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Editorial on the Research Topic

Heterogeneity of Endothelial Cells and Vascular Networks: Beyond Scope of Angiogenesis and
Lymphangiogenesis

Early in 1865, the Swiss anatomist Wihelm His introduced a new concept of endothelium in a
programmatic assay and first defined the endothelium as the lining of the vasculature and the
lymphatic system (Aird, 2007). Endothelium was considered as a cover and barrier facing a
hollow face. The blood and lymphatic vessels are always filled with blood, different types of cells
and other substances. Endothelial cells (ECs) may actually mediate communications between
biological substances in the circulation system and other tissues. Later in 1958, Hibbs et al.
(1958) noted that there was some variation in the structure of capillaries and arterioles from one
organ to another, and even among blood vessels of the same organ . It is reasonable to speculate
that the heterogeneity of vascular ECs may contribute to this difference in the structure and
functional variations.

Nevertheless, with the first successful isolation and primary culture of human ECs from umbilical
veins independently by Jaffe et al. (1973a) and Jaffe et al. (1973b) and Gimbrone et al. (1974),
extensive studies on EC biology and growth of new blood vessels have started at molecular and
cellular levels and by using animal models and human patient samples. Along with the discovery of
tools for the culture of vascular and lymphatic ECs and other new models and technologies, the
concept of the heterogeneity of ECs and blood and lymphatic vessels is getting increased recognition
as an important feature of vascular biology by several researchers and scientists in various disciplines
of biomedical research (Aird, 2006; Kang et al., 2010; Yuan et al., 2016; Mojiri et al., 2019; Ren et al.,
2019; Takeda et al., 2019; Turgeon et al., 2020; Xiang et al., 2020; Sibler et al., 2021). It is known that
ECs can interact with the blood constituents such as RBCs and can also interact with cells in a tissue
that they reside in to influence functions (Cao et al., 2017; Kumar et al., 2019; Akil et al.; Jiang et al.,
2021). Despite immense progress in our understanding of the molecular mechanisms and signaling
that regulate EC patterning, the organ-specific function of ECs and the underlying mechanisms that
dictate organ-specific function is poorly understood. In this special topic of “Molecular Mechanisms
and Signaling in Endothelial Cell Biology and Vascular Heterogeneity,” researchers from a variety of
institutions have submitted manuscripts that report EC function in various tissue beds, which
influence vascular development process in health and disease. We received two hypothesis articles,
ten original research articles and thirteen review articles for a total of 25 original contributions to this
research topic. These articles cover many areas including EC heterogeneity, mechanisms underlying
EC heterogeneity, novel ligands and receptor signaling pathways in vascular biology, angiogenesis,
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and lymphangiogenesis in health and disease. We will discuss
these aspects and hope to provide insights into EC and vascular
biology in this editorial.

LIGANDS, RECEPTOR AND
INTRACELLULAR SIGNALING IN ECS

We begin with vascular endothelial growth factor (VEGF), also
known as vascular permeability factor (VPF), one of the most
important growth factor in EC and vascular biology. This
important proangiogenic molecule was discovered over
3 decades ago by the Dvorak Laboratory at Harvard Medical
School (Senger et al., 1983) and was first isolated and cloned by
Napoleone Ferrara and his colleagues at Genentech 1989 (Leung
et al., 1989). In an hypothesis article (Dvorak), Dr. Dvorak
describes that VEGF is widely believed to induce angiogenesis
by its direct mitogenic and motogenic actions on vascular ECs.
However, he emphasizes the role of VEGF in vascular
permeability, the role of delayed hypersensitivity in
pathological stroma generation, particularly extravascular
fibrin deposition and clotting within the tumor
microenvironment (TME). Based upon his prior work where
he concludes that tumors are “wounds that do not heal,” he now
proposes that tumors are wounds that continually exhibit
elements of local healing but do damage the host (patients)
whereas the healing process actually facilitates tumor survival
and growth. Moreover, solid tumors, and healing wounds feature
enlarged feeder arteries, draining veins, and several other
abnormal vessel types in addition to new angiogenic blood
vessels. He also proposes that that VPF/VEGF induces stroma
formation primarily by way of its potent “VPF” function. Much
remains to be explored about the signaling and functions of
VEGF in wound healing, tumor progression and chronic
inflammatory diseases.

