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Long non-coding RNAs (lncRNAs) do not encode proteins, yet they have been well
established to be involved in complex regulatory functions, and lncRNA regulatory
dysfunction can lead to a variety of human complex diseases. LncRNAs mostly exert
their functions by regulating the expressions of target genes, and accurate prediction of
potential lncRNA target genes would be helpful to further understanding the functional
annotations of lncRNAs. Considering the limitations in traditional computational methods
for predicting lncRNA target genes, a novel model which was named Weighted Average
Fusion Network Representation learning for predicting LncRNA Target Genes
(WAFNRLTG) was proposed. First, a novel heterogeneous network was constructed
by integrating lncRNA sequence similarity network, mRNA sequence similarity network,
lncRNA-mRNA interaction network, lncRNA-miRNA interaction network and mRNA-
miRNA interaction network. Next, four popular network representation learning
methods were utilized to gain the representation vectors of lncRNA and mRNA nodes.
Then, the representations of lncRNAs and target genes in the heterogeneous network
were obtained with the weighted average fusion network representation learning method.
Finally, we merged the representations of lncRNAs and related target genes to form
lncRNA-gene pairs, trained the XGBoost classifier and predicted potential lncRNA target
genes. In five-cross validations on the training and independent datasets, the experimental
results demonstrated that WAFNRLTG obtained better AUC scores (0.9410, 0.9350) and
AUPR scores (0.9391, 0.9350). Moreover, case studies of three common lncRNAs were
performed for predicting their potential lncRNA target genes and the results confirmed the
effectiveness of WAFNRLTG. The source codes and all data of WAFNRLTG can be freely
downloaded at https://github.com/HGDYZW/WAFNRLTG.
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INTRODUCTION

Long non-coding RNAs (lncRNAs) are important components of
non-coding RNAs whose transcript lengths exceed 200
nucleotides (Ponting et al., 2009). LncRNAs generally exhibit
low cross-species conservation, low expression levels and high
tissue specificity (Mercer et al., 2008; Pauli et al., 2012), and do
not have the functions of protein coding (Carninci and
Hayashizaki, 2007). LncRNAs can interfere with the
expressions of downstream genes through base complementary
pairing, and participate in most biological processes, including
cell proliferation, differentiation, chromatin remodeling,
epigenetic regulation, genomic splicing, transcription,
translation and other aspects (Lander et al., 2001; Guttman
et al., 2009; Mercer et al., 2009; Wapinski and Chang, 2011).
Due to the important role of lncRNAs in biological processes,
their regulatory dysfunctions are commonly associated with a
variety of human diseases, especially cancers (Gupta et al., 2010;
Zhang et al., 2016). Recent studies have found that lncRNAs
regulate many key biological processes by interacting with their
target genes. For example, the binding of lncRNA BACE1-AS
with its target gene BACE1 increases the stability of BACE1,
which regulates BACE1 profile and subsequently affects BACE1
protein expression (Faghihi et al., 2008). In addition, lncRNAs
can also be used as the competing endogenous RNA to indirectly
regulate mRNA through the shared miRNAs. For example,
lncRNA HULC can competitively regulate PRKACB by
sharing the common binding site of miR-372, and induce the
phosphorylation of CREB in liver cancer (Qi et al., 2015). Since
lncRNAs have an important role in biological processes, it
prompted researchers to develop computational methods to
identify lncRNA regulatory functions. Currently, these
computational methods are mainly classified into two
categories based on their aims, in terms of lncRNA related
diseases identification and lncRNA target genes identification.

In computational models aimed on diseases identification,
they can be further divided into two groups: machine learning
methods and biological network methods. In recent years,
machine learning has been widely applied to predict lncRNA-
disease associations. These methods extract the biological features
of lncRNAs and diseases and then usemachine learning classifiers
to infer lncRNA-related diseases. Chen et al. (Chen and Yan,
2013) developed a novel model, LRLSLDA, which predicted
potential disease-related lncRNAs in a semi-supervised
learning framework. In addition, LRLSLDA requires only
human lncRNA expression profiles and known lncRNA-
disease associations without negative samples to produce
reliable results. Lan et al. (2017) proposed LDAP model to
predict lncRNA-disease associations by using a bagging SVM
classifier based on lncRNA similarity and disease similarity. Yao
et al. (2020) implemented a random forest and feature selection-
based lncRNA-disease association prediction model, RFLDA.
RFLDA integrated experimentally supported miRNA-disease
associations, lncRNA-disease associations, disease semantic
similarity, lncRNA functional similarity and lncRNA-miRNA
interactions as input features. RFLDA selected the most useful
features to train the prediction model by feature selection based

on the importance scores of random forest variables. Based on the
hypothesis that similar diseases are more likely to be associated
with similar lncRNAs, a number of biological network-based
lncRNA-disease association prediction methods have been
proposed. Sun et al. (2014) proposed a global network-based
computational method named RWRlncD by integrating disease
similarity network, lncRNAs functional similarity network and
known lncRNA-disease associations. Zhou et al. (2015) proposed
RWRHLD method to predict lncRNA-disease associations,
which integrated three networks into a heterogeneous network
and implemented a randomwalk on it. Deng et al. (2021) came up
with a method, LDAH2V, for inferring lncRNA-disease
associations by integrating lncRNA-disease associations,
miRNA co-expression profiles, miRNA-disease associations,
lncRNA-miRNA associations and lncRNA functional
similarity. LDAH2V is a generic network-based link prediction
model that can be applied to any number of entity networks.

