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Amoeboid motility has come to refer to a spectrum of cell migration modes

enabling a cell to move in the absence of strong, specific adhesion. To do so,

cells have evolved a range of motile surface movements whose physical

principles are now coming into view. In response to external cues, many

cells—and some single-celled-organisms—have the capacity to turn off their

default migration mode. and switch to an amoeboid mode. This implies a

restructuring of the migration machinery at the cell scale and suggests a close

link between cell polarization and migration mediated by self-organizing

mechanisms. Here, I review recent theoretical models with the aim of

providing an integrative, physical picture of amoeboid migration.
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1 Introduction

Long before the molecular components of cell migration were known, Abercrombie

et al. (1970) observed signs of large-scale motion at the cell surface, and speculated that

generic surface movements, in the presence of a substrate, would propel the cell forward.

Since then, experimental studies of solid substrate-based cell crawling, known as

mesenchymal migration, have revealed key molecular players and processes: F-actin

polymerization at the cell leading edge, formation of specialized adhesion clusters, and

actomyosin contractility at the cell rear to enable locomotion Blanchoin et al. (2014).

These studies have inspired theoretical models with broad relevance, including reaction-

diffusion patterns and waves associated with actin polymerization kinetics Allard and

Mogilner (2013); the Brownian ratchet model of cell leading edge motion Peskin et al.

(1993); and the molecular clutch model of retrograde actin flow engagement with focal

adhesions Chan and Odde (2008).

Yet, in recent years in vivo and in vitro studies have identified a set of migration

modes—grouped together as “amoeboid migration” Paluch et al. (2016)— that demand a

re-thinking of the physical principles of cell motility. Somewhat ironically, these new

modes, which involve cell-scale surface flows and deformations, invite a reappraisal of

generic mechanisms hinted at in early migration studies Abercrombie et al. (1970). While

all types of cell migration require some kind of rearward directed element at the cell

surface mechanically communicating with a substrate, amoeboid migration is usually

characterized by the absence of specialized adhesion complexes. To move in a variety of in

vivo settings where adhesion complexes are not feasible, the cell surface must use different
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means of momentum transfer with its surroundings. Luckily,

various cell types have evolved different modes of surface

movement, either in the plane or out of the plane, and

adapted to a particular environment, in order to propel

themselves. While these different surface behaviors have been

documented, the large-scale physical mechanisms that organize

these behaviors and by which propulsion force is generated are

not widely known.

The first goal of this paper is to shine light on recent

theoretical advances on how cell surface movements enable

migration. I start by discussing what one might call feed-

forward models, which reply to the question, given a specified

internal motile activity (whose existence is assumed), what are

the emergent behaviors imposed by the constraints of physical

laws that give rise to motion? Examples of these models are

presented in Sections 2 and 3. There, I highlight the interactions

between cell surface and environment geometry in influencing

the migration mode. The second goal is to provide some insight

into the self-organized behaviors that underlie amoeboid

migration. The innate capacity of a cell to switch its migration

mode implies that, in response to some cue, interactions between

surface components change to cause large-scale changes in how

the cell polarizes and moves. Therefore, feedback mechanisms

that drive cell polarization are closely related to migration

Goehring and Grill (2013); Hannezo and Heisenberg (2019).

In section 4, I review an example of this behavior for a one-

dimensional cortex, which showcases the dual role of actin flows

in patterning the cell cortex Callan-Jones and Voituriez (2016);

Illukkumbura et al. (2020) and in driving migration.

Extrapolating from this example to a fluid tubular surface, I

sketch how coupling mechanochemical feedback with surface

deformation can generate peristaltic wave-based migration, a

mode that, to my knowledge, has hardly been explored Franz

et al. (2018).

The surface mechanics involved in amoeboid migration rely

on an active component—such as an actomyosin

cortex—coupled to a plasma membrane. There is mounting

evidence for possible roles played by the membrane in

motility Lieber et al. (2013); O’Neill et al. (2018); Aoun et al.

(2020). However, the physical understanding of how membrane

dynamics and tension are integrated into the migration

machinery is incomplete. In the model examples below, the

cell surface is treated as a composite structure, and the plasma

membrane is not specifically considered. Its impact on migration

will be left for future work.

Some of the references I discuss below have been reviewed

elsewhere [see for example, Paluch et al. (2016); Bodor et al. (2020)],

but not, as far I can tell, from the perspective of theoretical modeling.

Also, some have appeared in physics journals, and therefore might

not be well-known to a wider community working on cell migration.

With the benefit of hindsight, I have attempted to identify unifying

ideas that connect different modeling approaches that have

appeared in the past decade.

2 Actin flow-based models in
confined settings

In vitro studies of different types of confined cells have

revealed a simple yet versatile mode whereby the cell

maintains a fixed shape and its migration is driven by cell-

scale cortical flows directed from the cell front to the rear Liu

et al. (2015); Ruprecht et al. (2015); Bergert et al. (2015). The

propulsion force has been attributed to non-specific adhesion

Paluch et al. (2016), which can be modeled as a friction force

Bergert et al. (2015). Since the mechanism here depends on

flowing actomyosin that transiently binds to a flat surface, it has

some points in common with models of mesenchymal crawling

Kruse et al. (2006); Rubinstein et al. (2009). The theory of Bergert

et al. (2015) is therefore a useful starting point to discuss

amoeboid models.

2.1 Migration in quasi-one dimensional
straight channels

Microchannels provide a controlled means to study the effect

of confinement on cell migration. Heuzé et al. (2011). These

systems are also useful because the cell shape is fixed and the

actin flows are essentially one-dimensional, making the modeling

simpler and the theoretical concepts easier to illustrate. A handful

of quasi-one dimensional models have been formulated that

predict relationships between actin flow and cell motion

Callan-Jones and Voituriez (2013); Recho et al. (2013);

Kimpton et al. (2013). The basic approach of these models is

to consider actomyosin as an active fluid Jülicher et al. (2007);

Marchetti et al. (2013); Prost et al. (2015); Jülicher et al. (2018)

and write down differential equations expressing mass

conservation and force balance. However, these coupled

equations can be difficult to solve (see Sec. 4), and can

obscure the physics of amoeboid migration in channels. An

elegant approach was taken in Bergert et al. (2015) that

bypasses the interdependencies of cortical actin flow and

concentration fields, and assumes a given myosin-related

active stress profile as an input that drives flow. I will review,

and attempt to simplify, the model in Bergert et al. (2015), as the

physical concepts it exposes are general and form a basis for more

complex types amoeboid migration.