VEGF generally signals through interaction with its receptors.
An article reviewed key advances in our understanding of VEGF
signaling via VEGF receptor 2 (VEGFR-2) (Simons et al., 2016), a
predominant receptor that mediates angiogenesis and arteriolar
differentiation. In this special topic, Wang et al. describe the
basics of VEGF/VEGFR-2 signaling and provide an update on
VEGFR-2 signaling-mediated physiological and pathological
functions as well as potential treatment strategies. Potent
VEGF signaling also promotes angiogenesis and dictates
arterial fate but inhibits venous specification, and this may
depend on Notch signaling status (Lanner et al., 2007;
CasieChetty et al., 2017). Akil et al. provide a comprehensive
overview and update about Notch signaling in EC functions and
angiogenesis. They emphasize the critical role and mechanisms
by which Notch signaling promotes tumor progression via
stimulating tumor angiogenesis, inducing phenotypes of cancer
stem cells (CSCs) and thus conferring therapeutic resistance.
They also discuss the Notch signaling crosstalk between CSCs and
vascular ECs within the TME. They believe that therapeutic
approaches could be developed by targeting the essential role
of Notch pathway in CSCs and development of the arteriolar
niche that promotes the self-renewal of CSCs (Jiang et al., 2021).

External stimuli induce a specific intracellular signaling
pathway that can often come from multiple ligands. To
integrate these multiple signaling pathways, adaptor proteins
can ensure the temporal and spatial regulation of cellular
signaling and contribute significantly to the signaling
specificity. Cui et al. (2021) provide an excellent and focused
review on endocytic adaptors epsins and Dab2 in the context of
cardiovascular disease. Additionally, Alfaidi et al. emphasize the
role of Nck1/2 adaptor proteins in vascular biology, vascular
permeability and angiogenesis, and discuss their therapeutic
potential. A study on an adaptor protein widely expressed in
vascular ECs by Liu et al. demonstrates that the mitogen-
inducible gene 6 acts as a potent anti-angiogenic factor in the
regulation of physiological and pathological angiogenesis. In
terms of anti-angiogenesis, thrombospondin-1 (TSP-1) is one
of the first discovered endogenous angiogenesis inhibitor, and
negatively regulates EC functions (Jiménez et al., 2000; Ren et al.,
2006; Ren et al., 2009). Morandi et al. describe about new
mechanisms by which the presence of TSP-1 at the plasma
membrane affects EC signal transduction and angiogenesis via
induction of receptor clustering. Additionally, small GTPase
Rap1 is essential for the maintenance of EC homeostasis by
promoting NO release. Rap1A and Rap1B are closely related
Rap1 isoforms and regulate vascular homeostasis (Chrzanowska-
Wodnicka, 2017). Kosuru et al. show that Rap1B directly and
positively regulates eNOS activation whereas Rap1A prevents
negative regulation of eNOS, thereby converging NO release,
which may be important in the regulation of hypertension.

EC FUNCTION IN DEVELOPMENT AND
DISEASE

EC function is intimately associated with developmental
processes and dysfunction of ECs is associated with several
disease states. For example, arterial specification of vascular
ECs is essential for arteriogenesis. Chen et al. discuss the
arterial fate specification from a developmental perspective
(Chen et al.). Although VEGF-activation of Notch signaling is
known as the key to arterial specification, they have performed
carefully analysis in the settings of de novo vasculogenesis of the
dorsal aorta during early embryogenesis and vasculature
development in the neonatal mouse retina and described novel
signaling mechanisms and a new understanding of this subject.
They also emphasize the role of shear stress in the maintenance of
arterial identity after blood circulation is established, as shear-
induced Notch signaling activation and cell cycle arrest may
contribute to A/V specification process (Fang et al., 2017).
However, much remains to be investigated as for how
arteriolar networks are involved under pathological ischemic
conditions. In this regard, Nguyen et al. demonstrate that the
deficiency of endothelial aryl hydrocarbon receptor nuclear
translocator may exacerbate impaired angiogenic potential
under peripheral ischemic conditions in mice with type 2
diabetes, which may be associated with defective angiogenic
activity of ECs due to oxidative stress. As persistent oxidative
stress during diabetes contributes to coronary endothelial
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dysfunction, and reactive oxygen species (ROS) mainly originates
from the mitochondria in diabetes, a study from Xing et al. (2021)
demonstrates that chronic inhibition of mitochondrial ROS may
improve coronary endothelial function/dilation and SK channel
activity in an animal model of diabetes. Furthermore, Zhao et al.
describe the paradox of adenosine monophosphate-activated
protein kinase (AMPK), a heterotrimeric serine-threonine
kinase, in the involvement of vascular remodeling and the
development of pulmonary hypertension. They emphasize the
differential effects of AMPK on pulmonary vasoconstriction and
pulmonary vascular remodeling, which may also be involved in
the regulation of pathological microvascular remodeling and
angiogenesis under obese conditions (Dong et al., 2017).

