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Morphological left-right brain asymmetries are universal phenomena in

animals. These features have been studied for decades, but the functional

relevance is often unclear. Studies from the zebrafish dorsal diencephalon on

the genetics underlying the establishment and function of brain asymmetries

have uncovered genes associated with the development of functional brain

asymmetries. To gain further insights, comparative studies help to investigate

the emergence of asymmetries and underlying genetics in connection to

functional adaptation. Evolutionarily distant isogenic medaka inbred lines,

that show divergence of complex traits such as morphology, physiology and

behavior, are a valuable resource to investigate intra-species variations in a

given trait of interest. For a detailed study of asymmetry in the medaka

diencephalon we generated molecular probes of ten medaka genes that are

expressed asymmetrically in the zebrafish habenulae and pineal complex. We

find expression of eight genes in the corresponding brain areas of medaka with

differences in the extent of left-right asymmetry compared to zebrafish. Our

marker gene analysis of the diverged medaka inbred strains revealed marked

inter-strain size differences of the respective expression domains in the

parapineal and the habenulae, which we hypothesize may result from strain-

specific gene loss. Thus, our analysis reveals both inter-species differences but

also intra-species plasticity of gene expression in the teleost dorsal

diencephalon. These findings are a starting point showing the potential to

identify the genetics underlying the emergence and modulations of

asymmetries. They are also the prerequisite to examine whether variance in

habenular gene expression may cause variation of behavioral traits.
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Introduction

Brain asymmetries are present throughout bilateria. From insects

to humans the morphologies of multiple parts of the central nervous

system differ between the two sides of the body (Frasnelli et al., 2012;

Rogers, 2014; Duboc et al., 2015; Alqadah et al., 2018; Kong et al.,

2018). Given the widespread existence of asymmetries in the animal

kingdom, it is likely that morphological and functional asymmetries

are often associated and are advantageous for neuronal computation

and the animals’ performance, well-being and behavior (Vallortigara

and Rogers, 2005; Rogers, 2014; Güntürkün and Ocklenburg, 2017;

Miletto Petrazzini et al., 2020). However, for the majority of brain

asymmetries a functional relevance remains to be identified. For

instance, numerous reports find links of asymmetry alterations to

mental disorders, while others do not support this idea (Mundorf

et al., 2021). Putative causative genetic mechanisms underlying such

differences in left-right brain asymmetry have remained largely

elusive. One approach to assess this enigma is to investigate the

emergence of morphological brain asymmetries in connection to

functional adaptation and the underlying genetics using comparative

approaches. Teleosts show the highest radiation amongst vertebrates

with diverged species that adapted to habitats with widely different

conditions (Wittbrodt, Meyer and Schartl, 1998; Volff, 2005; Braasch

et al., 2014). Importantly, a plethora of molecular genetic tools and

resources are available to study phenotypic traits and molecular

mechanisms in many teleost species.

Unlike numerous rather subtle left-right brain asymmetries, the

dorsal diencephalon of teleosts is a remarkable exception as

evidenced in numerous studies using the zebrafish (Danio rerio).

The pineal complex consists of a centrally positioned pineal organ

and a group of left-sided parapineal cells (Concha andWilson, 2001;

Beretta et al., 2012). In addition, also the adjacent bilaterally formed

habenulae exhibit pronounced asymmetries. The neuronal

subpopulations of the dorsal habenulae (dHb), which correspond

to the mammalian medial habenulae (Amo et al., 2010), differ

substantially between hemispheres with respect to size, gene

expression, connectivity and function (Gamse et al., 2002;

Concha et al., 2003; Gamse et al., 2003; Aizawa et al., 2005;

Bianco et al., 2008; Miyasaka et al., 2009; Agetsuma et al., 2010;

Dreosti et al., 2014; Krishnan et al., 2014; Facchin et al., 2015; Zhang

et al., 2017). How these asymmetries have emerged and facilitate

functional adaptation is largely unknown.