The theoretical foundation for lncRNAs target genes
prediction is the assumption that highly similar lncRNAs tend
to have similar interaction. Many studies have shown that
lncRNAs indirectly regulate gene expressions via adjusting
expressions of miRNAs (Jones-Rhoades and Bartel, 2004).
Therefore, exploring the interaction of lncRNA-miRNA would
contribute to understand the complex functions of lncRNAs. Due
to the rapid development of RNA sequencing technology,
lncRNA-related and miRNA-related biological data are
increasing rapidly. Predicting the interactions between
lncRNAs and miRNAs through traditional experimental
methods is very time-consuming and labor-intensive. Recently,
many computational methods for predicting lncRNA-miRNA
interactions have been proposed. For example, Wong et al. (2020)
proposed the LNRLMI model, which constructed a bipartite
network to predict potential lncRNA-miRNA interactions by
combining the known interaction network and the similarity
of the expression profile of lncRNA-miRNA. Zhou et al. (2019)
proposed a GEEL model that constructed the lncRNA-miRNA
interaction network based on the sequence features and known
interactions of lncRNA and miRNA, and then used five different
graph embedding methods to obtain the node representation of
lncRNA/miRNA. Based on the embedding results, GEEL used
individual graph embedding method-based model as basic
predictors and build an ensemble model to predict the
potential interactions between lncRNAs and miRNAs. Yang
et al. (2020) proposed the lncMirNet model which predicted
lncRNA-miRNA interactions based on hybrid sequence features.
Based on these, Zhao et al. (2020) developed a method, named
DeepLGP, for prioritizing lncRNA target genes via encoding gene
and lncRNA features. These features were used by the
convolutional neural network and were combined as the
features of lncRNA-gene pairs. Finally, the CNN model was
used to classify lncRNA-gene pairs into true or false pairs.

In this study, we developed a Weighted Average Fusion
Network Representation Learning method-based model to
improve the performance of lncRNA Target Genes prediction
(WAFNRLTG). First, we constructed a heterogeneous network,
which integrated two similar networks and three interaction
networks. Next, the network representation learning method
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was utilized to gain the representation vectors of lncRNA and
mRNA nodes. Four popular network representation learning
methods (GraRep, LINE, TADW, and Node2vec) were
adopted in our model. Then, the weighted average method
was further employed to fuse the corresponding representation
vectors according to the AUC scores. The novel representation
vectors were obtained which integrated different network
structure information and improved the generalization ability
of the model. Finally, the representation vectors of lncRNAs and
the representation vectors of mRNAs were merged to form the
lncRNA-gene pairs, and XGBoost classifier was built based on the
merged representations of lncRNA-miRNA pairs. With five-fold
cross-validations on training and independent dataset, the
experimental results demonstrated that WAFNRLTG obtained
AUC scores (0.9410, 0.9350) and AUPR scores (0.9391, 0.9350),
and outperformed the individual network representation learning
method-based models. Furthermore, three case studies were
performed to evaluate the capability of WAFNRLTG. The
results can be verified by the existing PubMed literatures. In
conclusion, WAFNRLTG is an effective tool for predicting the
potential lncRNA target genes. The flow chart of WAFNRLTG is
shown in Figure 1.

MATERIALS AND METHODS

Datasets
In this paper, there were 5,435 validated lncRNA-gene interactions
used as positive samples which were obtained from the RISE
database (Hubbard et al., 2002). Negative samples were
randomly selected from all unknown lncRNA-gene interactions.
Because the number of unknown lncRNA-gene interactions are far
more than the number of positive samples, a total of 5,435 negative
samples were generated with the same number of positive samples.
Eventually, we obtained 5,435 positive samples and 5,435 negative
samples as a new dataset. Subsequently, five-sixth of the new
dataset were randomly selected as training samples to train the
classifier, and the remaining samples were used as the independent
samples to evaluate each classifier.

LncRNA and mRNA Sequence Similarity
Networks
The corresponding sequences of lncRNAs and mRNAs were
downloaded from the Ensembl database (Hubbard et al., 2002)
according to their corresponding Ensembl IDs. Linear

FIGURE 1 | Flow chart of WAFNRLTG. (A) Two sequence similar networks (lncRNA-lncRNA, mRNA-mRNA) are constructed based on the sequence features of
lncRNA/mRNA and three interaction networks (lncRNA-mRNA, lncRNA-miRNA, mRNA-miRNA) are constructed based on various data sources. The heterogeneous
network is established with the above five networks. (B) Four kinds of network representation learning methods are employed to gain node representation vectors of
lncRNAs and mRNAs from the heterogeneous network. Based on these vectors, the AUC scores of the corresponding models are gained as weighted values. (C)
The new node representation vectors are gained via fusing the four kinds of representation vectors with the weighted average method (D) The representation vectors of
lncRNAs and mRNAs are combined to train the XGBoost classifier for predicting the target genes of lncRNAs.
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neighborhood similarity measure (LNS) and two lncRNA
(miRNA) sequence features [k-mer (Gupta et al., 2008) and
CTD (Tong and Liu, 2019)] were employed to calculate the
lncRNA similarities and miRNA similarities respectively. For
each RNA sequence, its k-mer frequency distribution is usually
defined as the occurrence frequency of corresponding k-length
contiguous subsequences. LNS is a recently proposed similarity
calculation method and has been widely used in the field of
bioinformatics. The 30-dimensional CTD (composition,
transition, and distribution) features are used to represented
RNA structure information. In order to construct lncRNA and
mRNA sequence similarity networks, the 3-mers features and
CTD features of a lncRNA/mRNA sequence were merged into
union vectors respectively. For the lncRNA sequence similarity
network, the union vectors were used to construct the lncRNA
similarity matrix by LNS (Zhang et al., 2017). For example, given
a specified lncRNA, its top ten lncRNAs with similarity weights
greater than 0 were considered to be linked with it. Based on this
strategy, closely homologous lncRNAs were linked with this
lncRNA for establishing the lncRNA sequence similarity
network. For the mRNA sequence similarity network, its
construction procedure was the same as those of the lncRNA
sequence similarity network. After this, we gained a lncRNA
sequence similarity network involving 2,249 lncRNAs and
mRNA sequence similarity network involving 3,785 mRNAs.
The flowchart of constructing the lncRNA and mRNA
sequence similarity network is shown in Figure 2.

LncRNA-mRNA Interaction Network
In this study, experimentally validated lncRNA-mRNA
interaction data was downloaded from the RISE database
(Gong et al., 2018), and it included 10,941 lncRNA-mRNA

interactions. After removing the redundant data and
nonhuman data, 5,435 associations involving 2,249 lncRNAs
and 3,785 mRNAs were finally obtained. Therefore, the
lncRNA-mRNA interaction network in our model was
constructed based on these 5,435 interactions.

