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Cancer cells and immune cells all undergo remarkably metabolic

reprogramming during the oncogenesis and tumor immunogenic killing

processes. The increased dependency on glycolysis is the most typical trait,

profoundly involved in the tumor immune microenvironment and cancer

immunity regulation. However, how to best utilize glycolytic targets to boost

anti-tumor immunity and improve immunotherapies are not fully illustrated. In

this review, we describe the glycolytic remodeling of various immune cells

within the tumormicroenvironment (TME) and the deleterious effects of limited

nutrients and acidification derived from enhanced tumor glycolysis on

immunological anti-tumor capacity. Moreover, we elucidate the underlying

regulatory mechanisms of glycolytic reprogramming, including the crosstalk

between metabolic pathways and immune checkpoint signaling. Importantly,

we summarize the potential glycolysis-related targets that are expected to

improve immunotherapy benefits. Our understanding of metabolic effects on

anti-tumor immunity will be instrumental for future therapeutic regimen

development.
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Introduction

In the latest decade, immunotherapy has achieved great advances in cancer treatment

in several malignancies (Pan et al., 2020). Immune checkpoint blockades (ICBs) and

adoptive cell therapy (ACT)-based strategies have been approved as first-line therapies for

various tumors (Al-Sawaf et al., 2019; Cohen et al., 2019; Reck et al., 2022). Despite the

dramatic tumor regression in some patients accepting ICB therapy, many patients do not

respond to these remedies initially (primary resistance), and a subset of patients

responsive in the beginning develop resistance at a later time and undergo disease
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relapse, that is acquired resistance (Bagchi et al., 2021). Similarly,

resistance and narrow application also limit ACT therapy

effectiveness. Understanding the mechanisms of therapeutic

resistance to immunotherapy has been listed as one of the top

10 challenges in cancer immunotherapy (Hegde and Chen,

2020). As the essential supporter of cancer cell viability and

malignant processes, cancer metabolism, especially glucose

metabolism, has been extensively studied for overcoming

immunotherapy resistance (Bader et al., 2020).

Unlike normal cells, tumor cells prefer aerobic glycolysis to

generate energy and meet other biological requirements of

malignant phenotype (Chang et al., 2015). Researchers

reported that the aberrant energy utilization mode of cancers

could alter the TME, creating a tumor-favorable niche, and

impairing effective cancer treatment (DePeaux and Delgoffe,

2021). In addition, metabolic rewiring was also observed in

various tumor-infiltrating lymphocytes and myeloid cells,

changing their cancer-killing or cancer-promoting effects

(Leone and Powell, 2020; Aramini et al., 2022). Therefore,

given the breakthrough research on the interplay between

anti-tumor immunity and cancer metabolism reprogramming

in the past decade, the combination strategy with

immunotherapy and glycolysis-targeted therapy is emerging.

Cascone et al. (2018) demonstrated that increased tumor

glycolysis is associated with resistance to adoptive T cell

therapy in melanoma and suggested the favorable benefits of

dual targeting cancer immunity and metabolism. And glycolytic

activity could upregulate immune checkpoint expression, thus

promoting immunotherapy response (Jiang et al., 2019). These

findings all validate that the manipulation of cancer cell and

immune cell glycolytic metabolism, is actionable in optimizing

cancer immunotherapy, but the detailed settings warrant further

exploration. It is should be noted that different cancer types and

even stratified cancer cell clusters in the same tumor tissue have

heterogeneous metabolic activity and dependency (Li et al.,

2022b), which may confer distinct vulnerability and responses

of cancers to immunotherapy and glycolytic-targeted therapy

(Wang et al., 2022a). Here, we elucidate the roles glycolytic

reprogramming within TME plays in cancer immunity, and

we highlight the potentiality of targeting glycolysis in

enhancing immunotherapy.

The glucose metabolism features in
tumor microenvironment

Glucose metabolism in cancer cells

Normal cells utilize mitochondrial respiration, termed

oxidative phosphorylation (OXPHOS), to sustain bioenergy

synthesis and viability. Conversely, in response to hypoxia and

oncogenic signals, like MYC and PI3K, cancer cells

predominantly utilize glycolysis to support rapid growth and

genome replication, even under abundant oxygen (Chang et al.,

2015). This metabolic reprogramming is called the “Warburg

effect” or aerobic glycolysis, a prominent feature of energy

metabolism in cancer.