Confined Walker carcinoma cells were observed to undergo

cortical flow-driven motion in long, cylindrical channels filled

with fluid Bergert et al. (2015). This is distinct from previous

microchannel migration studies, for example, actin-based

“chimneying” in dendritic cells Hawkins et al. (2009).

Channels were coated with different proteins to explore the

influence of non-specific friction on migration. The cell was

modeled as a self-propelled sphero-cylinder with constant shape

and constant speed U, as shown in Figure 1A. It is assumed to

make contact with the channel walls over a cylindrical segment of
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length L and radius R. The contact-free front and rear of the cell

are treated as half-spheres of radius R. Assuming axisymmetry,

the cortical flow on the contact region is one-dimensional

between x = 0 (rear) and x = L (front), and is obtained from

a local balance of forces in the cortex. There are three: viscous

forces due to internal dissipation; transient, non-specific

adhesion between the cortex and the channel walls, modeled

as a friction force; and active force due to myosin contractility.

This balance is expressed as ηd2v/dx2 − α(v + U) + dζ/dx = 0.

Here, v(x) is the cortical velocity in the cellular reference frame

moving at speed U; η is the cortical viscosity and α is a friction

coefficient, which is assumed constant over the contact region.

The active force is equal to the gradient in active stress dζ(x)/dx <
0, which is what drives flow from front to rear. The main purpose

of the model is to relate U to measurable parameters such as α

and the active stress ζ(x), taken to be proportional to cortical

myosin II concentration. Solving the differential equation for v(x)

requires knowledge of two unknown constants, in addition to U.

These are determined by the requirement that the total external

force (again neglecting inertia) on the migrating cell is zero and

by matching the cortex stresses at the edges of the contact region

with the end caps. Total force balance is

πR2Pcell − 2πR ∫L

0
α(v + U) dx � 0, where Pcell is the difference

in fluid pressure on the cell between the rear and the front. If the

pressures are the same at the entrance and exit of the

microchannel then the pressure difference is solely due to

autonomous cell motion and Pcell = −αDU. Here, αD is a drag

coefficient related to the relative motion between the cell and the

outer fluid. The possible sources of this drag include cell

membrane permeability Stroka et al. (2014); Li et al. (2020),

induction of velocity gradients in the fluid wedged between the

channel walls and the cell front and rear, as well as hydraulic

resistance of fluid farther away being pushed over the channel

walls.

In this model, the speed U is directly related to the

contractility gradient: U ∝Δζ ≡ ζ(0) − ζ(L). Bergert et al.

(2015) show this for the simple case of a linear function for

ζ(x), but it can be generalized to any monotonically decreasing

ζ(x) using Green’s functions Mathews and Walker (1970). Even

in the linear case, the general dependence of U on the various

parameters in the problem is involved, but a clear picture is

obtained in two limiting situations. If the non-specific friction α

FIGURE 1
Cortical flow-based migration in confinement. (A) Illustration of non-specific friction mediated cell motion in a cylindrical microchannel
Bergert et al. (2015). Rearward cortical flow is driven by a gradient in contractility ζ(x), andmomentum is thought to be transferred to the surroundings
by transient adhesion and lubrication forces. The channel is filled with fluid, which hydraulically resists cell migration. (B)Migration of talin knock-out
leukocyte in awavy channel Reversat et al. (2020). Substrate topography forces the cortical flow to be curvilinear, creating bending stresses and,
as a result, an asymmetric profile in normally-oriented substrate forces. This gives rise to a net propulsion force in the direction opposite to that of the
cortical flow.
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is weak, then U ~ΔζαL2/(ηαDR). This shows that, for a given cell

volume, by increasing the contact region L, confinement can aid

migration even if cell traction is weak. In the opposite limit, of

large friction and therefore negligible actin flow (in the lab

frame), U ~ RΔζ/(η + αDR
2). In this case, cell displacement

occurs by a continuous blebbing-like process whereby the less

contractile cell front is expanded while simultaneously the more

contractile cell rear is contracted.

It might seem surprising that U does not depend explicitly on

actin turnover. This is because there is no cortical actin density

dependence in this model: contractility is specified a priori and there

is no in-plane pressure term. The neglect of pressure follows from

the assumption that the cortex is perfectly compressible in the plane;

see, also, Recho et al. (2013). This can be justified because on long

enough timescales fast turnover within the cortex maintains a

roughly constant two-dimensional density, independent of in-

plane flow Jülicher et al. (2018). Of course, U depends implicitly

on turnover, otherwise no moving steady-state would exist.

A useful readout illustrating how forces enable migration is

obtained by looking at the spatial distribution of traction stresses

the cell exerts on its surroundings. This can also be interesting as

a way to frame amoeboid migration more generally in the context

of self-propelled systems, such as bacteria and synthetic systems

Bechinger et al. (2016). Self-propelled particles can be

distinguished by the way they interact with their

surroundings, and can be “pushers” or “pullers”. One can

determine to which class a migrating cell belongs from the

sign of the dipole moment, Q, of the forces the cell exerts.

Quantitatively, in Bergert et al. (2015), this is given by

Q � 2πR ∫L

0
x [f(x) − 〈f〉] dx, where f(x) = α(v(x) + U) is

the traction stress (force per unit area) the cell exerts on the

channel walls and 〈f〉 is its average over the contact region. It is

readily seen that Q � 2πR α∫L/2

−L/2 x v(x) dx, and thus the sign of

Q is related to the asymmetry of cortical flow with respect to the

middle of cell. One can show that the asymmetry is related to the

curvature d2ζ/dx2, and that Q > 0 if ζ(x) is a monotonically

decreasing, concave-up function of x, a point not made explicitly

in Bergert et al. (2015). Based on their measurements of myosin II

concentration, this condition appears to hold, and, therefore not

coincidentally, Bergert et al. (2015) measure Q to be positive, and

increases with surface adhesion. Confined, migrating Walker

carcinoma cells are therefore pushers, reflecting the strong

localization of myosin activity near the cell rear enabling the

cell to push back on its environment. This is in direct contrast

with mesenchymally crawling cells, such as keratocytes, which

behave as pullers, with Q < 0 Kruse et al. (2006); Schwarz and

Safran (2013). For crawling cells, the motile machinery is

localized at the lamellipodial leading edge, allowing the cells

to pull themselves forward. Thus, the dipole moment provides a

simple metric of the force distribution migrating cells exert and is

revealing of the internal machinery of force generation.