In view of the high divergence within the teleost clade a

comparative study of diverged species will provide insights into

the evolution of organs and underlying genetic mechanisms

(Furutani-Seiki and Wittbrodt, 2004). The Japanese Killifish

medaka (Oryzias latipes) is ideally suited for such studies due to

its divergence from zebrafish of more than 100Mya of independent

evolution. Furthermore, medaka is a fully established laboratory

teleost model with a long history of genetic studies (Takeda and

Shimada, 2010). For example, several highly inbred isogenic strains,

derived from different medaka wild populations, are available. A

molecular genetic toolbox has been established that allows genetic

studies, detailed analysis of gene function and genome editing

(Kirchmaier et al., 2015). Most of the protocols established for

zebrafish can be used for medaka with minor modifications. Thus,

direct comparisons of reporter gene constructs are possible between

these two teleost species.

Medaka also permits studies of intra-species variation, which

is the basis of population genetic studies. The inbred strains from

diverged medaka populations allow to study the plasticity of

quantitative traits within this species. For example, using such

inbred medaka strains, a genetic basis of strain-specific

craniofacial variance has been shown (Kimura et al., 2007).

Furthermore, a genetic contribution to the variation of brain

morphology was reported inmedaka (Ishikawa at al., 1999). Also,

behavioral traits have been analysed by comparing isogenic

inbred strains, suggesting that startle behavior in medaka is

defined by intraspecific genetic polymorphisms (Tsuboko

et al., 2014). Recently, a population genetic resource has been

established, consisting of a panel of 80 inbred strains derived

from the same wild population (Fitzgerald et al., 2022). Thus,

medaka offers unique genetic resources to further our knowledge

of intra-species variation in complex traits.

In this study, we used medaka as a diverged teleost for a

comparative analysis of brain asymmetry. Using whole mount in

situ hybridization (WISH) we examined the expression of a select

number of marker genes that have been shown to be asymmetrically

expressed in the developing diencephalon of zebrafish. We isolated

and analysed 10 genes, 8 of which we find expressed in the medaka

dorsal diencephalon. All of the commonly used markers for the

pineal/parapineal complex in zebrafish, otx5l, sox1a and gfi1ab, are

similarly expressed in medaka. Regarding the habenular specific

genes, we observed largely conserved expression of the habenular

precursor cell marker cxcr4, while the markers for habenular neuron

subpopulations, prox1a, cntn2, nrp1 and kctd12.1, differed in their

extent of left-right asymmetry. We additionally revealed pronounced

intraspecies variation of asymmetric gene expression by comparing

two isogenicmedaka strains from southern and northern populations,

respectively, iCab and Kaga (Spivakov et al., 2014). In Kaga embryos,

otx5l and sox1a expression in the parapineal are enlarged, while

kctd12.1 is much more prominently expressed, particularly in right

dorsal habenular neurons compared to iCab embryos. These findings

hint at intraspecific plasticity of left-right asymmetry.

Materials and methods

Fish maintenance and strains

The medaka inbred strains iCab and Kaga were kept in closed

stocks at the Institute of Biological and Chemical Systems, Biological

Information Processing (IBCS-BIP) at the Karlsruhe Institute of

Technology (KIT), as previously described (Loosli et al., 2000).

Medaka fish strainsweremaintained and bred according to standard

procedures (Kinoshita et al., 2009).Medaka embryos were raised in a
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Petri dish containing ERM medium for 4 days at 28°C with a 14 h

light/10 h dark cycle. Developmental stages were determined

according to Iwamatsu, 2004.

cDNA cloning

cDNA fragments of gfi1ab (Gene ID: 110015008), lov/kctd12.1

(Gene ID: 101161445), otx5l (Gene ID: 101164666), cntn2 (Gene ID:

101161878), prox1b (Gene ID: 100302040), cxcr4 (Gene ID:

100049444), nrp1 (Gene ID: 101161516), sox1a (Gene ID:

