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Hypertrophic scars or keloid form as part of the wound healing reaction process, and its
formation mechanism is complex and diverse, involving multi-stage synergistic action of
multiple cells and factors. Adipose stem cells (ASCs) have become an emerging approach
for the treatment of many diseases, including hypertrophic scarring or keloid, owing to their
various advantages and potential. Herein, we analyzed the molecular mechanism of
hypertrophic scar or keloid formation and explored the role and prospects of stem cell
therapy, in the treatment of this condition.

Keywords: hypertrofic scars, adipose derived stem cell, wound healing, stem cell therapy, mechanism, keloid

INTRODUCTION

Hypertrophic scars are abnormal fibroproliferative wound healing reactions (Zouboulis and
Orfanos, 1990; Limandjaja et al., 2020), hypertrophic scars can continue to develop into keloids,
keloids are lesions that are higher than the skin surface and beyond the original injury range. The
texture of the keloid becomes hard and thickened, presenting nodular or flake masses. Hypertrophic
scars and keloid are characterized by excessive scar tissue formation and invasive growth beyond the
original wound boundary. Hypertrophic scarring is an unpleasant, maladaptive comorbidity that
affects most people around the world and imposes a heavy social and economic burden on affected
parties.

Scars usually occur on specific body sites, such as the anterior chest, ear-lobe, mandibular border,
and the suprapubic region (Huang and Ogawa, 2021). In addition to obvious cosmetic disfigurement,
hypertrophic scars can also produce symptoms such as itching, pain, contracture, and movement
restriction, resulting in serious impairment of emotional health and reduced quality of life (Bijlard
et al., 2017; Balci et al., 2009). Hypertrophic scars can be acquired genetically or pathologically.
Histologically, hypertrophic scars are benign hyperplastic disorder caused by excessive accumulation
of extracellular matrix (ECM) and other components (Feng et al., 2017).

The incidence of hypertrophic scarring varies widely and is known to correlate with race and
ethnicity. Incidence rates are reportedly as low as <1.0% in Taiwanese Chinese and Caucasians
(Seifert and Mrowietz, 2009; Sun et al., 2014), and range from 4.5 to 16.0% in the black and Hispanic
general population (Rockwell et al., 1989; Hunasgi et al., 2013). More recent data are available for
specific subgroups, reporting that the incidence of hypertrophic scar formation increases
significantly in African Americans compared to Caucasians, Asians and other groups, after head
and neck surgery, and in women, following cesarean section (C-section) (Tulandi et al., 2011; Sun
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et al., 2014). Overcoming the complications, and social and
economic burden caused by hypertrophic scarring, has become
an important medical research topic.

MECHANISM OF SCAR FORMATION

Scar formation is part of the abnormal wound healing response
after non-severe trauma, such as caesarean section incision, chest
hair folliculitis, ear piercing and vaccination. The potential
mechanism of scar is complicated, involves genetic
susceptibility, mechanobiology, endocrine factors, infection,
excessive inflammatory response and so on (Huang and
Ogawa, 2021; Yu et al., 2021, Riccio et al., 2019b). Scar
formation include multiple cell factors and synergy between
multiple stages of repair.

The stages of wound healing mainly comprise inflammation,
proliferation, and reshaping (Mari et al., 2015; Leavitt et al., 2016;
Morikawa et al., 2019; Rodrigues et al., 2019; Tan et al., 2019; De
Francesco et al., 2020). When skin lesions occur, the first reaction
entails the formation of a platelet plug, followed by clot formation
that immediately stems the bleeding. Then, damaged tissue and
activated platelets initiate an inflammatory response by recruiting
immune cells such as neutrophils and monocytes to fight local
infection, engulf localized debris and damaged connective tissue,
and subsequently remove fibrin. After the inflammation subsides,
the hyperplasia phase begins, during which new blood vessels and
connective tissue appear in the wound area. Re-epithelialization,
driven by keratinocyte migration, marks the beginning of
proliferation. Thereafter, organizational maturity signifies the
reshaping phase, which involves the degeneration of
neovascularization and concomitant reconstruction of the
extracellular matrix (ECM), resulting in development of
organized collagen fibrils that serve as the basis of normal
scarring (Wang et al., 2020).