An interesting question is whether there is, in practice, a

minimum adhesion necessary for channel-based amoeboid

migration. By coating the channel walls with different

treatments so as to vary α, Bergert et al. (2015) found that the

maximum traction stresses obtained were in the range of Pascals,

orders of magnitude lower than in mesenchymal crawling Paluch

et al. (2016). Moreover, in the most slippery of channels, with

tractions in the milli-Pascal range, cells did not move at all. This

suggests that, even if the cell is strongly confined and with a

significant contact length L, migration can be impeded if traction

is not sufficient.

2.2 Topography-enabled amoeboid
migration

A perfectly cylindrical microchannel does not fully capture

the irregular, confined environment that cells encounter in vivo.

One could then ask if, in addition to transient adhesion, other

force-generating mechanisms exist for confined, migrating cells.

It turns out that cells, such as those of the immune system, can

exploit the varying topography of their surroundings to move

Tozluoğlu et al. (2013); Paluch et al. (2016), circumventing the

problem of insufficient adhesion. Yet, to what extent this type of

migration uses cortical flow, as in microchannels, or requires

environment-adapted actomyosin processes remained unclear.

This problem was taken up in a recent paper by Reversat et al.

(2020), who studied leukocyte migration in straight and wavy

channels. The sides of the channels were curved, while the top

and bottom were flat. By knocking out talin, a key component of

integrin-based adhesion, they were able to create essentially zero

adhesion conditions. Perhaps not surprisingly, by comparing

wild type (WT) and talin knock-out (TKO) leukocytes, Reversat

et al. (2020) found that TKO cells were immobile in straight

channels. More interestingly, both cell types moved, and with

about the same speed, in wavy channels, and the TKO cell speed

increased with decreasing channel wavelength. In both cell

conditions, cortical actin was found to undergo steady

retrograde flow, and that in wavy channels this flow follows

the channel topography. This observation suggests the tantalizing

idea that the actomyosin cortex has an adaptive quality such that,

in the absence of traction forces, its flows can harness the

substrate shape in order to move.

How can cortical flow transmit momentum to a frictionless

substrate to propel the cell forward? Everyday experience tells us

that the bumps on anti-slip flooring convert normally-directed

pushing into forward walking. In the case of fluid flowing

tangentially to a wavy surface, one might be tempted to think

that propulsion arises because the fluid is forced to bend and

follow the substrate, and hence accelerates vectorially, resulting

in a normal reaction force on the cell. This would be true at

Reynolds’ numbers where inertia is not negligible, which is not

the case here. The origin of the propulsion force is more subtle. A

straightforward, but slightly laborious, way of finding the

dependence of the propulsion force, Fprop, on channel shape
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can be done by modeling the cortex as an undulating fluid layer

and solving the Stokes equations of low Reynolds’ number

hydrodynamics. Given an average retrograde cortical velocity

of − v0 < 0 along the channel (x) axis and a vanishing shear

stress—i.e., zero friction—at the cortex/substrate interface, this

can be readily done Reversat et al. (2020). A more intuitive way,

which gives a similar dependence on channel wavelength, is to

regard the cortex as a very viscous, thin sheet. With this approach

the underlying physics can be revealed without an assumption of

sinusoidally-shaped channels, as is done in Reversat et al. (2020).

I will outline here this alternative approach.

In considering the motion of the wavy cortex, it is useful to

follow a particular fluid element. As it flows backward to a region

with, say, increasing curvature C—that is, dC/dt > 0 in its

reference frame and dC/dx < 0 in the lab frame—it feels an

internal bending moment, m; see Figure 1B. At steady state,

m = −ηbv0dC/dx, where ηb > 0 is known as the bending viscosity

Salbreux and Jülicher (2017). One can show that ηb ~ ηδ3 with η

the cortical viscosity and δ the cortex thickness; ηb increases with

cortex thickness, as expected intuitively. As in the elastic theory of

solid plates Landau and Lifshitz (1986), balance of torques on a sheet

element subject to an internalmomentm(x) creates shear forces (per

unit length perpendicular to the plane) f = −dm/dx. In turn, a

balance of forces normal to the substrate requires a normally-

directed force per unit area P(x) = −df/dx = −ηbv0d
3C/dx3, on

top of the constant value P0 present even if v0 = 0. Therefore,

the main effect of coupling retrograde flow to an uneven substrate is

to generate normal forces related to its topography. Assuming a

sinusoidally modulated channel, one finds a force profile P(x) that is

asymmetric between troughs and crests (Figure 1B). It is this

asymmetry, related not to the channel shape but to the direction

of retrograde flow, that generates a net force along x. For a wave

shape with amplitude ϵ and wavelength λ, the curvature is C(x) =

ϵ(2π/λ)2 cos(2πx/λ). Projecting the substrate forces along x, and

averaging over one wavelength, one obtains the propulsion force

Fprop = ηbv0ϵ2(2π/λ)6. It vanishes for a flat channel, i.e., ϵ = 0 or λ→
∞, as it should since there is no friction force.

How does this propulsion force compare with previously

documented values for amoeboid migration? We can make a

quick estimate: taking δ = 200 nm Clark et al. (2013); η = 104 Pa.s

Bergert et al. (2015); v0 = 10 μm/min; ϵ = 1 μm; and λ = 10 μm,

the topography-based propulsion force (per unit area) is on the

order of Pascals. This is in the upper range for traction forces

driving non-specific adhesion-based migration in smooth

channels Paluch et al. (2016). This shows that, in the absence

of adhesion, cells can use alternative strategies to generate

sufficient force to migrate.

3 Using cell shape changes to move

A hallmark of amoeboid motility is the ability of cells to adapt

their internal migration mechanism in response to an external

cue. As a counterpoint to topography-based migration, where the

environment shapes the cell, there is growing evidence that cells

can also self-deform in order to move, either in straight channels

(Section 3.1) or in a free fluid (Section 3.2). I consider here two

types of model that illustrate how cell surface deformation can

drive migration.

3.1 Shape-shifting motion in a confined
space

It is known that Euglenids, single-celled protists, use different

migration mechanisms depending on their environment. When

Euglena are suspended in fluid they swim using their flagella,

powered by microtubules; under confinement, they switch to a

crawling mode that relies on regular pulses of surface

deformation, known as metaboly Schaechter (2012); see

Figure 2A. Other types of flagellates are also known to

undergo a flagellate-to-amoeboid transition upon confinement

Kusdian et al. (2013); Brunet et al. (2021). For Euglena, the

amoeboid mode of migration involves active microtubule

behavior, though the microscopic details are not fully known.

A set of recent studies has sought to uncover the physics of

metaboly-based migration Arroyo et al. (2012); Noselli et al.

(2019).