The glycolytic process is composed of glucose transporter 1

(GLUT1)-mediated glucose uptake and the conversion from

glucose into pyruvate through ten consecutive enzymatic

reactions in an oxygen-independent manner. Newly generated

pyruvate is either catalyzed in acetyl-CoA to fuel the tricarboxylic

acid (TCA) cycle or is reduced toward lactate by lactate

dehydrogenase (LDH) to achieve the regeneration of NAD+

for continuous glycolysis and NAD+/NADH redox balance

(Chang and Pearce, 2016). Redundant lactate is released from

cells by monocarboxylate transporters (MCTs). In addition to

energy production, glycolysis also provides biosynthesis

precursors to cross-link other metabolic pathways, such as 3-

phosphoglycerate for one-carbon pathway, thus playing a critical

role in nucleotide and amino acid synthesis (Leone and Powell,

2020).

Glucose metabolism in immune cells

Glycolytic preference is a shared mechanism to satisfy

biosynthesis and energy requirements in rapidly proliferating

cells. In the TME, cancer cells, effector T cells, and M1-like

macrophages are prone to upregulate glycolysis and

glutaminolysis fluxes. In contrast, memory T cells, regulatory

T cells (Tregs), and M2-like macrophages mainly rely on fatty

acid oxidation (FAO) (Figure 1) (Andrejeva and Rathmell, 2017).

Naïve T cells utilize TCA-coupled OXPHOS to maintain

hypometabolic status. UponMHC-peptide stimulation, the T cell

receptor (TCR) coupled with CD28 activates PI3K-AKT-

mTORC1 and MYC signaling pathway to trigger metabolic

reprogramming (Wang et al., 2011). To enhance anabolic

metabolism for cancer-killing function and clone expansion,

effector T cells are metabolically activated and upregulate

aerobic glycolysis. Simultaneously, the intermediates from

glycolysis are essential for T cell effector activation and

cytokine generation. For example, glycolytic metabolite

phosphoenolpyruvate (PEP) blocks Sarco/endoplasmic

reticulum Ca2+-ATPase (SERCA)-mediated ER calcium uptake

to retain cytosol Ca2+ and nuclear factor of activated T-cells

(NFAT) signaling, which is indispensable for TCR signaling

transduction (Ho et al., 2015). Phosphoenolpyruvate

carboxykinase 1 (PCK1) can catalyze oxaloacetate (OAA) into

PEP, and PCK1 overexpression boosts the adoptive transferred

CD4+ and CD8+T cell cancer-killing functions (Ho et al., 2015).

Exhausted CD8+T cells prefer glycolysis to OXPHOS, and

this metabolic adaptation to TME further dampens their cancer-

inhibiting function (Scharping et al., 2021). Memory T cells

remain in metabolically quiescent states and depend on FAO

to fuel OXPHOS (Pearce et al., 2013). However, glycolysis is
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unnecessary for T cell persistence fed by general glucose

metabolism (Chang et al., 2013).

The functions of CD4+T cells are also intertwined with

specific metabolic reprogramming. Glycolysis promotes the

production of IL-2, TNFα, and IFNγ in CD4+T cells, while

whose repression can lead to CD4+T cell hyporesponsiveness

and exhaustion, along with increased expression of PD-1 and

LAG-3 (Jancewicz et al., 2021; Martins et al., 2021).

Inflammatory CD4+T cells (Th1 and Th17 cells) have high

glucose activity. The pyruvate dehydrogenase (PDH) inhibitor,

pyruvate dehydrogenase kinase isozyme 1 (PDHK1), is

exclusively expressed in Th17 cells, whose ablation changes

the immune cell composition, including selective reduction of

Th17 cells (Gerriets et al., 2015). Instead, Tregs ramp up

OXPHOS and FAO to maintain bioenergy synthesis (Gerriets

et al., 2015). The Tregs-specific expression of transcription factor

FOXP3 restrains MYC signaling and antagonizes PI3K-AKT-

mTORC1 axis-mediated glycolytic activation to increase

oxidation and catabolic metabolism, endowing the survival

advantage for Tregs in TME (Gerriets et al., 2016; Angelin

et al., 2017). Moreover, Tregs can utilize lactate-metabolic

pathways to sustain proliferation and suppressive identity in

the low-glucose condition. High-glucose ex vivo culture

condition even dampens their stability (Watson et al., 2021).