Interference with any of these processes can lead to poor or
excessive wound healing, resulting in the formation of
hypertrophic scars and non-malignant dermal tumors, which
share similar phenotypes, cellular bioenergetics, epigenetic
methylation, and other characteristics. Platelet-derived growth
factor (PDGF), transforming growth factor-β (TGF-β) and other
factors can lead to fibroblast dysfunction and phenotypic
changes, ECM disorder and repeated deposition, and an
unbalanced angiogenesis cascade, ultimately causing excessive
scarring (Tan et al., 2019;Wang et al., 2020; Putri and Prasetyono,
2021).

Genetic Variation, Epigenetic Modifications
and Scar
Single nucleotide polymorphisms have also been implicated in
keloid formation, and genetic studies have identified several SNPS
and genes that may contribute to understanding the association
with keloid development (Halim et al., 2012, Tsai and Ogawa,
2019). For example, a genome-wide association study (GWAS) by
Nakashima et al. found that four SNPS (rs873549, rs1511412,
rs940187 and rs8032158) in three chromosomal regions were

significantly associated with keloid (Nakashima et al., 2010). In
other study, Ogawa et al. also reported that rs8032158 may also
influence keloid development (Halim et al., 2012).

Recent studies suggest that epigenetic inheritance may also
contribute to keloid formation. For example, DNA methylation
can change the structure of DNA, thus affecting cell
differentiation and cell phenotype (Bataille et al., 2012). Other
epigenetic changes include changes in cell phenotypes by popular
non-coding RNA. Epigenetic modifications and DNA
methylation caused by non-coding RNA (such as microRNAs
and LncRNAs) may also play an important role by inducing
sustained activation of keloid fibroblasts (Tsai and Ogawa, 2019).

Mechanical Stress and Scar
The two main anatomical layers of skin, from top to bottom,
are the epidermis and dermis. The epidermis consists mainly
of epithelial keratinocytes, which are forced together by actin
(Harn et al., 2016). These keratinocytes form the skin’s barrier
and are layered on top of the dermis, acting as building blocks
against external shearing and stretching forces. In contrast, the
dermis contains mostly ECM, blood vessels, fibroblasts, and
other mesenchymal cells, rather than epithelial cells.
Mesenchymal cells, such as fibroblasts, exhibit more cell-
matrix interactions (Tracy et al., 2016; Harn et al., 2019;
Watt and Fujiwara, 2011).

Mechanical forces regulate skin homeostasis and play a role in
the pathogenesis of skin diseases (Fu et al., 2021). As mention, the
dermis is rich in ECM—especially collagen, secreted by
fibroblasts—that provides the bulk of the skin’s tension (Hsu
et al., 2018). Changes in external tension and the internal
mechanical properties of cells are associated with collagen, and
scarring is specifically the result of excessive collagen production.
To some extent, the mechanical stiffness of the skin environment
determines the regenerative ability of wound healing. Strategies
that alter mechanical forces or mechanical transduction signals
may provide new approaches for treating skin diseases and
promoting skin regeneration (Harn et al., 2019).

Immunological Aspects of Scar
Scarring and autoimmune skin disease represent fibrosis events
that require a variety of growth factors and result from synergy
between immune cells and the medium. These conditions share
certain features, such as high infiltration of immune cells and
immunoglobulin (Ig), as well as complement deposition in the
scar tissue and scar fibroblasts, and medium-high secretion of
immune factors, among others (Dong et al., 2013; Jiao et al., 2015;
Ogawa, 2017).

Scar can be classified as inflammatory, nodular, and mixed
types (Yu et al., 2021). The number and type of immune cells in a
patient’s scar tissue or peripheral blood may vary by type and
stage. Moreover, the formation of a scar may be related to
abnormal wound healing and related immune factors,
especially in repeatedly recurring scars. Hence, the
classification of scar types and stages provides direction for
future research. In the process of scar formation, the initial
activation of mast cells (MCs) is the key factor inducing
chronic inflammation. Further, MCs release mediators that
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initiate host defense cascades leading to fibrotic processes. (Hsu
et al., 2018; Tsai and Ogawa, 2019).

CURRENT MAINSTREAM STRATEGIES
FOR INHIBITING SCAR FORMATION

Therapeutic strategies for treating hypertrophic scars include
steroid injection, surgical hypertrophic scar removal,
radiotherapy, compression, and cryotherapy, pulsed dye
and CO2 laser, silicone gel, nanoparticles and radiotherapy,
among others (Salameh et al., 2021; Ogawa, 2021; Svolacchia
et al., 2016; Nicoletti et al., 2013; Riccio et al., 2019a; Jimi et al.,
2020; Barrera, 2003; Aoki et al., 2020). However, existing
treatments are not guaranteed to reduce recurrence of
keloids, due to the high recurrence rate thereof at the
hypertrophic scar excision site (Coentro et al., 2019; Kumar
and Kamalasanan, 2021).