Noselli et al. (2019) presented a multi-scale, experimental

and theoretical study into how microtubule sliding on the cell

surface, known as the pellicle, allows Euglena to move in narrow

channels. They developed a model showing how shear strain of

microtubules generates persistaltic-like surface pulses, which use

the channel walls to propel forward. I will present the key

ingredients and development of this model; it shows how

generic concepts such as surface kinematics, conservation of

surface area and of volume, when coupled to an intrinsic

force generation mechanism, can drive cell motion.

In a simple version of their model of metaboly-based motion,

Noselli et al. (2019) treat the organism as a cylinder of radius r0
confined in a channel of radius r ≳ r0. They represent the pellicle

as an array of parallel strips separated by a fixed distance, w; see

Figure 2A. A spatio-temporal pulse of relative sliding between

adjacent strips, γ, travels at speed c in the cell’s reference frame

from the prospective front to rear of the cell. Though the details

are still not fully clear, this pulse is thought to be triggered by a

controlled release/sequestration of subpellicular stores of calcium

that activate microtubules. Since the strips are fixed in place at the

front and rear poles of the cell, a shear displacement γ localized

somewhere along the cell length is necessarily accompanied by a

tilting of the strips by an angle θ∝ γwith respect to themigration

axis in that location. Furthermore, because the pellicle maintains

a fixed strip spacing, the surface must deform outwardly where

the strips are tilted. This is seen by noting that as the strips tilt,

their spacing as measured along a contour perpendicular to the

migration axis gets larger, and because the total number of
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parallel strips going around the cell remains the same, the local

radius must increase. As a result, where the amplitude of γ is

largest, the pellicle will expand so that it is in contact with the

channel walls. On the contact region, a bit of geometry shows that

the tilt angle is given by cos θ* = r0/r. The existence of a traveling

contact region is the key to explain how local strip sliding can

drive motility.

How the crawling speedU in a confined Euglenid is related to

geometry and internal mechanics is an interesting and non-trivial

problem, but it can be illustrated in two limiting cases. In the first

it is assumed that friction between the pellicle and the channel

wall is much larger than the hydraulic resistance of the

surrounding fluid. In this case, the contact region, of length lc,

is assumed to be instantaneously at rest with respect to the

channel walls. As a result, the time, δt, needed for the contact

pulse to travel a distance lc can be determined from the constraint

of fixed pellicle area, leading to δt = lcr/(r0c) = lc/(c cos θ*). The

distance that the cell’s left edge travels in this time is − lc + cδt,

and therefore the cell speed is U = c(1 − cos θ*). In this limit,

channel fluid is pushed in the direction opposite to migration, in

contrast with cortical-flow based movement in channels Bergert

et al. (2015). This is because of fluid pumping created by

rearward, peristaltic surface pulses. In the opposite limit, of

large hydraulic resistance and essentially immobile channel

fluid, an argument based on volume conservation can be

made to show that U = c(1 − cos2θ*). This is a larger

migration speed than before, and shows, interestingly, that the

roles of cell-channel friction and hydraulics are interchanged

compared with cortical actin flow-based movement: friction

hinders, while hydraulic resistance enables, cell migration. In

between the two limits, the cell migrates using a superposition of

both mechanisms.

Euglena motility exemplifies how single cells and single-

celled organisms are not restricted to a single mode of

FIGURE 2
Self-deformation-basedmigration. (A)Depending on confinement, protists from the genus Euglena can swim using a flagellum or inch forward
using surface waves, a process known as metaboly. The rearward traveling surface bulges characterizing metaboly are generated by microtubule
activity in the parallel strips forming the pellicle, an organismic envelope. The strips are assumed tomaintain a fixed separation,w, and internal activity
generates a localized traveling pulse of relative strip sliding, γ Noselli et al. (2019). In the simple version of the model by Noselli et al. (2019), the
confined organism is modeled as a uniform cylinder of radius r0, except over a region where γ is non-zero. There, and over a length lc, relative sliding
induces tilting with respect to the channel axis and bulging of the surface to become in contact with the channel walls; the tilt angle is related to r0
and the channel radius by cos θ* = r0/r. In the frame of themoving cylinder, the contact zonemoves rearwardwith speed c; the cell speedU depends
solely on c and θ*. (B) Illustration of amoeboid swimming in a viscous fluid (not shown). Actively generated forces at the cell surface are assumed to
give rise to cyclic cell shape changes. In order to respect Purcell’s scallop theorem Purcell (1977), directed motion requires that a forward-played
movie of a “stroke” cycle looks different than its backward-played version. A minimal reduction of amoeboid swimming is a superposition of two
deformation modes, one with nematic symmetry (l = 2) and another with polar symmetry (l = 3). The surface displacement away from the spherical
state, u(θ, t), is projected onto the two modes, with amplitude u2(t) and u3(t).
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migration, a recurring motif in cell motility. By subsuming the

incompletely understood mechanochemistry of metaboly into a

single parameter, c, and using this as a starting point, the study by

Noselli et al. (2019) nicely illustrates the use of phenomenological

models in interpreting complex biological observation. Migration

mode switching in Euglenids is, furthermore, a remarkable

example of a self-organized, biological phenomenon: using the

same small-scale elements, i.e., microtubules, but applying

different rules of interaction can lead to strikingly different

macroscopic behaviors.

3.2 Amoeboid swimming

Up to now, the models that I have presented benefit from the

simplicity of channel-based migration, which strongly constrains

the allowed cell shapes. Amoeboid migration, as defined by the

absence of specific adhesion complexes in generating propulsion

force, is more general, and as the example of Euglena showed, can

be driven by shape change. This occurs, for example, for

neutrophils, Dictyostelium amoeba, and lymphocytes, which

can “swim” in an unconfined fluid in response to a

chemoattractant Barry and Bretscher (2010); Aoun et al.

(2020). These observations have motivated a number of model

approaches, both analytical and computational Farutin et al.

(2013); Campbell and Bagchi (2017); Wang and Othmer

(2016); Wu et al. (2015). Here, I will detail the model by

Farutin et al. (2013) because it illustrates clearly the physics of

self-deforming amoeboid migration.

As has been well documented, microscale swimming is quite

different than at larger scales Elgeti et al. (2015), where inertia

dominates and gliding can occur. More specifically, migrating

cells in a fluid generate essentially zero Reynolds’ number (Re)

flow. As a generous estimate, Re ≡ ρRU/η ≈ 10–5, taking ρ =

103 kg/m3 for the density of the cell’s fluid surroundings, η =

10–3 Pa.s as its viscosity, U = 5 μm/min as the cell speed, and R =

100 μm as its typical size. In this realm, and in accordance with

Purcell’s “scallop” theorem Purcell (1977), directed motion of an

amoeboid cell requires non-reciprocal deformation of the cell

surface, necessarily involving more than one degree of freedom.