100304447), slc17a6b/vglut2 (Gene ID: 101175075), slc18a3b/

vachtb (Gene ID: 101163117) were generated from cDNA

libraries extracted from one to six dpf iCab embryos. Because

zebrafish PROX1a and medaka PROX1b share the highest

sequence homology with 71.80% and developmental gene

expression, we renamed medaka prox1b to prox1a. The following

primers were used: gfi1ab (Fw: 5′-GAGTCGGTGGATAGGTAC
GG; Rw: 3′-AGAAGAATCAGGCTGCCAGT; 1185 bp cDNA),

lov/kctd12.1 (Fw: 5′- CCGCGTTTCCATCGAATCAT; Rv: 3′-GCT
CATCTCAGTTCACAGCA; 1155 bp cDNA), otx5l (Fw: 5′-GCA
CTCCGAGCAGTTTGAAA; Rv: 3′-GAGAGCTGTGAATGC
ATGGG; 813 bp cDNA), cntn2 (Fw: 5′-GTCACGGCCATGATA
ACCAC; Rv: 3′-ACCTGGATCTCAAAAGCGGA; 575 bp cDNA),

prox1b (new prox1a) (Fw: 5′-AACCAGCATGGGTCAGAGAG;
Rv: 3′-TTTGAAAGCTGCACTGATGG; 784 bp cDNA), cxcr4 (Fw:
5′-TTCGACAACAGCTCTGAAGG-3′; Rw: 3′-GGCGTAGAG
GATGGGATTCA; 951 bp cDNA), nrp1 (Fw: 5′-TCATCTCCT
ACACGGGCATC; Rv: 3′-TCCAACACCATCCTCCAGTC; 886
bp cDNA), sox1a (Fw: 5′-GATGATGGAAACGGACCTCC; Rv:
3′-AAATGTGCGTTAGAGGGACC; 956 bp cDNA), slc17a6b/

vglut2 (Fw: 5′-TGTGGGGATGATTCATGGCT; Rv: 3′-GAT
AGTCCGCTAACTGGCCT; 749 bp cDNA), slc18a3b/vachtb

(Fw: 5′-TTGTTTGCGTTGCTCTCCTC; Rv: 3′-ACCCAAGGC
TCCATAGAACC; 896 bp cDNA). For gfi, lov/kctd12.1, otx5l,

cntn2 and prox1a cDNAs the following PCR program was used:

95°C for 5 min, 35 cycles of 95°C for 45 s, 58°C for 45 s, 72°C for 45 s

and a final step at 72°C for 5 min. Cloning was performed with

pCR™ 2.1-TOPO TA dual promoter cloning Kit (Invitrogen),

following the manufacturer’s instructions. For cxcr4, nrp1, sox1a,

slc17a6b/vglut2, slc18a3b/vachtb cDNAs the PCR program was the

following: 98°C for 30 s, 35 cycles of 98°C for 30 s, 56°C for 30 s, 72°C

for 30 s and the final step at 72°C for 30 s. Cloning was performed

with Zero Blunt™ TOPO™ PCR cloning Kit (ThermoFisher),

following the manufacturer’s instructions.

Whole-mount in situ hybridization and
antibody labeling

Whole-mount in situ hybridization has been performed

using digoxigenin-labeled antisense RNA probes following

standard procedures as described in Loosli et al. (1998) with

the following modification: the temperature of hybridization and

washing steps was 65°C.

For anti-acetylated tubulin immunostaining, four dpf

embryos were fixed overnight at room temperature in 4%

PFA/2x PBST and stored at −20°C in methanol. Samples were

digested with a 10 μg/ml Proteinase K (Sigma-Aldrich) treatment

for 45 min, refixed in 4% PFA/2x PBST, and blocked in PBS with

0.1% Tween20 and 5% normal goat serum (NGS). For antibody

labeling, primary mouse anti-acetylated tubulin (1:1000, Sigma,

#T6793) and secondary goat anti-mouse Alexa Fluor 488-

conjugated (1:250, Invitrogen,# A11001) antibodies were used.

For nuclear staining, embryos were incubated in PBS, 0.1%

Tween20 containing DAPI (1:5000, ThermoFisher Scientific).

Embryo pigmentation treatments

Pigmentation was prevented by treating growing embryos

with 0.003% PTU/ddH2O (500 μl PTU/ddH2O solution in about

10 ml medium), added at 24 hpf in a Petri dish with 20–30 eggs

per dish. The medium and the PTU were changed every day.