LncRNA-miRNA Interaction Network
First, the known lncRNA-miRNA interactions were downloaded
from the ENCORI database (Li et al., 2014). Then, the duplicate
interactions were removed and the only interactions between the
lncRNAs which were from the lncRNA-mRNA interactions and
miRNAs were preserved. In the end, the lncRNA-miRNA
interaction network was constructed with 6,053 lnRNA-
miRNA interactions between 2,249 lncRNAs and 636 miRNAs.

MRNA-miRNA Interaction Network
We downloaded the known mRNA-miRNA interactions from
the miTarbese database (Huang et al., 2020). Then, the duplicate
interactions were removed and the only interactions between the
mRNAs which were from the lncRNA-mRNA interactions and
the miRNAs which were from the lncRNA-miRNA interactions
were retained. Ultimately, the constructed mRNA-miRNA
network in our study contained 1983 mRNA-miRNA
interactions between 305 mRNAs and 636 miRNAs.

Network Representation Learning of the
Heterogeneous Network
Recently, many Network Representation Learning (NRL) methods
have been proposed (Zhang et al., 2020), of which main purpose is
to find a proper mapping function to map large-scale, high-
dimensional, sparse vectors into a low-dimensional, dense

FIGURE 2 | The flowchart of constructing the lncRNA and mRNA sequence similarity network.
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semantic space, while keep the proximity of these low-dimensional
vector representations to the original network. NRL has attracted
the attention of scholars in the fields of data mining of biological
information data. The low-dimensional representation learned
from the network representation is applied to downstream
network analysis tasks, such as node classification (Tang et al.,
2016a), link prediction, association mining (Zhao et al., 2019),
information recommendation (Han et al., 2018) and network
visualization (Tang et al., 2016b).

In our study, four state-of-the-art network representation
learning methods [GraRep (Cao et al., 2015), LINE (Tang et al.,
2015), TADW (Yang et al., 2015) and Node2vec (Grover and
Leskovec, 2016)] were used to learn the representation vectors of
lncRNA nodes and mRNA nodes for making full use of the various
useful information in the heterogeneous network.

LINE maintains both first-order and second-order
proximity during learning node representations. Given an
undirected edge (i, j), the joint probability of node vi and
node vj is as follows:

p1(vi, vj) � 1

1 + exp( − �uT
i · �uj) (1)

where �uj ∈ Rd is the low-dimensional vector representation of
node vi. The empirical probability of the distribution p(·, ·) on the
space V×V is:

p̂i(i, j) � wij

W
(2)

where W � ∑
(i,j)∈E

wij and wij is the weight of edge (i, j).
After optimizing the model by minimizing the KL scatter of

the two distributions, the objective function is defined as follows:

O1 � − ∑
(i,j)∈E

wij logp1(vi, vj) (3)

The second-order similarity scenario assumes that nodes
sharing a large number of connections with other nodes are
similar to each other, and each node is considered as a specific
context, then nodes with similar distribution on the context are
similar. Here, two vectors �ui and �u’i are introduced, where �ui is the
representation of vi when it is treated as a vertex and �u’i is the
representation of vi when it is treated as a specific “context”. For
an undirected edge (i, j) , the probability of generating the
context vj from vi is:

p2(vj∣∣∣∣vi) � exp( �u′Tj · �ui)
∑|V|

k�1 exp( �u′Tk · �ui) (4)

where |V| denotes the number of nodes or contexts. The
empirical distribution p̂2(·|vi) is defined as follows:

p̂2(vj, vi) � wij

di
(5)

where wij is the weight of edge (i, j) and di is the out-degree of
node vi. di is used in LINE as the importance of nodes λi. By using

the KL scatter while ignoring some constants, the objective
function is obtained as follows:

O2 � − ∑
(i,j)∈E

wijlogp2(vj, vi) (6)

LINE also adopted negative sampling to optimize the model,
while using the Alias method to accelerate the sampling process.

GraRep extends LINE by learning the k-order relational vector
representations of the network nodes separately through matrix
factorization and combines the k-order relational vector
representations as the final representation. For a network G,
the degree matrixD of the network is defined using the adjacency
matrix S. The first-order transfer probability matrix is defined as
follows:

A � D−1S (7)

where Ai,j denotes the probability of transferring from vi to vj by
one step.

Then using Skip-Gram and NCE (noise contrastive
estimation) methods, for a transfer of order k, the model can
be reduced to the decomposition problem with matrix Yk

i,j.
For a transfer of order k, the model is then reduced to a

decomposition problem of matrix Yk
i,j by using the Skip-Gram

and NCE (noise contrastive estimation) methods.

Yk
i,j � Wk

i · Ck
j � log⎛⎝ Ak

i,j∑tA
k
t,j

⎞⎠ − log(β) (8)

where β � λ/N, λ is the number of negative samples andN is the
number of edges in network G.

Node2vec designs a biased random wander over a scalable
node neighborhood and explores different node neighborhoods
by using breadth first search (BFS) and depth first search (DFS),
and then inputs the resulting node sequences as sentences into the
skip-gram model to learn node representations. For a random
wandering sequence vi−w, . . . , vi−1, vi, vi+1, . . . , vi+m, centered on
vi with windows size w. Node2vec uses the Skip-Gram algorithm
to optimize the model.

Pr({vi−w, . . . , vi+w}\vi
∣∣∣∣Φ(vi)) � ∏i+w

j�i−w,j ≠ i

\Pr(vj∣∣∣∣Φ(vi)) (9)

TADW utilizes the inductive matrix decomposition method
based on integrating the network topology information and

FIGURE 3 | The Matrix factorization flow chart of TADW.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 8203425

Li et al. Prediction of LncRNA Target Genes

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


textual information. The Matrix factorization flow chart of
TADW is shown in Figure 3.where V denotes the set of
nodes, W ∈ Rk×|V|, M ∈ R|V|×|V|, H ∈ Rk×ft , and T ∈ Rft×|V|,
and T is the text feature matrix. Therefore, the loss function
of TADW as follows:

min
W,H

����M −WTHT
����2F + λ

2
(‖W‖2F + ‖H‖2F) (10)

These four state-of-the-art network representation learning
methods can capture valuable information of the structure and
intrinsic properties of the heterogeneous network. The learned
representations of lncRNAs and mRNAs were further utilized to
construct WAFNRLTG.