An alternating series of expansions and contractions of a

spherical cell along mutually perpendicular axes, for instance,

cannot cause directional motion. Inspired by the swimming

capabilities of Dictyostelium, neutrophils, and protists of the

Euglenid family, Farutin et al. (2013) proposed a minimal

model of a surface deformation-driven swimmer in a

Stokesian (i.e., zero Reynolds’ number) fluid. They modeled

the swimmer as a quasi-spherical vesicle of fixed volume V =

4πR3/3 (defining an effective radius R) and bound by an

inextensible membrane with area A = 4πR2(1 + Γ), with the

relative excess area Γ = 0 in the case of a perfect sphere. The

membrane condition acts as a global constraint on deformation

and acts in a way that resembles the inhibitory action of

membrane tension on actin-based protrusions Sitarska and

Diz-Muñoz (2020).

In the model of Farutin et al. (2013), the total membrane

force acting on an element of the quasi-spherical surface, at a

position parameterized by the polar angle θ and at time t, can be

broken up into an active, driving term and a passive, tension

term: F = Fa(θ, t) n + Fp(θ, t). They assume that the driving force

acts solely along the local surface normal, n, implying that the

mode of transfer of momentum to the cell’s surroundings is not

at all like the examples considered up to now. The tension force

Fp assures membrane inextensibility and has both a normal

component proportional to local membrane curvature

(reflecting Laplace’s law) and a tangential component that

relaxes away any local membrane stretching. To mimic what

they call “amoeboid swimming”, they assume, without detailing a

specific mechanism, that biochemical regulation dictates some

functional form for Fa(θ, t), which is periodic in time to reflect

that motion consists of repetitions of a given stroke cycle. The

cyclic F(θ, t) in turn generates a cyclic surface displacement

denoted as u(θ, t). The key question is to understand how u(θ, t)

leads to swimming motion.

By considering only axisymmetric shape modes of a quasi-

sphere, Farutin et al. (2013) were able to reduce a complicated

problem to a system of three coupled differential equations for

three time dependent quantities. This was done by first

expressing Fa and u in terms of “normal modes”: for example,

u(θ, t) � ∑∞
l�2ul(t)Pl(cos θ), with ul(t) the mode amplitude and

Pl(cos θ) a Legendre polynomial; this is analogous to a Fourier

superposition, but on a sphere. Here, l/R can be interpreted as the

“wavevector” associated with mode l. The expansion is simplified

by only considering the l = 2 and l = 3 modes, providing two

degrees of freedom that should enable directed swimming; see

Figure 2B. (The l = 1 mode is excluded since P1 = cos(θ)

corresponds to a small, rigid translation of the sphere, and

cannot contribute to swimming.) The three variables are

therefore the amplitudes u2(t) and u3(t) and the cell velocity,

U. The amplitudes are linked by the constraint of fixed

membrane area, and their dynamics are determined by

balancing the normal component of F with the reaction force

exerted by the surrounding fluid. Finally, U is determined by a

purely geometric equation relating it to the time derivative of the

shape amplitudes.

In spite of its relative simplicity, the quasi-spherical swimmer

model presents some surprising results. First, Farutin et al. (2013)

show that the vesicle can move even though u2(t) and u3(t) are

coupled by the area constraint. This seems to be at odds with the

scallop theorem, forbidding migration involving a single degree

of freedom. The paradox is resolved by noting that for any value

of u2, the constraint admits two possible values of u3. In fact, a

swim cycle can be represented as a closed ellipse in the u2 − u3
plane, and the vesicle displacement along the symmetry axis (x)

during one cycle, Δx, is related to the ellipse’s area. Up to a

numerical coefficient, Δx can be expressed as the product of R Γ, a
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purely geometric quantity. Surprisingly, this result is

independent of the active force distribution. Even if the vesicle

is not a quasi-sphere, i.e., Γ is not close to zero, Δx remains

roughly proportional to Γ, and is intuitively understood since

greater Γ implies larger surface deformations, and hence greater

deformation-induced outer flow, and therefore larger

momentum transfer.

The authors then ask how, within the framework of the

quasi-spherical model, the swimming speed is optimized. This

question is important since it relates to migration efficiency and

hence to energy consumption Yang et al. (2021). It is also of

practical interest in this model because a general active force

distribution Fa(θ, t), and hence a general surface displacement

u(θ, t), will involve higher harmonics than just l = 2 and l = 3.

What rule should be applied to determine the force amplitudes?

This question is answered by looking for the distribution of the

Fl(t)’s that will lead to the largest center of mass displacement per

cycle. Interestingly, up to a numerical coefficient, this optimal

displacement is again related to the geometric quantity R Γ.

Therefore, cell geometry is an important predictor of migratory

ability of amoeboid swimmers.

Can amoeboid swimmers be classified as pushers or pullers,

like other moving cells? Farutin et al. (2013) argue that this

binary distinction does not apply here. Indeed, because the cell

shape is not stationary there are puller and pusher phases during

a swim cycle. During a stroke in which the cell is elongating

along, and narrowing perpendicularly, to the x-axis, fluid is

pushed away along ± x and pulled in towards the cell in the

plane perpendicular to x. The opposite fluid motion occurs when

the cell is contracting along x and expanding in the perpendicular

direction. Therefore, in contrast with shape-invariant migrating

bacteria Elgeti et al. (2015), crawling cells Mogilner and Keren

(2009), and amoeboidally migrating Walker carcinoma cells

Bergert et al. (2015), amoeboid swimmers such as neutrophils

and protists exhibit a hybrid puller/pusher behavior. One might

speculate that this flexibility allows a self-deforming cell to adjust

its gait depending on the nature of the surrounding fluid or

matrix.

4 Migration and symmetry breaking

Cell migration is contingent upon a prior symmetry breaking

event that polarizes distributions of motility-related proteins and

signaling pathways. This is a general phenomenon, and applies to

the different types of polarized surface movements considered in

Sections 2 and 3. Polarity can manifest in surprisingly diverse

ways. For example, a front-back asymmetric distribution of

membrane water and ion channels results in osmotically-

driven, cytoskeleton activity-independent cell migration in

confined channels Stroka et al. (2014). Yet, in all of these

examples, the motile mechanism is treated as a distinct

module from the upstream mechanisms that polarize the cell.