Before immunolabeling, pigments were removed by incubating

fixed dechorionated Kaga embryos at four dpf in freshly prepared

30% H2O2 and 1% KOH solution for up to several hours at RT.

Microscopy and image manipulation

All in situ hybridization images were acquired by light

microscopy using Zeiss Axio Imager M2 microscope and

Keyence BZ-X810 microscope with a ×20 objective lens. Prior

to acquisition, stained embryos were mounted in glycerol

(Sigma-Aldrich) on microscope glass slides (Thermo Scientific).

For fluorescence confocal microscopy, embryos were

mounted in 1% low-melt agarose in glass-bottom dishes

(LabTek). Embryos were imaged using a TCS SP8 (Leica)

inverse laser scanning microscope. Images were acquired with

a ×20 air objective. Stack analysis, maximum intensity

projections (MIPs), cropping and 2D-views were performed

using Fiji und CS5 photoshop (Adobe) software.

Areameasurements and statistical analysis

Pineal complex, pineal and parapineal area measurements were

performed with ImageJ-Fiji software using the Analyze Particles

command. Habenula size was measured with ImageJ-Fiji by

selecting and measuring the area of the habenula on confocal

maximum projections stained with DAPI. The mean and standard

error of the mean (SEM) were computed and plotted in a bar graph.

The statistical analysis of the measured data was performed with the

GraphPad Prism nine software, by applying the Mann–Whitney U

test. Statistical values of p-value < 0.05 were considered significant.
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Results

Expression of asymmetric habenular
marker genes in medaka

Two main classes of morphological asymmetries can be

distinguished (Concha et al., 2012): in class I, asymmetric

structures differ in size between the two sides, while class II

asymmetries comprise structures present only on one side of the

body. The habenulae and the pineal complex exhibit class I and

class II asymmetries respectively, the former of which can readily

be visualized by immunolabeling of dendritic arborisation using

anti-Acetylated Tubulin (Signore et al., 2009). We corroborated

this finding by showing subtle, but reproducible, left-right

differences in the extent of Acetylated Tubulin expressing

habenular structures (Figure 1A). In zebrafish, numerous

genes have been described that are either expressed

specifically or largely specifically in subnuclei of the dorsal

habenulae (dHb), in all dHb neurons or in dHb neuronal

precursor cells. Of these, we isolated the medaka orthologues

for kctd12.1 (Gamse et al., 2003; Sato et al., 2021) and nrp1

expressed predominantly in lateral neurons of the dorsal

habenulae (dHbl) (Kuan et al., 2007), cntn2 (Carl et al., 2007)

and slc18a3b/vachtb as markers for medial neurons of the dorsal

habenulae (dHbm) (Hong et al., 2013), slc17a6b/vglut2 expressed

in all habenular neurons (Thisse et al., 2005) and cxcr4b in dorsal

habenular precursors (Roussigné et al., 2009). In addition, we re-

assessed the expression of medaka prox1a (formerly named

prox1b), which was reported to be right-dominantly

asymmetric in the habenulae (Deguchi et al., 2009).

FIGURE 1
Visualisation of asymmetries in the medaka habenulae. iCab embryos at four dpf focused on the dorsal diencephalon; anterior to the top. (A)
Immunostaining for anti-acetylated tubulin shows subtle left-right asymmetric dendritic arborisation in the habenula. Please compare the green
signal within the same-sized red boxes. (B–H) Expression of habenula and pineal complex marker genes. (B,C) kctd12.1 and nrp1 are stronger
expressed in left-sided habenular neurons. (D,E) prox1a and cntn2 are mainly expressed in right-sided habenular neurons, while (F) cxcr4b is
expressed in habenular progenitors, the area of which is encircled. (G) In the zebrafish, kctd12.1 is expressed in lateral neurons of the dorsal
habenulae, while (H) prox1a is expressed in medial dorsal habenular neurons.
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In four dpf old medaka iCab embryos, kctd12.1 is expressed