Scar-free healing is the ultimate goal of scar prevention
strategies (Falanga, 2005; Ho Jeong, 2010; Heng, 2011; Leavitt
et al., 2016). To develop an optimal combination strategy to this
effect, it is necessary to fully reveal the causal relationship
between key cells and molecules in scar pathogenesis, thus
providing new therapeutic targets for scar-free healing. In
addition, advances in stem cell and tissue engineering have
brought more alternative therapies closer to reality.
Functionalization of biomaterials through various drugs and
growth factors, provides a well-controlled approach to scar
therapy (Fuller et al., 2016; Rahimnejad et al., 2017; Wang
et al., 2022).

MESENCHYMAL STEM CELLS AND
ADIPOGENIC STEM CELLS

Mesenchymal stem cells (MSCs) are primarily responsible for the
regeneration of damaged cells and can be obtained from a variety
of sources, including bone marrow, umbilical cord, and adipose
tissue. MSCs are abundant and have recently been attracting
increasing research attention as potential treatment options in
many diseases. The basic characteristics of MSCs are defined by
the International Society for Cell & Gene Therapy (ISCT), as
follows: 1) plasticity when cultured under standard conditions; 2)
expression of a unique set of surface antigens specified by the
ISCT; 3) ability to differentiate into osteoblasts, chondrocytes,
and adipose cells (Dominici et al., 2006; De Francesco et al., 2017;
Bougioukli et al., 2018).

Adipogenic stem cells (ASCs) are bone marrow MSCs
extracted from fat cells (53). Not only do they have the
general characteristics of bone marrow MSCs, but they are
also easy to obtain. ASCs are found in large numbers in the
human body, have high proliferation and self-renewal potential,
and other advantages, based on which numerous studies have
shown their potential in addressing many diseases, including
hypertrophic scarring (Gir et al., 2012; Lee et al., 2012; Strong
et al., 2015; O’Halloran et al., 2017; Gardin et al., 2018; Gentile
and Garcovich, 2019; Ren et al., 2019; Xiong et al., 2020).

DISCUSSION OF ADIPOGENIC STEM
CELLS AND HYPERTROPHIC SCARRING

Existing studies have shown that ASCs’ mechanism of action
entails secretion of bioactive factors (including growth factors and
cytokines, among others), on the one hand, to promote cell
proliferation, differentiation, and migration. On the other
hand, exosomes derived from ASCs play a role (Hu et al.,
2016; Li et al., 2018; Han et al., 2019; Kucharzewski et al.,
2019). Moreover, ASCs can play a direct part in disease
management, through their multidirectional differentiation
ability, by forming complex hybrid systems with novel
treatment materials.

Directed Differentiation
ASCs are pluripotent stem cells with the ability of self-renewal
and multidirectional differentiation. They are not only the
precursors of fat cells, but also capable of differentiating into
osteoblasts, chondrocytes, muscle cells, and neuronal cells. ASCs
have also been shown to differentiate into keratinocytes. These
results suggest that ASCs may also differentiate directly into
epidermal and dermal cells to promote tissue regeneration and
prevent scarring in an injured area, during wound healing (Joshi
et al., 2020; Xiong et al., 2020; Putri and Prasetyono, 2021).

Secretion of Biologically Active Factors
ASCs regulate inflammation facilitated by immune cells, through
paracrine bioactive factors, inhibiting scar hyperplasia. Long-
term inflammation is a main cause of hypertrophic scar
formation. ASCs are known to modulate the activity of
inflammatory cells, thereby attenuating periods of excessive
and prolonged inflammation. This immunomodulatory activity
of ASCs is conducted by paracrine secretion of several anti-
fibrotic cytokines, including prostaglandin E2 (PGE2),
interleukin (IL)-10, hepatocyte growth factor (HGF), and
nitric oxide (NO) (Seo and Jung, 2016). In contrast, mast cells
are involved in the regulation of vascular homeostasis and
angiogenesis and can upregulate fibroblast proliferation,
resulting in excessive collagen synthesis and differentiation of
fibroblasts into myofibroblasts. ASCs can further reduce
hypertrophic scarring by inhibiting the number and activity of
mast cells (Putri and Prasetyono, 2021).