Yet, observations that immobile, non-polarized cells can

spontaneously polarize and move suggest that motility and

cell symmetry breaking are linked Verkhovsky et al. (1999);

Yam et al. (2007); Ruprecht et al. (2015). Reconstituted

systems have corroborated this idea: for instance, actin shells

growing on nucleator-coated beads eventually rupture under

elastic stress; the ensuing polarized polymerization results in

bead motility van der Gucht et al. (2005). These findings are in

line with now well-established proof that feedback between

mechanics and chemistry exists in cells and tissues, notably in

the actomyosin cytoskeleton Hannezo and Heisenberg (2019).

For example, myosin-generated cortical actin flows can transport

regulatory molecules thereby modifying the flow. Also, the

nonlinear kinetics of actin polymerization regulators can give

rise to non-trivial interplay between chemistry and mechanics.

Because adhesion complexes are absent in amoeboidally

migrating cells, cortical flows can be long-ranged and

therefore effective in mediating mechanochemical feedback, in

addition to transferring momentum between cell and

environment. This suggests that cortical flow can play a dual

role in transporting molecules to establish front-back cell

asymmetry and driving migration. Here, I will first review a

modeling approach motivated by observations of quasi-spherical

cells that self-polarize and migrate amoeboidally using cortical

flow, all the while keeping a fixed shape Poincloux et al. (2011);

Ruprecht et al. (2015); O’Neill et al. (2018); Aoun et al. (2020).

The simplicity of this geometry helps to identify clearly the

physics of self-organized motility. It also provides a first clue

into how deterministic models can give rise to irregular cell

trajectories Lavi et al. (2016); Stankevicins et al. (2020); Ecker and

Kruse (2021). In the second part of this section, I will briefly

outline a possible mechanism where cell surface flows, regulator

transport, and shape change lead to symmetry breaking and

could enable a novel amoeboid mechanism based on peristaltic

wave propagation.

4.1 “Squirming” of quasi-spherical cells

Cells that are suspended in a viscous fluid, keep a nearly

spherical shape, and migrate using tangential cortical flows are

reminiscent of squirmers, a generic model of self-propelled,

spherical particles Lighthill (1952); Blake (1971). In this

model, the surface flow, vs, is prescribed (for example, flow

generated by surface cilia beating), and hence the particle

velocity is uniquely determined from the solution of Stokes’

equation in the outside fluid. For cells vs is unknown and

therefore the relation between migration and surface flow is

not as clear. To get around this difficulty a number of models

have recognized that the physics of cortical flow-based migration

is intertwined with the mechanisms leading to cortical

polarization in the first place. Models based on active gel

theory Jülicher et al. (2007); Prost et al. (2015) have shown
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that above a threshold contractility, an initially uniform and

quiescent spherical cortex of radius R will spontaneously polarize

and flow axisymmetrically Hawkins et al. (2011); Ruprecht et al.

(2015); Callan-Jones et al. (2016); Farutin et al. (2019); Mietke

et al. (2019a). In these models, a steady-state flow is maintained

by contractility and actin turnover. With increasing contractility,

generic modeling has shown that instability of the cortex first

occurs for the lowest non-trivial Legendre mode, l = 1,

representing a polar symmetry breaking. This occurs because

viscous stresses associated with flow and diffusive flux associated

with regulator concentration changes oppose cortical

polarization, and these penalize modes with higher wavevectors.

These models suggest that once polar symmetry is broken,

cortical flow from one pole to the other will, by exchanging

momentum with the surroundings, lead to net motion. But what

kind of motion ensues as the initial instability evolves and

nonlinearities become felt? Is it persistent along one direction?

Or perhaps oscillatory, or evenmore erratic? This is an important

question, as it relates to the nature of amoeboid trajectories and

migration efficiency. For now, we can get some insight by

considering how different stabilizing effects interact near the

contractility threshold for instability of the initial, homogeneous

cortex. To do so, I will outline a simplified one-dimensional

version of the stability analysis of Farutin et al. (2019), which

neglects the cell curvature but captures the main qualitative

features. This approach is inspired by the theory of

mechanochemical patterns in active fluids Oster and Odell

(1984); Bois et al. (2011) that has motivated one-dimensional

self-polarization/migration models Callan-Jones and Voituriez

(2013); Recho et al. (2013); Kimpton et al. (2013); Drozdowski

et al. (2021).

In this description, the actin concentration, a(x, t) and bound

myosin concentration, m(x, t), evolve according to two

conservation equations: zta + zx(av) = −k(a − a0) and

ztm + zx(mv) � Dz2xm. Here, v(x, t) is the velocity field along

the x axis that advects actin and bound myosin; k is the actin

turnover rate and a0 is the homeostatic, uniform filament

concentration; and D is the thermal diffusivity of actin-bound

motors. A third equation comes from force balance along x,

expressed as zxσ = 0, where the stress, for a 1D active fluid, is σ =

ηzxv + ζf(m) − βa. In this equation η is the cortex viscosity; ζ > 0 is

the contractility coefficient, and f(m) is some monotonically

increasing function of myosin concentration; and finally β > 0

is a compression modulus of the actin network, acting like a one

dimensional pressure. For simplicity, we assume f(m) = m and

that friction with a substrate, which would appear as αv on the

right-hand side can be neglected. Therefore, this model is useful

to understand the nature of self-polarization and flow that, with a

momentum absorbing substrate or fluid present, would drive

migration.

To summarize so far: ζ > 0 is the driving parameter that, if

sufficiently high, causes instability, whereas k, D, η, and β are

stabilizing parameters. In a suitably non-dimensionalized form,

only three of the four will appear independently. For the stability

analysis around the initial, homogeneous, non-flowing state (a =

a0, m = m0, v = 0), let a = a0 + δa, m = m0 + δm, σ = σ0 + δσ and

linearize the two advective terms, assuming v is small. Next, the

two dynamical equations are Fourier-transformed with respect to

position x, i.e., taking δa, δm, v and δσ to be∝ eiqx and redefining

a, m, v, and σ as the corresponding mode amplitudes. The

velocity v and stress σ can be eliminated and the dynamical

problem can be expressed as zta = −(k + β)a + ζm and ztm = −β a

+ (ζ − Dq2)m. Note that η, a0, and m0 have been set to one for

readability; this does not affect the final results. These coupled

equations resemble a model of reaction-diffusion in which m

could be thought of as an activator and a as an inhibitor; see

Figure 3A.