predominantly in left-sided habenular neurons, which likely

correspond to the dHbl subnucleus (Figure 1B). The

expression is enriched in a proximal and a distal cluster

connected by cells with lower expression. On the right side,

kctd12.1 is weakly expressed in two small domains in a proximo-

anterior and a distal-posterior cluster of cells differently from

zebrafish, in which the gene exhibits a rather weak but

continuous expression (Figure 1G) (Gamse et al., 2003). Also,

medaka nrp1 exhibits strong asymmetric left-sided expression in

the dHb (Figure 1C). However, numerous dHb neurons express

nrp1 also on the right side, unlike its zebrafish orthologue (Kuan

et al., 2007). In contrast to the left-sided habenular marker genes,

we find strong prox1a expression in right habenular neurons as

described (Figure 1D) (Deguchi et al., 2009), which likely

represent dHbm neurons, whereas only a few cells on the left

express prox1a. We re-assessed zebrafish prox1a expression

(Thisse et al., 2005) and observed not only right-dominant

expression of this gene’s mRNA in the habenula but also a

prominent expression domain of prox1a on the left side

(Figure 1H). Also, cntn2 is expressed almost exclusively on

the right side in four dpf iCab (Figure 1E), while in the

zebrafish habenulae it is also expressed, albeit less

prominently, on the left side (Carl et al., 2007). Therefore, our

two chosen dHbm marker genes are more restricted to right-

sided neurons in medaka compared to zebrafish. cxcr4b

expression in habenular precursors in zebrafish (Roussigné

et al., 2009) is downregulated during habenular maturation.

Similarly, we find only a few cells expressing this gene in the

iCab habenula at four dpf (Figure 1F). Our slc18a3b/vachtb probe

did not detect any expression, while we found slc17a6b/vglut2

expression in various brain regions at four dpf, in particular in

telencephalic structures, but not in the habenulae

(Supplementary Figure S1).

Expression of pineal complex genes in
medaka

Zebrafish otx5 is expressed in both pineal and parapineal

cells (Figure 2A) (Gamse et al., 2002), while sox1a (Clanton

et al., 2013) and gfi1 (gfi1ab) (Dufourcq et al., 2004) are

expressed exclusively in zebrafish parapineal cells. We

isolated the respective medaka orthologs and found

conserved otx5l transcripts in both pineal and left-sided

parapineal cells of iCab embryos at four dpf (Figure 2B).

As described previously, analyzing the expression of a Rx2:

GFP transgene (Signore et al., 2009), the medaka parapineal

volume judged by otx5l labeling appears to be slightly larger

than the zebrafish parapineal. In analogy to zebrafish, sox1a

and gfi1ab transcripts were detected specifically in medaka

parapineal cells including a few cells seemingly connecting the

parapineal with the pineal (Figures 2C,D). Therefore, the

specificity of pineal complex genes is evolutionarily

conserved between zebrafish and medaka.

Northern and southern medaka inbred
strains exhibit conserved and diverged
gene expression patterns

Northern and southern medaka populations are diverged

by at least 4 million years and show differences in various traits

such as morphology and behavior (Takeda and Shimada, 2010;

Tsuboko et al., 2014). In particular, the latter observation

suggests that neural circuits are differently wired in these

populations and cause such differences. Therefore, we

assessed whether variations in gene expression are

detectable in the dorsal diencephalic asymmetric neural

circuit. Like observed in iCab embryos, we did not detect

specific slc18a3b expression in Kaga embryos, while Please

change into slc17a6b/vglut2 is predominantly expressed in the

telencephalon and not in the habenulae (data not shown). We

find that prox1a expression in dHbm neurons is largely

conserved between the southern iCab strain and the

northern Kaga strain (Figures 3A,B). In contrast, kctd12.1 is

expressed in a larger domain on the left in Kaga embryos when

compared to iCab (Figures 3C,D). In addition, the anterior-

proximal expression domain on the right hemisphere is

expanded in Kaga embryos. We verified that the differences

in gene expression are not due to differences in habenular sizes

between the two strains by measuring the habenular size by

nuclear staining in embryos at four dpf (Figures 3E–G). We did

not find any significant differences in the left, right or total

habenular volume between iCab and Kaga. However, we

noticed that in both strains the left habenula is about 20%

larger than the right. This corresponds to previous estimates

from marker gene expression and neuropil labelings in

zebrafish (Concha et al., 2000; Gamse et al., 2003). Our

habenular size measurement shows that the observed

differences of kctd12.1 expression between iCab and Kaga

are not due to differences in habenular size.