EC HETEROGENEITY

EC heterogeneity is emerging as an important area in vascular
biology. It is well known that ECs show tissue- and organ-
specificity, and significantly contribute to the formation of
different types of blood and lymphatic vessels. They serve as
an important cell type in the development of vasculogenesis,
angiogenesis, venogenesis and arteriogenesis under physiological
and pathological conditions. As newly classified innate immune
cells (Drummer et al., 2021; Shao et al., 2020; Mai et al., 2013),
ECs are essential for normal tissue homeostasis and various
pathologies (Aird, 2006; Ren et al., 2019; Marcu et al., 2018;
Miyasaka, 2021) including contribution to the pathogenesis of
COVID-19 (Shao et al., 2021). Majority of articles in this topic
focus on EC heterogeneity and biology in health and disease.
Dawson et al. review the heterogeneity of EC types, states, and
phenotypes based upon the findings from ECs in multiple
different experiments and among several tissue types and
disease states and by using new techniques in transcriptome
analysis, particularly single cell RNA-sequencing (also see
single Cell Portal at https://singlecell.broadinstitute.org/single_
cell). They functionally classify ECs as quiescent ECs involved in
maintaining homeostasis, proliferative ECs, inflammatory ECs,
remodeling ECs, ECs involved in EndMT, and ECs involved in
angiogenesis. This classification may well explain two new
connected processes such as inflammatory angiogenesis and
non-inflammatory regenerative angiogenesis dissected in hind-
limb ischemia-triggered angiogenesis (Fu et al., 2020). Dawson
et al. also provide an update on innate contributions to EC
heterogeneity, effects of biomechanical and biochemical stress
on ECs and EC phenotypes in cardiovascular disease.
Interestingly, Zhao et al. characterize the phenotypic and
metabolic heterogeneity of ECs in diabetes-associated
atherogenesis at the single-cell level by performing single-cell
RNA sequencing study using EC-enriched single cells from
mouse heart and aorta. Their study provides critical insight
into EC biology and EC-related cardiovascular diseases.
Whereas, Kim et al. provide an overview on the angiocrine
role of heterogeneous subsets of cardiac ECs during cardiac
development, shedding lights on the heterogenic nature of
angiocrine signaling within the cardiac arterial, venous, and
lymphatic ECs. In addition, Han et al. update the bone

morphogenetic protein signaling functions in the regulation of
EC heterogeneity and the underlying molecular mechanisms.
Furthermore, Fang et al. present a comprehensive overview
about regulation of endothelial functions by acetylation of
histone proteins, a fundamental process that regulates gene
expression epigenetically. They also discuss the roles of histone
acetylation in ECs under physiological and pathophysiological
conditions including vascular tone, inflammation, oxidative
stress, angiogenesis, barrier function, thrombosis, and
coagulation. An interesting study (Xia et al.) shows that
lipopolysaccharide induces transcriptional activation of
forkhead box protein C2 and promotes itself expression in a
histone acetylation manner using lung ECs and a sterile sepsis
model in neonatal mice.

NOVEL MECHANISMS UNDERLYING
SPROUTING ANGIOGENESIS AND
LYMPHANGIOGENESIS
In the field of angiogenesis, the endothelial-to-mesenchymal
transition (EndoMT/EndMT) and partial epithelial-to-
mesenchymal transition (EMT)/EndoMT have been extensively
reported. EndoMT is a process whereby an EC undergoes a series
of molecular events that lead to a change in phenotype toward a
mesenchymal cell. In a hypothesis and theory article, Fang et al.
propose that an EndoMTprogram is partially and reversibly activated
event in angiogenic ECs to support acquisition of the subset of
mesenchymal characteristics, which is necessary to develop sprouting
angiogenesis. They also discuss the potential signaling and regulatory
mechanisms that may control the EndoMT program as well as
potential therapeutic approaches in cancers. EndoMT is known to
be regulated by transforming growth factor-β (TGF-β) family. Ma
et al. report that TGF-β2 may be essential for this process by
regulation of the balance between transcription factor SNAIL and
ID factors (Ma et al.) and this may also regulate angiogenesis (Akil
et al.; Fang et al.). Additionally, a study by Hunyenyiwa et al. shows
that obesity inhibits angiogenesis via TWIST1-SLIT2 signaling,
similar to an angiogenic phenotype occurred in tumor
angiogenesis under diet-induced obesity conditions (Dong et al.,
2017). It should be noted that Twist 1 is known as a master
transcription factor of EndoMT. The study thus suggests that
obesity may determine the angiogenic fate via regulation of the
EndoMT. Interestingly, Sun et al. reveal that ROS and RBC
phosphatidylserine exposure can mediate brain endothelial
erythrophagocytosis, implicating in cerebral microhemorrhage-like
lesions independent of disruption of the microvasculature.