ASCs can also activate various anti-fibrotic molecular
pathways through paracrine signaling, regulate the activity of
primary fibroblast transforming growth factor, and stabilize the
function of fibroblast and keratinocyte receptor sites, to achieve
relevant anti-fibrosis goals (Borovikova et al., 2018). In addition,
injection of ASCs can reverse the abnormal vascularization
pattern of scar tissue and reshape the microvascular structure
(Garza et al., 2014; Luan et al., 2016).

Release of Adipogenic Stem Cell-Derived
Exosomes (Adipogenic Stem Cell-Exos)
Exosomes are a subset of small, membranous extracellular
vesicles (Han et al., 2018; Jing et al., 2018) with a diameter of
approximately 30–150 nm, which originate from entosis and are
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distributed in many bodily fluids—including blood, urine,
cerebrospinal fluid, and bile—under physiological and
pathological conditions. Exosomes include a variety of active
biological substances such as proteins, DNA, mRNAs, and
microRNAs, which can carry complex biological information
and release it into target cells (Hessvik et al., 2016; Buratta
et al., 2020). In addition, exosomes may exist between MSCs
and target cells as paracrine mediators (Valadi et al., 2007; Chiba
et al., 2012). Many studies have shown that ASC-derived
exosomes (ASC-Exos) play an important role in cell
migration, proliferation, and collagen synthesis (Xiong et al.,
2020; Putri and Prasetyono, 2021).

For example, characteristics of scarring include collagen
receptor rearrangement, activation of myofibroblasts
expressing α-smooth muscle actin (α-SMA), and the
production and secretion of high levels of TGF-β1 in affected
tissues (Beanes et al., 2003). Xu et al. indirectly inhibited PLOD1
levels in ASCs through post-transcriptional regulation, which
may significantly improve the anti-corrosion potential of ASCs
during wound healing, by changing macrophage polarization and
regulating scar formation (Xu et al., 2021). In addition, Wang
et al. found that ASC-Exos reduced scar formation mainly by
regulating the ratios of type III:type I collagen, TGF-β3:TGF-β1,
matrix metalloproteinases-3 (MMP-3):tissue inhibitor of
metalloproteinases-1 (TIMP-1), and promoting human dermal
fibroblast HDF differentiation. This resulted in improved ECM
reconstruction and other implementations (Wang et al., 2017).

Formation of Complex Hybrid Systems
ASCs can play a role in disease management by forming complex
hybrid systems with novel materials. For example, Wang et al.
proved that ASCs are capable of multi-potential—including
lipogenic, osteogenic, and chondrogenic—differentiation, and
developed ASC-Exos-delivering collagen/poly (L-lactide-co-
caprolactone) (P (LLA-Cl)) nanoyarns, which conform to a
material system that mimics the morphological structure of
the natural tissue matrix. With sufficient biocompatibility and
mechanical properties, it can effectively promote
neovascularization, cell proliferation and tissue regeneration,
and simultaneously limit scar formation, collagen deposition,
and formation of multi-layer epithelium (Wang et al., 2022). Liu

et al. showed that hyaluronic acid (HA) can be used as
immobilizing agent in a constructed system of ASC-Exos with
HA, to retain exosomes in the wound area and effectively play a
role in wound repair. The system activated wound-based HDF
activity and increased re-epithelialization, which was expected to
reduce scar formation (Liu et al., 2019). In addition, Wang et al.
developed an FHE hydrogel-carrier system with stimulus-
responsive ASC-Exos, which significantly increased the
regeneration of skin appendages and reduced scar tissue
formation (Wang et al., 2019). Hector et al. also identified
three types of ECM-based biomaterials—Integra™ Matrix
Wound Dressing, XenoMEM™, and MatriStem™—that serve
as human ASC delivery vehicles, which could inhibit scar
formation (Capella-Monsonís et al., 2020).

CONCLUSION AND FUTURE DIRECTION

ASCs have the advantages of being derived from a large source,
offering abundant availability and high proliferative ability,
having low immunogenicity in clinical applications, and being
safer and more effective. ASCs histologically promote the
regeneration of healthy tissue, reduce fibroblasts, and
reconstruct collagen, similar to that of normal skin. At the
molecular level, ASCs reduce hypertrophic scarring through
direct differentiation and paracrine mechanisms. Clinically,
they can improve the color, elasticity, texture, thickness, and
size of hypertrophic scars. ASCs have a positive effect on
alleviating hypertrophic scarring, indicating their potential as a
possible treatment approach in this condition, with broad
therapeutic prospect.
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