Next, we compared gene expression in the pineal complex

between the two medaka strains (Figures 4A,B). While the otx5l

expression domain in the pineal alone or in the pineal/parapineal

complex together does not significantly differ between iCab and

Kaga, the parapineal expression domain is significantly larger in

Kaga embryos (Figure 4E). Similarly, also the parapineal specific

expression of sox1a is larger in Kaga embryos (Figures 4C,D).

Taken together, our intra-species analysis of asymmetric

diencephalic neuronal structures and associated gene

expression reveals differences in the parapineal expression

domains of otx5l and sox1a as well as of the dHbl marker

kctd12.1, while dHbm marker gene expression appears

conserved in embryos of northern and southern medaka

populations.
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Discussion

Our study on marker gene expression in left-right

asymmetric neuronal structures in the medaka diencephalon

reveals conserved and species-specific differences in the teleost

lineage. We find that five out of the seven genes, selected due to

their specific expression in the zebrafish habenulae, are also

expressed in the medaka habenulae. Notably, right dominant

markers for dHbm neurons such as prox1a and cntn2 are more

restricted to this side in medaka iCab embryos than in zebrafish,

while left-sided nrp1 expression in dHbl neurons is more left-

specific in zebrafish (Thisse et al., 2005; Carl et al., 2007; Kuan

et al., 2007). Previous studies have identified roles for cntn2 and

nrp1 in neuronal migration and axon fasciculation as well as axon

guidance during zebrafish development, respectively (De Bruin

et al., 2016; Gurung et al., 2018). Therefore, the findings of our

comparative study could contribute to explain the rather subtle

differences in the targeting of habenular efferent axons in the

interpeduncular nucleus between medaka and zebrafish (Signore

et al., 2009). Furthermore, all three pineal complex genes, otx5l,

sox1a and gfi1ab show a largely conserved expression between

medaka and zebrafish (Gamse et al., 2002; Dufourcq et al., 2004;

Clanton et al., 2013).

Our comparison between diverged medaka inbred strains

revealed different variations of gene expression in the

asymmetric diencephalic structures investigated. Firstly, the

parapineal, as defined by otx5l and sox1a expression, is bigger

in the Kaga strain compared to iCab embryos. This is paralleled

by a stronger expression of kctd12.1 in left dHbl neurons and

remarkably also on the right hemisphere of Kaga embryos. In

contrast, prox1a expression in dHbm neurons exhibits the same

pattern in Kaga and iCab habenulae suggesting that some right

habenular neurons may express both genes in Kaga. This, in turn,

might implicate different fates of habenular neurons on the right

side between Kaga and iCab. Future connectome and functional

analyses will be needed to test this hypothesis. Another question

arising is whether the differences detected in parapineal size and

dHbl marker gene expression between iCab and Kaga are

separated evolutionary events or whether they are linked to

one another and caused by a, perhaps more likely, single

event. Many years of research in zebrafish have shown that

dHbl neurogenesis and the parapineal are connected, although

the precise mechanism is still not fully resolved, dHb neurons

develop from multipotent pools of habenular precursor cells

adjacent to the pineal complex. Influenced by temporally tightly

regulated Wnt/beta-catenin signaling alongside Notch signaling,

they develop into dHbm neurons (Aizawa et al., 2007; Carl et al.,

2007; Beretta et al., 2013; Hüsken et al., 2014; Guglielmi et al.,

2020). This predominantly happens in the right hemisphere. On

the left half of the brain, parapineal cells migrate away from the

pineal influenced by Nodal and Fgf signaling shortly before

habenular precursors become post-mitotic and differentiate

(Concha et al., 2003; Regan et al., 2009; Roussigné et al.,

2018). It is thought that yet unknown signals released from

these parapineal cells that depend on sox1a function (Lekk et al.,

2019) influence habenular neuron precursors on the left side to

adopt dHbl character (Concha et al., 2003; Hüsken et al., 2014).