In addition to new sprouting from blood vessels, the sprouting
of lymphatic vessels, lymphangiogenesis, is actively involved in
many pathological processes including tissue inflammation and
tumor dissemination but is insufficient in patients suffering from
lymphedema. Cilia, a microtubule-based organelle expressed on
the apical surface of blood ECs is thought to function as a blood
flow sensor. Paulson et al. show that primary cilia exists in
lymphatic vasculature, and surprisingly is expressed on the
abluminal surface of the lymphatic vessel. They also present
evidence that lymphatic vessel patterning is regulated by a
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primary cilium protein IFT20 in lymphatic ECs during
development and inflammation, which could lead to a new
paradigm in the field of lymphangiogenesis. Last but not the
least, Norden and Kume provide an elegant review about current
status and the mechanisms by which lymphatic permeability and
function are regulated in a tissue- and organ-specific manner,
including lacteals of the small intestine. Disrupted lymphatic EC
junctions are associated with various diseases, including
lymphatic leakage present in chylothorax and lymphedema,
metabolic syndrome, and impaired immune surveillance. They
also describe key signaling pathways and factors that control
lymphatic EC junctional integrity including VEGF, S1P, LPA
signalingmolecules and FOXC1 and FOXC2 transcription factors
as well as RhoA/ROCK and Ephrinb2-Ephb4 pathways.

SUMMARY AND PROSPECTIVE

Heterogeneous endothelium and vasculature play a pivotal role
in the regulation of tissue and organ homeostasis in human
health and disease progression. This topic only covers the tip of
iceberg in the field of EC and vascular biology, and significant
studies are urgently needed to move the field forward. One
emerging area is the immunological properties of ECs and their
role in angiogenesis and lymphangiogenesis. ECs show
distinguished immunological functions and have innate and
trained immunity (Shao et al., 2020; Drummer et al., 2021;
McCoy et al., 2021). McCoy et al. recently demonstrate that ECs
facilitate proangiogenic immune cell recruitment and
contribute to tumor angiogenesis via toll-like receptor 2
signaling (McCoy et al., 2021). Secondly, angiogenesis is
regulated by paracrine and autocrine mechanism, including
regulation by VEGF and hypoxia-inducible factor 1α (HIF1-α)
whereas HIF-α directly regulates VEGF under ischemic
conditions, thereby leading to angiogenesis and
arteriogenesis in ischemic diseases and cancers (Semenza,
2007; Fong, 2009; Ren et al., 2010; Ho et al., 2012; Ren,
2016; Simons et al., 2016). The resulted neovascularization
may improve ischemic conditions or promote tumor
progression via provision of CSCs with a favorable vascular
microenvironment (Jiang et al., 2021). Thirdly, the studies on
EC differentiation and transdifferentiation are emerging as an

important area, and they contribute significantly to capillary
arterialization or de novo arteriogenesis, particularly under
pathological conditions (Mac Gabhann and Peirce, 2010;
Ren et al., 2010; Moraes et al., 2013; Ren et al., 2016a; Ren
et al., 2016b; Ren et al.; Jiang et al., 2021). Furthermore, venous
ECs may contribute to the generation of arterial ECs and
expansion of arteriolar networks (Lee et al., 2021). Key
pathways and gene signature may be conserved in certain
types of ECs (Ren et al., 2011; Coppiello et al., 2015; Ren
et al., 2016a; Jiang et al., 2021) but it would be of significance to
study EC biology and angiogenic and lymphangiogenic
processes using heterogeneous types of ECs, animal models
and human patient samples before novel findings and concepts
can be effectively translated into clinic settings.
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