Weighted Average Fusion Node
Representation
The processes of fusing the node representations derived from the
network representation learning methods (Grarep, LINE,
TADW, and Node2vec) are described below. First, low-
dimensional representations of lncRNAs and mRNAs were
obtained from the heterogeneous network. Thus, the four
representation vectors of nodes were obtained with different
methods were V1, V2, V3 and V4, and the corresponding
prediction models were constructed based on these vectors.
The AUC score of each model was calculated as the weighted
value of the corresponding methods, they were labeled as
AUC1, AUC2, AUC3 and AUC4. To make full use of the
information in node representation vectors and improve the
generalization ability of the model, the new representation
vector V was obtained by the weighted average fusion of the
four representation vectors.

V � V1pAUC1 + V2pAUC2 + V3pAUC3 + V4pAUC4

AUC1 + AUC2 + AUC3 + AUC4
(11)

RESULTS

Parameter and Experimental Settings
In this study, four network representation learning methods
(GraRep, LINE, TADW, and Node2vec) were employed to
obtain node representation vectors from the heterogeneous
network.

First, we took the dimensions of the node representation
vectors as the common parameter of these four methods.
Tuning dimensions d, and the d -dimensional features that
produced the best AUC were selected. The experimental
results under node representation vectors of different
dimensions are shown in Table 1.

The other parameters of the network representation learning
method are discussed in the following. GraRep has a parameter:
k-step k, which indicates the k-step transfer matrix. Node2vec has
four tunable parameters: number-walks n, indicates the number
of random walks from each node; walk-length l, indicates the
length of a random walk from each node; p and q control the

probability of the random walk to the next node. The
combination of number-walks n and walk-length l were
considered, and the rest of the parameter was set as defaults.
TADW has a parameter: λ, which controls the weight of the
regularization term. In LINE, a parameter: Order o, denotes the
order of proximity was considered. Above all, we adjusted
different parameter values and adopt the optimal values which
produced the best AUC scores. The parameter settings for various
of the network representation learning method are shown in
Table 2. For more details, please see Supplementary File S1.

Comparison With Four Network
Representation Learning Methods
In this section, we first constructed four models based on four
representation network representation learning methods
(Grarep, LINE, TADW, and Node2vec) and evaluated their
effectiveness. In order to make full use of four network
representation learning methods, the AUC scores of each
method were adopted as weight values, and the four
representation vectors were fused by the weighted average
method. According to these constructed representation vectors,
XGBoost classifier (Chen and Guestrin, 2016) was selected into
WAFNRLTG.

Based on these four representations from the above network
representation learning models, we subsequently fused them by
the weighted average method to improve performance and
generalization of WAFNRLTG. For assessing the prediction
performance of WAFNRLTG, five-fold cross-validations
experiments were used to evaluate the classification
performances and the four network representation learning
models. In our study, seven commonly metrics, namely
Sensitivity (SN), Specificity (SP), Precision (PREC), Accuracy
(ACC), Matthews correlation coefficient (MCC), AUC, and
AUPR, were employed as evaluation metrics. ROC (receiver
operating characteristic curve, ROC) and PR (Precision-Recall
curve, PR) curves were plotted for showing the different
performance of each model. The results of WAFNRLTG and

TABLE 1 | AUC scores of models with different dimension node representation
vectors.

Method d = 16 d = 32 d = 64 d = 128 d = 256

GraRep 0.8725 0.8991 0.9095 0.9147 0.8957
LINE 0.8375 0.8939 0.9177 0.9123 0.8828
TADW 0.7974 0.8466 0.8803 0.8397 0.9002
Node2vec 0.8709 0.8978 0.9131 0.9099 0.9115

TABLE 2 | Parameters settings for network representation learning methods.

Method Optimal parameter value

GraRep d: 128, k: 4
LINE d: 64, o: 3
TADW d: 256, λ:0.1
Node2vec d: 64, n: 20, l:80
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the four network representation learning models are shown in
Table 3. It can been seen from the table that WAFNRLTG
achieves AUC score of 0.9410 and AUPR score of 9,391,
which outperforms GraRep (AUC score: 0.9147; AUPR score:
0.9097), LINE (AUC score: 9,177; AUPR score: 0.9158), TADW
(AUC score: 0.9002; AUPR score: 0.9053) and Node2vec (AUC

score: 0.9131; AUPR score: 0.9136). ROC and PR curves are
plotted for the five models to further display their different
performances, Figure 4 shows five ROC curves and Figure 5
shows five PR curves.

For comparative analysis, we also adopted the other two fusion
methods (concatenate and average) to fuse the four node
representation vectors similar to the weighted average method.
The experimental results of the three fusionmethods are recorded
in Table 4. As shown in Table 4, the weighted average fusion
method outperforms other methods.

Moreover, the information extracted from heterogeneous
networks by WAFNRLTG are brought to the subsequent work
for predicting of lncRNA target genes.

In order to evaluate the generalization ability of WAFNRLTG,
we applied it on the training dataset and the independent dataset.
Experimental results are shown in Table 5. As exhibited from
Table 5, the results on the independent dataset are comparable to
the results on the training dataset. The experimental results on
the independent dataset demonstrate that WAFNRLTG is a
robust and reliable model for predicting potential lncRNA
target genes.

Comparison Among Different Classifiers
After the acquisition of weighted averages fused representation
vectors, we compared five different machine learning methods
and selected the most appropriate one. These five classification
methods include K Nearest Neighbor (KNN), AdaBoost (Freund
and Schapire, 1997), Support Vector Machine (SVM), Gradient
Boosting Decision Tree (GBDT) and XGBoost, which are well
known to perform well on a variety of tasks. They were evaluated
by five-fold cross-validations. Figure 6 shows their prediction
performances. The AUC scores of KNN, AdaBoost, SVM, GBDT
and XGBoost are 0.9082, 0.8717, 0.8959, 0.8462, and 0.9394,
respectively. The detailed results of these five classifiers are shown
in Table 6. From the analysis of above results, XGBoost model
achieved the best performance.