These data indicate the difference in functionally differentiated

T cells’ metabolic signature.

M1-like macrophages mainly rely on glycolysis to sustain

inflammatory phenotype (Kelly and O’Neill, 2015). Instead, M2-

like macrophages exhibit an immunosuppressive phenotype,

depending on the TCA cycle and FAO (Netea-Maier et al.,

2018). A study found that the acidic living environment of

highly glycolytic melanoma further induced tumor-associated

macrophages (TAMs) toward a cancer-promoting phenotype

(Bohn et al., 2018).

The intrinsic heterogeneity of tumor-associated neutrophils

(TANs) and cancer contexts determine these myeloid cells’ pro-

or anti-tumor effects. In pancreatic ductal adenocarcinoma

(PDAC), the multi-omics approach exhibits that TANs

undergoing glycolytic switch mediated by LDHA upregulation

showed tumor-promoting phenotype (Wang et al., 2022b).

Triple-negative breast cancer (TNBC) cells with accelerated

glycolysis highly express granulocyte colony-stimulating factor

(G-CSF) and granulocyte-macrophage colony-stimulating factor

(GM-CSF) under the regulation of liver-enriched activator

FIGURE 1
The metabolic reprogramming of immune cells within the characteristic tumor microenvironment. FAO, fatty acid oxidation; Tregs, regulatory
T cells; TAM, tumor-associated macrophages; TAN, tumor-associated neutrophils; MDSCs, myeloid-derived suppressor cells.
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protein and AMP-activated protein kinase (AMPK)-serine/

threonine-protein kinase (ULK1) pathway, supporting

myeloid-derived suppressor cells (MDSCs) development and

facilitating CD8+T cell inhibition and cancer progression (Li

et al., 2018). Moreover, increased lactate generation enhances the

tumor-promoting capacity of MDSCs through the G protein-

coupled receptor 81 (GPR81)/mTOR/HIF-1α/STAT3 pathway in
PDAC (Yang et al., 2020).

Of note, TME is characterized by loss of essential nutrients,

inadequate vascularization, lactate accumulation, and hypoxia,

and all these detrimental conditions contribute to cancer-killing

T cell disability to a large extent. Here we focus on the direct

results of the increased glycolytic flux, including limited glucose

and acidic TME.

Glucose deficiency

Cancer cells with activated glycolysis outcompete immune

cells for glucose utilization, and glucose deficiency impairs the

persistence and function of effector T cells. For example, the

expression of glycolysis-related genes, such as ALDOA, ALDOC,

ENO2, GAPDH, GPI, and PFKM, negatively correlates with

T cell infiltration in TCGA cohorts of melanoma and NSCLC

patients (Cascone et al., 2018). The restricted glucose supplement

in TME directly damages the glycolytic capacity of effector T cells

(Ho et al., 2015), and T cells with low glycolytic potency exhibit

exhausted states and reduced anti-apoptosis gene and effector

gene expression (Song et al., 2022a). In the mice sarcoma model,

glucose deprivation could inhibit the mTOR activity and IFN-γ
production of tumor-infiltrating lymphocytes (TILs) (Chang

et al., 2015). In addition, glucose absence also disturbs

mitochondrial functions. Mitochondrial abnormalities can

promote the permanent terminal exhaustion of CD8+T cells

(Yu et al., 2020).

Tumor microenvironment acidification

Beyond the fierce competition of glucose between cancer cells

and TILs, the lactate generated from intensive glycolysis also

contributes to immunodepressive TME. Lactate metabolism is

involved in oncogenesis (Kooshki et al., 2022), especially the

serum lactate concentration is positively associated with cancer

burden (Fischer et al., 2007), as well as LDH level is a biomarker

for poor prognosis and immunotherapy efficacy (Robert et al.,

2022). Low pH (6.5–6.9) is adverse to anti-tumor immunity,

where effector CD8+T cells exhibit reduced IL-2Rα (CD25) and

TCR expression, along with STAT5 and extracellular signal-

regulated kinase (ERK) inactivation (Calcinotto et al., 2012).

