targeting ER stress pathway showed their
charming potential. On the one hand, more studies in recent years
attempted to illustrate the exact mechanism between ER stress and

TABLE 1 | Promising therapeutic treatment targeting ER stress.

Categories Name Mechanism of action Ref

Chemical chaperones TUDCA Reducing unfolded protein in ER Wang et al. (2018)
4-PBA (Chen et al., 2018; Chen et al., 2019a; Luo et al., 2019a; Luo et al., 2019b)

UPR regulators GSK2606414 PERK inhibitor Fujii et al. (2018)
siRNA for PERK Inhibiting PERK-eIF2α-ATF4-CHOP pathway Wen et al. (2021)
siRNA for ATF4 Fujii et al. (2018)
siRNA for CHOP (Fujii et al., 2018; Krupkova et al., 2018)
siRNA for IRE1-α Inhibiting IRE1-α arm Wen et al. (2021)
siRNA for ATF6 Inhibiting ATF6 arm Xie et al. (2020)

Autophagy regulator Exosomes Activating autophagy and inhibiting ER stress (Liao et al., 2019; Shi et al., 2021)
Rapamycin Inducing p-EIF2AK3-mediated ER stress Yang et al. (2020a)

FIGURE 2 |Schematic diagram for targeting ER stress to prevent IDD. Oxidative stress, inflammation, mechanical stimulus andmetabolic disturbance are common
factors affecting IVDs, which were confirmed to trigger ER stress in IDD process by a series of reasonable evidence. Some therapeutic strategies by targeting ER stress
showed promising effect on ameliorating the process of IDD.
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the pathogenesis of IDD, and more effective therapeutic strategies
have been verified in pre-clinical experiments (Chen et al., 2019c; Liao
et al., 2019). On the other hand, some drugs targeting ER stress have
been accepted in clinical trials in patients and show some promising
outcomes. For example, Bip administration showed the effectiveness
and safety in patients with active RA. Compared with placebo group,
patients in 5 or 15mg Bip group showed significantly lower serum
concentrations of C-reactive protein after 2-week treatment
(Kirkham et al., 2016). Numerous interventional measures
targeting ER stress pathway have been adopted in some pre-
clinical experiments and even clinical trials, however, there still
some tough challenges for the process of clinical transformation.
First of all, among the limitations of these clinical trials were their
small sample size as theywere designed as randomized and controlled
experiment, indicating a dampening credibility for their results.
Furthermore, some local delivery systems with noninvasive or less
invasive characteristics remain to be explored for the purpose of
improving drugs’ efficiency and reducing their side effects. Last but
not least, there are still some questions to be solved in ER stress
response mechanism. Whether can the aberrant ECM components
(collagens or proteoglycans) directly trigger the ER stress in IDD
process? Do all three arms of UPR play a role in ER stress-induced
IDD in a coordinated manner? What is the overall perspective of the
crosstalk between IDD inducers and response mechanism of ER
stress in the development of IDD? For screening out special
therapeutic drugs, it is quite helpful to address these problems.

Data suggest that ER stress is a pivotal mediator in the
pathogenesis of IDD in many recent experiments, whereas the
direct evidence is still limited. For example, most studies paid
their attention on the activation of ER stress or UPR pathway in
IVDs via the expression of some ER stress or UPR markers, such as
GRP78, CHOP or caspase 12, few studies showed the accumulation
ofmisfolded protein in IVD cells in the process of IDD. To date, most
ER stress-mediated IDD experiments in vitro have been performed
on NP cells. Limited attention has been paid to ER stress-mediated
degeneration of the AF, CEP, and even the entire structure of the
functional spinal unit. Moreover, the exact relationships among
different mechanisms responsible for IDD require further
elucidation. For example, in spite of UPR, many ER stress-related
models in vitro also showed some subcellular changes related to
autophagy andmitochondrial problems (Hetz, 2012; Senft andRonai,
2015). Cao Yang et al. also reported that berberine, an isoquinoline
alkaloid usually functioning by modulating autophagy or

mitochondrial dynamics, successfully inhibited the process of IDD
by inhibiting ER stress. These results hinted that the crosstalk among
differentmechanisms of cell responsemight impose a comprehensive
effect on maintaining physiological homeostasis for IVD cells. Thus,
some small molecule drugs with a broad spectrum of activity these
cellular responses, such as melatonin, quercetin, resveratrol or
curcumin, may have a wide range of potential applications on
IDD prevention. Based on our comprehensive understanding of
ER stress and its responsible mechanism in IDD, some
translational approaches (the clinical use of targeted therapy,
exosomes from stem cells, potential conventional drugs, etc.) are
promising.

CONCLUSION

The research on the relationship between ER stress and the
pathogenesis of IDD is still in its infancy, with a growing
number of studies available supporting this view. Our work
summarized the current knowledge regarding the impact of ER
stress on the process of IDD, as well as some potential therapeutic
methods for alleviating IDDby targeting ER stress pathway. Further
studies to explore ER stress and its responsible mechanisms in IDD
may offer more efficient therapeutic strategies to prevent or halt the
process of disc degenerative diseases.
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