Case Studies
The main objective of this study is to screen potential target genes
of lncRNAs and guide relevant researchers to explore novel target
genes. For further evaluating the performance of WAFNRLTG
model in practical applications, we selected three common
lncRNAs (MALAT1, PVT1, and NEAT1) as case studies. The
general processes of each of case studies were as following. First,
all lncRNA-mRNA interactions from our dataset were utilized to
construct the WAFNRLTG model. Then, the interactions
between above three lncRNAs and the other mRNAs were
adopted as the dataset in WAFNRLTG model. The model

TABLE 3 | Performances of the five network representation learning models.

Method Acc Sen Spec Prec MCC AUC AUPR

GraRep 0.8107 0.7920 0.8295 0.8229 0.6220 0.9147 0.9097
LINE 0.8358 0.8275 0.8441 0.8413 0.6718 0.9177 0.9158
TADW 0.8223 0.7798 0.8648 0.8523 0.6471 0.9002 0.9053
Node2vec 0.8305 0.8328 0.8282 0.8290 0.6611 0.9131 0.9136
WAFNRLTG 0.8683 0.8638 0.8728 0.8716 0.7362 0.9410 0.9391

FIGURE 4 | ROC curves of five models in five-fold cross-validations.

FIGURE 5 | PR curves of five models in five-fold cross-validations.
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outputted the predicting scores of the lncRNA-mRNA pairs.
Finally, the top ten mRNAs were selected for literature mining
on PubMed. We found that four of the top ten mRNAs
corresponding to MALAT1 and NEAT1 were validated in the
literature, and three of the top ten mRNAs corresponding to
PVT1 were validated in the literatures.

MALAT1 is one of the first lncRNA discovered that are
associated with human diseases. Many studies have
demonstrated that the abnormal expression of MALAT1 is
closely related to cancer pathophysiology, and has the
potential to be translated clinically. MALAT1 regulates cancer
processes by interacting with molecules, such as proteins, RNAs
and DNAs, and further alters different signal pathways. To

demonstrate the ability of our model for predicting potential
lncRNA target genes, we predicted the top ten mRNAs that
interact with MALAT1, as shown in Table 7. With literature
mining, we found that four mRNAs interact with MALAT1 and
they can be used as the target genes of MALAT1. For example,
abnormal expression of MALAT1 leads to reduced expression of
TET2 thus causing neuronal damage, so there may be a targeting
relationship between MALAT1 and TET2 (Li et al., 2021). The
complete case study results of MALAT1 are available in
Supplementary File S2.

NEAT1 expression is upregulated in many human
malignancies, such as lung, esophageal and gastric cancers. In
order to demonstrate that WAFNRLTG is effective in predicting
potential target genes of lncRNAs, we predicted the top 10
mRNAs associated with NEAT1, and the results are shown in
Table 8. After literature mining, four of them were shown to be
target genes of NEAT1. For example, it was found that MYC-
regulated NEAT1 promoted diffuse large B-cell lymphoma
(DLBCL) proliferation via the miR-34b-5p-GLI1 pathway,
which could provide a novel therapeutic target for DLBCL
(Qian et al., 2020). The complete case study results of
NEAT1 are available in Supplementary File S3.

Plasmacytoma variant translocation 1 (PVT1) is a newly
discovered long non-coding RNA which preforms regulating
functions as an oncogenic molecule in different cancers. In
order to understand the functions of PVT1, WAFNRLTG

TABLE 4 | The experimental results of the three fusion methods.

Method ACC SEN SPEC PREC MCC AUC AUPR

Concatenate 0.86 0.8479 0.8722 0.8691 0.7203 0.9391 0.9307
Average 0.8515 0.8412 0.8618 0.8589 0.7033 0.9296 0.9277
Weighted average 0.8683 0.8638 0.8728 0.8716 0.7362 0.9410 0.9391

TABLE 5 | Performances of WAFNRLTG on the independent dataset and the training dataset.

Dataset Acc Sen Spec Prec MCC AUC AUPR

independent dataset 0.8666 0.8567 0.8765 0.874 0.7333 0.9358 0.9350
training dataset 0.8683 0.8638 0.8728 0.8716 0.7362 0.9410 0.9391

FIGURE 6 | Comparisons of AUC scores of five classifiers.

TABLE 6 | The detailed experimental results of the five classifiers.

Classifier ACC SEN SPEC PREC MCC AUC AUPR

GBDT 0.8235 0.8037 0.8433 0.8369 0.6475 0.9082 0.9039
KNN 0.7197 0.7604 0.679 0.7037 0.4412 0.8012 0.8005
RF 0.785 0.7761 0.794 0.7907 0.5703 0.8718 0.8745
SVM 0.8063 0.784 0.8284 0.8204 0.6131 0.8959 0.8961
XGBoost 0.8683 0.8638 0.8728 0.8716 0.7362 0.9410 0.9391

TABLE 7 | The predicting target genes in the top ten for MALAT1.

Rank Score Target genes PMID

1 0.9952035 MYC 33312756
2 0.953083 MT-ND4L Not found
3 0.952141 LRRC2 Not found
4 0.947306 TET2 33165916
5 0.92575 ECT2 27313681
6 0.923501 OR1M1 Not found
7 0.917459 ATXN2L Not found
8 0.917261 TP73AS1 32714991
9 0.915255 NFIC Not found
10 0.908282 FASTK Not found
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predicted its target genes. We conducted a literature survey of the
top ten mRNAs predicted by WAFNRLTG to interact with PVT1
and found that three mRNAs were verified to be its target genes,
as shown in Table 9. For example, the abnormal expression of
PVT1 affects the expression of NANOG and thus makes
difference in the development of glioma (Gong et al., 2021).
The complete case study results of PVT1 are available in
Supplementary File S4.