Lactate also disturbs the TCR signaling by blocking the

phosphorylation of JNK, c-Jun, and p38 (Mendler et al.,

2012). Exposed to a large amount of lactate, Tregs prefer

OXPHOS to regenerate NAD+ through abundant lactate

converted into pyruvate. In contrast, effector T cells are hard

to maintain the balance of NAD+ to NADH in this way (Angelin

et al., 2017). In addition, lactate is a mediator to promote the

expression of proinflammatory cytokines in tumor-infiltrating

immune cells, including IL-23 and IL-17, thereby motivating

tumorigenesis and impairing anti-tumor activity (Shime et al.,

2008). Acidification also impairs the antigen presentation

processes, including antigen-MHC-Ⅰ-complexes stability and

cross-presentation of DCs, and is correlated with poor clinical

benefits of DC vaccines (Caronni et al., 2018; Burgdorf et al.,

2020). Previous studies indicated that acidification neutralization

by bicarbonate could enhance T cell functional reversion and

infiltration (Mendler et al., 2012; Pilon-Thomas et al., 2016).

Notably, it has been reported that the type-Ⅰ IFN, which is

downstream of TLR3 and STING, can be inhibited in the

lactate-abundant TME. It is a novel viewpoint about the role

of glycolysis in innate anti-tumor immunity (Caronni et al.,

2018).

Hypoxia

Hypoxia is an essential feature of TME, resulting from poor

vascularization and high metabolism of cancer cells. Enhanced

glycolysis is partially attributed to oxygen-limited in the TME.

HIFs promote glycolytic gene transcription to maintain the

anaerobic metabolism of cancers and immune cells (Smith

et al., 2016; Cho et al., 2019; Bader et al., 2020). As an

environmental stimulator, hypoxia has a conflicting effect on

anti-tumor immunity. Effector T cells would undergo epigenetic

reprogramming upon hypoxia exposure, and the altered

epigenetic regulation reduces their transcription and function

(Ford et al., 2022; Ma et al., 2022). In contrast, another study

demonstrated that hypoxia-inducible factor-1α (HIF-1α)
deletion led to the reduction in T cell infiltration and tumor

killing during hypoxia conditions (Palazon et al., 2017). While

under oxygen limitation, HIF-1α can be induced in Tregs, and

bind to the promoter region of the FOXP3 to promote

transcription (Clambey et al., 2012). HIF-1α also favors an

immunosuppressive TME by reinforcing other cancer-

promoting immune cell functions, including MDSCs and M2-

like macrophages (Deng et al., 2019; Zhang et al., 2022). Overall,

hypoxia promotes glycolysis flux in cancer cells and makes

negative effects on cancer immunity to a greater extent than

positive effects.

The regulatory signaling pathways of
glycolysis

Targeting critical glycolytic regulation signaling pathways

which modulate cancer cell and immune cell glycolysis
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reprogramming is a promising approach for enhancing the anti-

tumor capability (Bader et al., 2020), and several related drugs

like metformin and phenformin have been extensively tested in

clinical trials (García Rubiño et al., 2019; Chow et al., 2022)

LKB1-AMPK signaling pathway

The liver kinase B1 (LKB1)-AMPK pathway regulates cell

metabolism according to different energy statuses (Blagih et al.,

2012). Upon stimulation, the LKB1-dependent kinases can regulate

downstream metabolic pathways by targeting multiple effectors,

including AMPK (Shackelford and Shaw, 2009). AMPK has three

subunits, α, β, and γ. The β subunit binds with glycogen particles,

and the γ subunit has two mutually antagonistic nucleotide binding

sites for AMP and ATP. These structures allow AMPK to sense

bioenergy fluctuation and mediate energy metabolism switch from

anabolism toward catabolism to maintain energy homeostasis

(Dërmaku-Sopjani and Sopjani, 2019).