The above equations can be combined to give

z2tm + μztm + ω2
0m � 0. This is analogous to the equation of

motion for the position m(t) of a damped harmonic oscillator,

where we identify μ ≡ k + β + Dq2 − ζ as the “friction coefficient”

(which may be negative) and ω0 ≡ [Dq2(k + β) − kζ]1/2 as the

“natural frequency” (which may be imaginary). Assuming that

small perturbations vary as m∝ eλt, their growth rate is given by

λ± � −μ
2 ±

1
2

�������
μ2 − 4ω2

0

√
. Instability occurs if the real part of λ+

goes from negative to positive; beyond the linear regime the

instability will evolve into some kind of pattern. Surprisingly, this

model predicts two qualitatively different kinds. A first one can

occur if μ2 > 4ω2
0, i.e., the oscillator is overdamped, and the λ± are

real. A steady-state bifurcation then takes place if ω0 goes from

positive to imaginary, a condition that yields the critical

contractility ζc/Dq
2 = 1 + β/k. To go back to the original

problem on a sphere, one identifies q ~ l/R, and therefore

with increasing contractility the polar mode, l = 1, will be the

first to become unstable. Above ζc the instability can be expected

to develop into a polarized steady-state associated with persistent

migration. A second kind of pattern can occur if μ2 < 4ω2
0,

corresponding to an underdamped oscillator. A so-called Hopf

bifurcation takes place when μ goes from positive to negative,

yielding a different critical value, ζc/Dq
2 = 1 + (k + β)/Dq2. Above

this contractility threshold the instability is expected to develop

into a non-steady, oscillating pattern; in other words, a standing

wave and non-persistent migration.

How does one knowwhat type of pattern, and hence motility,

will occur in this model? A Hopf bifurcation happens if ω0 is real

at threshold, or in other words if Dq2β > k(k + β). Thus,

competition between the different stabilizing terms in the

problem—diffusion, cortical compressibility, and

turnover—will affect the nature of the pattern and hence the

type of cell motion. This is the main point of this model:

antagonism between a small number of driving and stabilizing

effects gives rise to subtle emergent migration behavior. Yet,

much has been neglected here, and one can rightly ask, how

much predictive value does this type of simple model have for

amoeboid migration? Answering this would require that the

model parameters be experimentally measurable, along with
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observation of different migration phenotypes. The model

emphasizes the patterning effect of advection by cortical flow,

and as such only considers one part of a large mechanochemical

parameter space; models that explore differents parts of it will

give rise to different predictions. For example, local shape

changes could directly or indirectly alter motility Bodor et al.

(2020). Indeed, competition for actomyosin by endocytic

machinery has been shown to lead to oscillatory trajectories

Lavi et al. (2016). Other types of self-organized migration

behavior have been predicted by models in which advection-

type nonlinearity is absent Doubrovinski and Kruse (2011);

Ziebert et al. (2012). For example, theoretical studies have

explored the impact of the cooperative kinetics of actin

assembly promoters, such as Rho-GTPases, on cell polarity

patterns, migration, and trajectories Camley et al. (2013),

Camley et al. (2017); Ecker and Kruse (2021); Stankevicins

et al. (2020). Finally, coupling cell shape to migration

machinery constitutes a thinly explored region of parameter

space. This has been touched on in modeling based on actin

regulator nonlinearities Camley et al. (2013); Ecker and Kruse

(2021), but not yet in the more prevalent situation of cortical

actin-based amoeboid migration. A hypothetical scenario

illustrating this coupling is considered in the next subsection.

4.2 Peristaltic wave-based migration

As the cortex of a model spherical cell polarizes, with

actomyosin enriched at one pole and flows directed between

poles, the cortical tension becomes inhomogeneous. As a result,

Laplace’s law tells us that shape change occurs, the surface

curvature varies with position, and the cell is no longer

spherical Bun et al. (2014); Callan-Jones et al. (2016); Wu

et al. (2018); Le Goff et al. (2020). This, then, raises the

question of whether the deformation of the cortical layer feeds

back in any way on the cortical flow, and if so, is the mechanism

of migration altered.

To attempt an answer to this, I will sketch how the interplay

between surface flows and shape change can give rise to a type of

migration, based on peristaltic surface waves, that is qualitatively

different from those considered earlier. This idea is motivated by

recent work on mechanochemical patterning of active fluid

surfaces Mietke et al. (2019b). As done in Mietke et al.

(2019b), I consider a tubular surface composed of an active

fluid, which could represent the actomyosin cortex (Figure 3B).

The active, contractile tension in the surface is controlled by a

regulator species that diffuses and is advected by surface flow. For

simplicity, I identify this with the bound myosin concentration,

FIGURE 3
Contractility regulation in the cortex, flows, and symmetry breaking. (A). Mechanochemical feedback in a simplified one dimensional
actomyosin cortex. A localized increase in boundmyosin concentration (green) creates higher contractile stress than elsewhere. The resulting force
advects myosin, tending to reinforce the initial increase, which is counteracted by diffusion. Co-advection of actin (gray) has an inhibitory effect,
because of opposing compressive stress and turnover, which penalizes density changes away from the initial, homeostatic state. In the
inhomogeneous patterned state, steady-state state flows, in the presence of a momentum absorbing substrate, can give rise to migration. (B)
Proposedmigrationmechanism based on theory of self-organized active tube patterningMietke et al. (2019b). A contractility-based instability on the
tube surface leads to an inhomogeneous active stress regulator profile, as in panel (A). This concentrates the active stress and pinches the tube. A
situation where the regulator peak is centered on the pinch (Stationary) may be unstable (see text), giving rise to a broken symmetry state. This state is
characterized by peristaltic surface waves; in the presence of an outer fluid, directed motion would occur.
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m, as done in the previous subsection. A homogeneous tube of

radius r0, uniformm and no surface flows will, above a threshold

contractility ζ, destabilize and form concentration bands of

regulator and steady-state surface flows, just like for one-

dimensional mechanochemical patterns Bois et al. (2011).

A key difference here is that the inhomogeneous active

tension will also deform the surface Mietke et al. (2019b); in

particular, a regulator band acts like a contractile ring, squeezing

the tube. The extent of squeezing is limited by the bending

rigidity, κ, of the surface; if κ = 0, above threshold the tube will

pinch to zero radius where the regulator is most concentrated

Mietke et al. (2019b). However, for finite κ, the tube radius

remains finite at long times, and furthermore the position of

regulator bands and the flow field undergo a symmetry breaking.

The origin of this can be understood with a qualitative argument.

With reference to Figure 3B, a slight left shift of the regulator

band, and hence of the active tension profile, with respect to the

surface leads to squeezing near l and expansion near r. This, in

turn, further concentrates the regulator near l and dilutes it near

r. Therefore, both the surface deformation and the regulator

profile get shifted to the left; there is no restoring force that keeps

the regulator maxima in phase with the surface radius minima.