DISCUSSION

LncRNAs and its target genes are involved in a variety of
biological processes and are closely associated with serious
human diseases. Predicting the potential lncRNA target genes
can decipher complex biological mechanisms and reveal the
functions of lncRNAs. In this paper, we firstly collected and
processed multiple data from the multiple open databases,
including lncRNA-mRNA interactions, lncRNA-miRNA
interactions and mRNA-miRNA interactions. The lncRNA
sequence similarity network and mRNA sequence similarity
network were constructed based on sequence features. Then,
we proposed a novel model, WAFNRLTG, to infer potential
lncRNA target genes by integrating above data. In five-fold cross-
validations on training and independent dataset, the
experimental results demonstrated that WAFNRLTG obtained
AUC scores (0.9410, 0.9350) and AUPR scores (0.9391, 0.9350).
Three common lncRNAs (MALAT1, NEAT1, and PVT1) were
introduced to WAFNRLTG model. Several target genes in the

predicted results were found according to experimental PubMed
literatures.

Although WAFNRLTG has achieved satisfactory results in
predicting lncRNA target genes, it is still necessary to point out
there are still limitations in our model. For example, the negative
samples randomly selected from unknown lncRNA-mRNA
interactions may have the chance of becoming positive
samples. This would have an impact on the accuracy of
WAFNRLTG. The information extracted from the
heterogeneous network is not comprehensive, some valuable
information may be neglected. With the accumulation of
biological data, more interaction records would be introduced
to enrich the heterogeneous network and improve the prediction
ability of WAFNRLTG.
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TABLE 8 | The predicting target genes in the top ten for NEAT1.

Rank Score Target genes PMID

1 0.975445 SUSD6 Not found
2 0.961867 CPN2 Not found
3 0.952019 PEX26 Not found
4 0.951388 WNT9A Not found
5 0.942409 SRP19 Not found
6 0.931132 MYC 32206038
7 0.926551 OAS3 33138195
8 0.925127 CPSF6 22960638
9 0.924981 QSOX2 Not found
10 0.910639 TET2 33987091

TABLE 9 | The predicting target genes in the top ten for PVT1.

Rank Score Target genes PMID

1 0.971728 NANOG 34230224
2 0.9714675 GID4 Not found
3 0.970239 WNT9B Not found
4 0.969168 TRPM3 Not found
5 0.966868 COL5A2 33750300
6 0.966181 RCC2 Not found
7 0.963472 RBM7 Not found
8 0.961825 WNT3A 32727463
9 0.957906 FAM101B Not found
10 0.953643 CCDC115 Not found

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 8203429

Li et al. Prediction of LncRNA Target Genes

https://www.frontiersin.org/articles/10.3389/fcell.2021.820342/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.820342/full#supplementary-material
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


REFERENCES

Cao, S., Lu, W., and Xu, Q. (2015). “GraRep: Learning Graph Representations with
Global Structural Information,” in Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management (Melbourne,
Australia: Association for Computing Machinery), 891–900. doi:10.1145/
2806416.2806512

Carninci, P., and Hayashizaki, Y. (2007). Noncoding RNA Transcription beyond
Annotated Genes. Curr. Opin. Genet. Development 17 (2), 139–144.
doi:10.1016/j.gde.2007.02.008

Chen, T., and Guestrin, C. (2016). “XGBoost,” in Proceedings Of the 22nd Acm
Sigkdd International Conference on Knowledge Discovery and Data Mining)
(San Francisco: Association for Computing Machinery), 785–794. doi:10.1145/
2939672.2939785

Chen, X., and Yan, G.-Y. (2013). Novel Human lncRNA-Disease Association
Inference Based on lncRNA Expression Profiles. Bioinformatics 29 (20),
2617–2624. doi:10.1093/bioinformatics/btt426

Deng, L., Li, W., and Zhang, J. (2021). LDAH2V: Exploring Meta-Paths across
Multiple Networks for lncRNA-Disease Association Prediction. Ieee/acm
Trans. Comput. Biol. Bioinf. 18 (4), 1572–1581. doi:10.1109/
TCBB.2019.2946257

Faghihi, M. A., Modarresi, F., Khalil, A. M., Wood, D. E., Sahagan, B. G., Morgan,
T. E., et al. (2008). Expression of a Noncoding RNA Is Elevated in Alzheimer’s
Disease and Drives Rapid Feed-Forward Regulation of β-secretase.Nat. Med. 14
(7), 723–730. doi:10.1038/nm1784

Freund, Y., and Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. J. Computer Syst. Sci. 55 (1),
119–139. doi:10.1006/jcss.1997.1504

Gong, J., Shao, D., Xu, K., Lu, Z., Lu, Z. J., Yang, Y. T., et al. (2018). RISE: a Database
of RNA Interactome from Sequencing Experiments. Nucleic Acids Res. 46 (D1),
D194–D201. doi:10.1093/nar/gkx864

Gong, R., Li, Z.-Q., Fu, K., Ma, C., Wang, W., and Chen, J.-C. (2021). Long
Noncoding RNA PVT1 Promotes Stemness and Temozolomide Resistance
through miR-365/ELF4/SOX2 Axis in Glioma. Exp. Neurobiol. 30 (3), 244–255.
doi:10.5607/en20060

Grover, A., and Leskovec, J. (2016). “node2vec,” in Proceedings Of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(San Francisco: Association for Computing Machinery), 855–864. doi:10.1145/
2939672.2939754

Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al.
(2010). Long Non-coding RNA HOTAIR Reprograms Chromatin State to
Promote Cancer Metastasis. Nature 464 (7291), 1071–1076. doi:10.1038/
nature08975

Gupta, S., Dennis, J., Thurman, R. E., Kingston, R., Stamatoyannopoulos, J. A., and
Noble, W. S. (2008). Predicting Human Nucleosome Occupancy from Primary
Sequence. Plos Comput. Biol. 4 (8), e1000134. doi:10.1371/journal.pcbi.1000134

Guttman, M., Amit, I., Garber, M., French, C., Lin, M. F., Feldser, D., et al. (2009).
Chromatin Signature Reveals over a Thousand Highly Conserved Large Non-
coding RNAs in Mammals. Nature 458 (7235), 223–227. doi:10.1038/
nature07672