In this process, the size of the parapineal not only appears to

influence left dHb precursors but, in certain circumstances, also

the right habenula. Pitx2 genes are members of the bicoid-class of

paired homeodomain transcription factors and targets of Nodal

signaling. In zebrafish, pitx2c is expressed in the left dorsal

FIGURE 2
Expression of pineal and parapineal marker genes in the pineal complex. Zebrafish and iCab embryos at stages indicated focused on the dorsal
diencephalon; anterior to the top. (A,B) otx5/otx5l is expressed in the pineal and parapineal in zebrafish andmedaka, while (C,D) sox1a and gfi1ab are
specifically expressed in the parapineal.
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diencephalon and influences parapineal development (Essner

et al., 2000; Garric et al., 2014). In pitx2c hypomorphic

embryos, the parapineal cell number is increased. These

embryos exhibit an enlarged domain of right-sided dHbl

typical kctd12.1 expression, while dHbm markers remain

unaffected. This phenotype is remarkably similar to our

observations in Kaga embryos and raises the hypothesis that

evolutionary events may have caused modulations around the

genomic interval comprising the Kaga pitx2 gene. In medaka

iCab embryos belonging to the southern population, the pitx2

gene has been identified and its asymmetric expression in the

brain described (Jaszczyszyn et al., 2007; Soukup et al., 2018).

Regarding northern populations, only the medaka HNI genome

sequence is currently available. Although validating our

FIGURE 3
Habenular marker genes have conserved and diverged expression patterns in distant medaka strains. Dorsal views focused on the diencephalon
at four dpf, anterior to the top. (A,B) prox1a expression in right-sided habenular neurons is comparable in iCab and Kaga, whereas (C,D) kctd12.1
expression is particularly enlarged in right-sided habenular neurons in Kaga. (E,F) Single plane confocal images of the diencephalon of DAPI labeled
embryos (niCab = 6; nKaga = 9). (G)No difference in habenular size between iCab and Kaga embryos, but a significant difference between the left
and right habenulae in both populations was found. Dashed lines indicate the habenulae in (E,F). Bar graphs show the means of the habenular areas.
Error bars represent SEM (standard error of the mean).
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hypothesis certainly warrants the analysis of the Kaga genome,

we performed a preliminary HNI genome analysis and could

only detect high sequence homologies for pitx1 and pitx3 in the

genome of zebrafish and medaka HNI. We did not detect any

sequence homologies representing pitx2 in the HNI genome

(data not shown). Future functional experiments and the

availability of a Kaga genome sequence will allow investigating

whether the differences detected in parapineal size and kctd12.1

gene expression in Kaga are linked and caused by a single event

during evolution, which is the loss of pitx2 in northern

populations.

Our work has substantiated that medaka is particularly

suitable for elucidating intra-species variations for

population genetic studies. Here we used established

inbred strains from diverged medaka populations to

search for variance of the emergence of brain

asymmetries. Based on our findings, we suggest that such

intra-species comparisons can serve as a starting point to link

brain asymmetries to adaptive behaviors in future studies.

Behavioral tests in medaka to investigate anxiety-like

behaviors and sociability have recently been reported

(Lucon-Xiccato et al., 2022). Both of them are strongly

influenced by habenular function and could therefore

serve as a readout for habenular function (Bühler and

Carl, 2021). In view of the recently established panel of

inbred strains derived from a single wild population,

medaka offers unique genetic resources to tackle this long-

standing question in neuroscience (Fitzgerald et al., 2022).
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FIGURE 4
Parapineal size differs significantly between Kaga and iCab embryos. Dorsal views focused on the diencephalon of four dpf embryos with
anterior to the top. (A–D) otx5l and sox1a are expressed in pineal/parapineal of both iCab and Kaga embryos. (A,B,E) The parapineal expression
domain of otx5l is significantly larger in Kaga embryos compared to iCab embryos, whereas no size difference of the otx5l expression domain in the
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pineal and parapineal areas. Error bars represent SEM (standard error of the mean).
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