Finally, the shift in regulator m also affects the force balance in

the plane of the surface, and causes a shift in the flow profile v

with respect to the surface. As a result, the symmetry of the

surface is broken; in a reference frame in which the period-

averaged surface flow vanishes, one would see co-moving waves

of regulator concentration and of surface shape Mietke et al.

(2019b).

How does this symmetry breaking relate to amoeboid

migration? The directed surface flow and peristaltic shape

waves could both generate propulsion force. If the active tube

were confined in a fluid-filled channel, flows on the surface where

the tube radius is largest would exchange momentum with the

channel wall, by lubrication forces, for instance, and hence create

propulsion. Alternatively, if the tube is suspended in a fluid and

peristaltic waves travel with respect to it, then the pressure

distribution on the tube will change: In regions where the

tube is expanding the outer pressure increases, and where the

tube is contracting the pressure decreases. This gives rise to a

propulsion force, similar to the case of topography-basedmotility

in Section 2.2.

The idea of using surface waves to propel a cell was actually

proposed long ago by Abercrombie et al. (1970), though the

engine of motility was not known. Here, I have proposed that,

similar to squirming cells, the same physics governs the

symmetry breaking of the surface and determines the source

of propulsion force. Peristaltic wave-based migration is

reminiscent of amoeboid migration of slime mold, which is

dependent on actomyosin contractility Alim (2018). In that

case, though, waves are thought to be coordinated by bulk, as

opposed to surface, contractility and cytoplasmic flows Lewis

et al. (2015). Perhaps closer to the mechanism proposed here is

recent observation of amoeboid migration of fat body cells of

Drosophila Franz et al. (2018). There, movement of a contractile

ring with respect to the cell appears to coordinate migration,

though how propulsion force is generated is not fully known.

5 Concluding remarks

This paper has surveyed a range of surface movements and

self-organized behavior constituting models describing cell

migration in the absence of adhesion complexes. These

models are expressed in terms of flow velocity fields, surface

displacement, and concentrations of regulators. The same

physical quantities also describe cell functions and a large

range of developmental movements not associated with cell

migration: for example, contractile ring formation prior to

cytokinesis and mechanochemical patterning in the developing

organism. As such, there is general interest in forming a

modeling framework for macroscopic phenomena in cell and

tissue biology, in which amoeboid migration is one example.

In formulating internally consistent theoretical models, for

the sake of simplicity certain variables are neglected, even though

their possible impact is often difficult to assess. One example is to

what extent organized actin architectures, for instance, isotropy

versus anisotropy of filament ordering, is an important variable in

migration models. Long-range alignment of actin filaments exists

in the lamellipodium of mesenchymally crawling cells

Verkhovsky et al. (2003); cortical actin filament alignment in

cortical-flow driven amoeboidally migrating cells also been

documented Ruprecht et al. (2015). While meso-level filament

alignment has been included in some migration models,

specifically in cases where the flow field is not explicitly

considered Ziebert et al. (2012); Dreher et al. (2014); Ecker

and Kruse (2021), little is known as to whether its inclusion

qualitatively affects the basic mechanisms of adhesion-free,

amoeboid migration. Some positive evidence in this direction

is suggested by abstract migration models. For instance, a model

of a drop of active fluid on a substrate has shown that spatially

varying orientational order can mediate self-propulsion in the

absence of local traction forces Loisy et al. (2019). It will be

interesting to pursue this area, in particular in joining theory with

experiments that can probe cortical organization together with

migration.

Membrane tension is another variable whose influence on

amoeboid migration is not well understood. For substrate-borne,

crawling cells, in contrast, it is known that membrane tension has

a regulatory role in actin protrusions, including the

lamellipodium Diz-Muñoz et al. (2013); Lieber et al. (2013).

However, because actin polymerization interacts with the

membrane in a fundamentally different way in the two

migration modes, the role of tension is expected to be

different. A recent study of the motility of macrophages

suspended in fluid suggested that cortex-linked membrane
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flows create viscous stresses in the fluid thereby providing

propulsion O’Neill et al. (2018). How membrane turnover

enables these flows is not known, however. Furthermore,

whether membrane flow and the concomitant tension changes

affect internal activity, for instance via contractility signaling, has

not been explored.

Even relatively simple models (Section 4) of cytoskeletal self-

organization predict non-trivial cell polarization patterns and

consequently different gaits and trajectory types. Including

internal noise in a minimal, one-dimensional

mechanochemical model of myosin advection-based symmetry

breaking results in persistent or intermittent motion, depending

on the strength of advection coupling Maiuri et al. (2015). By

accounting for other dynamical features, for instance, feedbacks

associated with actin polymerization at the membrane

significantly enlarges the mechanochemical parameter space.

As a result, even in purely deterministic settings erratic,

random walk-like trajectories can be predicted Stankevicins

et al. (2020); Ecker and Kruse (2021). Given the importance

of a migrating cell’s search efficiency in living systems,

understanding the connections between internal activity and

long-time migration dynamics is a fertile area of research.

A number of types of motile cells and single-celled

organisms, when found in surroundings where their “default”

mode—for instance, adhesion complex- or flagella-based—is not

viable, have evolved alternative migration modes involving

different physical principles. But how does the cell “know”

which mode to choose, given its circumstances? How does the

cell interpret cues from its environment, and is there a simple

metric that the cell evaluates to make its decision? How much do

considerations of metabolic efficiency play a role Yang et al.

(2021)? To what extent physics can provide answers is not

known, but these are still useful questions to contemplate in

order to interrogate more generally how out-of-equilibrium

systems “decide” between multiple states. Migration models

consisting of droplets of active matter might be a useful,

though reductionist, means of tackling this problem Tjhung

et al. (2012). Recent modeling has treated migration as an

inverse problem, in that it asks what is the optimal functional

form of the contractile stress in order for the drop to get from one

point to another Recho et al. (2014); Shankar et al. (2021). These

models proceed by minimizing some cost function related to

mechanical work done and internal resources used by the cell,

and find the active stress that generates motion. Yet, these models

pre-suppose a particular migration mechanism, and the

mechanism for upstream choice of which mode to choose

from is left open. Though far removed from the complexity of

a whole cell, some inspiration might come from thermodynamic

control theory applied to networks of out-of-equilibrium

filaments, such as the cytoskeleton Lamtyugina et al. (2021).

Based on this work, it has been suggested that energy resources

and external cues could effectively modify cytoskeletal material

properties and drive transitions between many-filament

structures Lamtyugina et al. (2021). It will be interesting to

apply this approach to active droplets in which different

migration modes can be associated with dynamic structural

transitions of the material.
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