Han, X., Shi, C., Zheng, L., Yu, P. S., Li, J., and Lu, Y. (2018). “Representation
Learning with Depth and Breadth for Recommendation Using Multi-View
Data,” in Web and Big Data (Springer International Publishing), 181–188.
doi:10.1007/978-3-319-96890-2_15

Huang, H.-Y., Lin, Y.-C. -D., Li, J., Huang, K.-Y., Shrestha, S., Hong, H.-C., et al.
(2020). miRTarBase 2020: Updates to the Experimentally Validated
microRNA-Target Interaction Database. Nucleic Acids Res. 48 (D1),
D148–D154. doi:10.1093/nar/gkz896

Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., et al. (2002).
The Ensembl Genome Database Project. Nucleic Acids Res. 30 (1), 38–41.
doi:10.1093/nar/30.1.38

Jones-Rhoades, M. W., and Bartel, D. P. (2004). Computational Identification of
Plant microRNAs and Their Targets, Including a Stress-Induced miRNA. Mol.
Cell 14 (6), 787–799. doi:10.1016/j.molcel.2004.05.027

Lan, W., Li, M., Zhao, K., Liu, J., Wu, F.-X., Pan, Y., et al. (2017). LDAP: a Web
Server for lncRNA-Disease Association Prediction. Bioinformatics 33 (3),
btw639–460. doi:10.1093/bioinformatics/btw639

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al.
(2001). Initial Sequencing and Analysis of the Human Genome. Nature 409
(6822), 860–921. doi:10.1038/35057062

Li, J.-H., Liu, S., Zhou, H., Qu, L.-H., and Yang, J.-H. (2014). starBase v2.0:
Decoding miRNA-ceRNA, miRNA-ncRNA and Protein-RNA Interaction
Networks from Large-Scale CLIP-Seq Data. Nucl. Acids Res. 42 (Database
issue), D92–D97. doi:10.1093/nar/gkt1248

Li, L., Miao, M., Chen, J., Liu, Z., Li, W., Qiu, Y., et al. (2021). Role of Ten Eleven
Translocation-2 (Tet2) in Modulating Neuronal Morphology and Cognition in
a Mouse Model of Alzheimer’s Disease. J. Neurochem. 157 (4), 993–1012.
doi:10.1111/jnc.15234

Mercer, T. R., Dinger, M. E., and Mattick, J. S. (2009). Long Non-coding RNAs:
Insights into Functions. Nat. Rev. Genet. 10 (3), 155–159. doi:10.1038/nrg2521

Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F., and Mattick, J. S. (2008).
Specific Expression of Long Noncoding RNAs in the Mouse Brain. Proc. Natl.
Acad. Sci. 105 (2), 716–721. doi:10.1073/pnas.0706729105

Pauli, A., Valen, E., Lin, M. F., Garber, M., Vastenhouw, N. L., Levin, J. Z., et al.
(2012). Systematic Identification of Long Noncoding RNAs Expressed during
Zebrafish Embryogenesis. Genome Res. 22 (3), 577–591. doi:10.1101/
gr.133009.111

Ponting, C. P., Oliver, P. L., and Reik, W. (2009). Evolution and Functions of Long
Noncoding RNAs. Cell 136 (4), 629–641. doi:10.1016/j.cell.2009.02.006

Qi, X., Zhang, D.-H., Wu, N., Xiao, J.-H., Wang, X., and Ma, W. (2015). ceRNA in
Cancer: Possible Functions and Clinical Implications. J. Med. Genet. 52 (10),
710–718. doi:10.1136/jmedgenet-2015-103334

Qian, C.-S., Li, L.-J., Huang, H.-W., Yang, H.-F., and Wu, D.-P. (2020). MYC-
regulated lncRNA NEAT1 Promotes B Cell Proliferation and
Lymphomagenesis via the miR-34b-5p-GLI1 Pathway in Diffuse Large
B-Cell Lymphoma. Cancer Cell Int 20, 87. doi:10.1186/s12935-020-1158-6

Sun, J., Shi, H., Wang, Z., Zhang, C., Liu, L., Wang, L., et al. (2014). Inferring Novel
lncRNA-Disease Associations Based on a Random Walk Model of a lncRNA
Functional Similarity Network. Mol. Biosyst. 10 (8), 2074–2081. doi:10.1039/
C3MB70608G

Tang, J., Aggarwal, C., and Liu, H. (2016a). “Node Classification in Signed Social
Networks,” in Proceedings of the 2016 SIAM International Conference on Data
Mining (SDM) (Miami: Society for Industrial and Applied Mathematics),
54–62. doi:10.1137/1.9781611974348.7

Tang, J., Liu, J., Zhang, M., and Mei, Q. (2016b). “Visualizing Large-Scale and
High-Dimensional Data,” in Proceedings of the 25th International Conference
on World Wide Web (Montréal, Québec: International World Wide Web
Conferences Steering Committee), 287–297. doi:10.1145/2872427.2883041

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). “LINE: Large-
scale Information Network Embedding,” in Proceedings of the 24th
international conference on world wide web (Florence, Italy: International
World Wide Web Conferences Steering Committee), 1067–1077. doi:10.1145/
2736277.2741093

Tong, X., and Liu, S. (2019). CPPred: Coding Potential Prediction Based on the
Global Description of RNA Sequence. Nucleic Acids Res. 47 (8), e43.
doi:10.1093/nar/gkz087

Wapinski, O., and Chang, H. Y. (2011). Long Noncoding RNAs and Human
Disease. Trends Cell Biol. 21 (6), 354–361. doi:10.1016/j.tcb.2011.04.001

Wong, L., Huang, Y. A., You, Z. H., Chen, Z. H., and Cao, M. Y. (2020). LNRLMI:
Linear Neighbour Representation for Predicting lncRNA-miRNA Interactions.
J. Cell Mol Med 24 (1), 79–87. doi:10.1111/jcmm.14583

Yang, C., Liu, Z., Zhao, D., Sun, M., and Chang, E. (2015). “Network
Representation Learning with Rich Text Information,” in Proceedings of the
24th International Conference on Artificial Intelligence (Buenos Aires,
Argentina: AAAI Press), 2111–2117.

Yang, S., Wang, Y., Lin, Y., Shao, D., He, K., and Huang, L. (2020). LncMirNet:
Predicting LncRNA-miRNA Interaction Based on Deep Learning of
Ribonucleic Acid Sequences. Molecules 25 (19), 4372. doi:10.3390/
molecules25194372

Yao, D., Zhan, X., Zhan, X., Kwoh, C. K., Li, P., and Wang, J. (2020). A Random
forest Based Computational Model for Predicting Novel lncRNA-Disease
Associations. BMC Bioinformatics 21 (1), 126. doi:10.1186/s12859-020-3458-1

Zhang, D., Yin, J., Zhu, X., and Zhang, C. (2020). Network Representation
Learning: A Survey. IEEE Trans. Big Data 6 (1), 3–28. doi:10.1109/
TBDATA.2018.2850013

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 82034210

Li et al. Prediction of LncRNA Target Genes

https://doi.org/10.1145/2806416.2806512
https://doi.org/10.1145/2806416.2806512
https://doi.org/10.1016/j.gde.2007.02.008
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1093/bioinformatics/btt426
https://doi.org/10.1109/TCBB.2019.2946257
https://doi.org/10.1109/TCBB.2019.2946257
https://doi.org/10.1038/nm1784
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1093/nar/gkx864
https://doi.org/10.5607/en20060
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1038/nature08975
https://doi.org/10.1038/nature08975
https://doi.org/10.1371/journal.pcbi.1000134
https://doi.org/10.1038/nature07672
https://doi.org/10.1038/nature07672
https://doi.org/10.1007/978-3-319-96890-2_15
https://doi.org/10.1093/nar/gkz896
https://doi.org/10.1093/nar/30.1.38
https://doi.org/10.1016/j.molcel.2004.05.027
https://doi.org/10.1093/bioinformatics/btw639
https://doi.org/10.1038/35057062
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1111/jnc.15234
https://doi.org/10.1038/nrg2521
https://doi.org/10.1073/pnas.0706729105
https://doi.org/10.1101/gr.133009.111
https://doi.org/10.1101/gr.133009.111
https://doi.org/10.1016/j.cell.2009.02.006
https://doi.org/10.1136/jmedgenet-2015-103334
https://doi.org/10.1186/s12935-020-1158-6
https://doi.org/10.1039/C3MB70608G
https://doi.org/10.1039/C3MB70608G
https://doi.org/10.1137/1.9781611974348.7
https://doi.org/10.1145/2872427.2883041
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1093/nar/gkz087
https://doi.org/10.1016/j.tcb.2011.04.001
https://doi.org/10.1111/jcmm.14583
https://doi.org/10.3390/molecules25194372
https://doi.org/10.3390/molecules25194372
https://doi.org/10.1186/s12859-020-3458-1
https://doi.org/10.1109/TBDATA.2018.2850013
https://doi.org/10.1109/TBDATA.2018.2850013
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Zhang, K., Luo, Z., Zhang, Y., Zhang, L., Wu, L., Liu, L., et al. (2016). Circulating
lncRNA H19 in Plasma as a Novel Biomarker for Breast Cancer. Cbm 17 (2),
187–194. doi:10.1016/j.molcel.2004.05.02710.3233/cbm-160630

Zhang, W., Yue, X., Liu, F., Chen, Y., Tu, S., and Zhang, X. (2017). A Unified Frame
of Predicting Side Effects of Drugs by Using Linear Neighborhood Similarity.
BMC Syst. Biol. 11 (6), 101–134. doi:10.1186/s12918-017-0477-2

Zhao, T., Hu, Y., Peng, J., and Cheng, L. (2020). DeepLGP: a Novel Deep Learning
Method for Prioritizing lncRNA Target Genes. Bioinformatics 36 (16),
4466–4472. doi:10.1093/bioinformatics/btaa428

Zhao, Z., Li, C., Zhang, X., Chiclana, F., and Viedma, E. H. (2019). An Incremental
Method to Detect Communities in Dynamic Evolving Social Networks.
Knowledge-Based Syst. 163, 404–415. doi:10.1016/j.knosys.2018.09.002

Zhou, M., Wang, X., Li, J., Hao, D., Wang, Z., Shi, H., et al. (2015). Prioritizing
Candidate Disease-Related Long Non-coding RNAs by Walking on the
Heterogeneous lncRNA and Disease Network. Mol. Biosyst. 11 (3), 760–769.
doi:10.1039/c4mb00511b

Zhou, S., Yue, X., Xu, X., Liu, S., Zhang, W., and Niu, Y. (2019). “LncRNA-miRNA
Interaction Prediction from the Heterogeneous Network through Graph
Embedding Ensemble Learning,” in Proceeding of the 2019IEEE
International Conference on Bioinformatics and Biomedicine (BIBM)), San

Diego, CA, USA, 8-21 Nov. 2019 (IEEE), 622–627. doi:10.1109/
BIBM47256.2019.8983044

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Yang,Wang and Li. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 82034211

Li et al. Prediction of LncRNA Target Genes

https://doi.org/10.1016/j.molcel.2004.05.02710.3233/cbm-160630
https://doi.org/10.1186/s12918-017-0477-2
https://doi.org/10.1093/bioinformatics/btaa428
https://doi.org/10.1016/j.knosys.2018.09.002
https://doi.org/10.1039/c4mb00511b
https://doi.org/10.1109/BIBM47256.2019.8983044
https://doi.org/10.1109/BIBM47256.2019.8983044
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	WAFNRLTG: A Novel Model for Predicting LncRNA Target Genes Based on Weighted Average Fusion Network Representation Learning ...
	Introduction
	Materials and Methods
	Datasets
	LncRNA and mRNA Sequence Similarity Networks
	LncRNA-mRNA Interaction Network
	LncRNA-miRNA Interaction Network
	MRNA-miRNA Interaction Network
	Network Representation Learning of the Heterogeneous Network
	Weighted Average Fusion Node Representation

	Results
	Parameter and Experimental Settings
	Comparison With Four Network Representation Learning Methods
	Comparison Among Different Classifiers
	Case Studies

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