Loss of LKB1 increases glycolytic transcription and flux in

T cells by mechanisms including upregulated expression of

GLUT1 and hexokinase2 (HK2) (Figure 2) (MacIver et al., 2011).

Intriguingly, under glycolysis inhibition by 2-Deoxy-D-glucose (2-

DG) or IL-2-deficiency, LKB1 ablation significantly induces T cell

death, indicating the impaired stress response of T cells (MacIver

et al., 2011). In parallel with LKB1, AMPK maintains T cell

mitochondrial bioenergetics and ATP production following

pathogen infections, meanwhile regulating CD8+T cell primary

response and Th1 and Th17 differentiation (Blagih et al., 2015).

Antagonizing the effects of the PI3K-AKT-mTOR axis (Shackelford

and Shaw, 2009), AMPK is activated in low-glucose TME to inhibit

glycolysis-related gene expression, such as GLUT1, whereby

downregulating glycolytic flux and promoting cellular

metabolism toward catabolism and OXPHOS, in favor of

immunosuppressive immune cells including Tregs, M2-like

macrophages, and MDSCs (Michalek et al., 2011; Bader et al.,

2020). Moreover, AMPK also phosphorylates phosphofructi-2

kinase (PFK2) to modulate glycolytic activity (Almeida et al., 2004).

PI3K-AKT-mTOR signaling pathway

The PI3K-AKT-mTOR axis is extensively involved in cell

proliferation, survival, cell cycle, and glucose metabolism (Thorpe

et al., 2015). As a major glycolysis-promoting signaling pathway, the

PI3K-AKT-mTOR axis deregulation can promote HIF-1α
activation, GLUT1 expression, and several metabolic enzyme

activations (Figure 2) (Denko, 2008; Icard et al., 2022).

In TCR-stimulating T cells, PI3K signaling increases AKT

phosphorylation and glycolytic flux via LDHA (Xu et al., 2021a).

AKT is themajor regulator for glycolysis in cancer and immune cells.

AKT activation upregulates the expression of GLUT1 and LDHA

(Jacobs et al., 2008), promotes the phosphorylation of HK2 and

PFK2 to activate HK1 (Miyamoto et al., 2008), and inhibits PDH by

activating pyruvate dehydrogenase kinase-1 (PDK1) to promote the

glycolytic process (Chae et al., 2016). HIF-1α is the major

transcription factor regulated by mTOR, and many glycolytic

enzymes, as well as the GLUT family, are the downstream target

of HIF-1α (Denko, 2008). Of interest, mTOR kinase is found to

determine the fate of effector and memory CD8+T cells. Blocking

mTOR activity by rapamycin can promote memory cell precursors

(Araki et al., 2009), especially the newly differentiated memory

CD8+T cells equipped with more superior anti-tumor activity

than IL-2-inducing effector T cells (Rao et al., 2010). mTOR

activation also promotes T cell effector functions. For example, in

LKB1/AMPK deficient T cells, mTOR upregulation propels IFNγ
production (MacIver et al., 2011). Dotsu et al. introduced a small

molecule PQDN that can activate T cells following TCR stimulation

and demonstrated that PQDN could augment CD8+T cell function

through AKT-mTOR activation (Dotsu et al., 2022).

Targeting glycolysis in combination
with immunotherapy

Adoptive cell therapy

ACT boosts anti-tumor immunity by directly providing

therapeutic modified immune cells. T cells are representative

FIGURE 2
Overview of glycolytic process and regulatory relationships.
The fonts marked red are agents developing in clinical or
preclinical trials for targeting corresponding regulatory molecules.
The lines with arrows mean upregulation or activation; the
lines without arrows mean downregulation or repression. PFK1,
phosphofructokinase1; PEP, phosphoenolpyruvate; PDK1,
pyruvate dehydrogenase kinase1; PDH, pyruvate dehydrogenase;
PKM2, pyruvate kinase isoform M2.
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cell types for the ACT, including ex vivo expanded TILs, and

engineered T cells expressing antigen-specific TCRs or chimeric

antigen receptors (CARs) (Madden and Rathmell, 2021). ACT

has achieved remarkable success in several cancer types, like

CD19-targeted CAR-T cells in B cell-derived hematological

malignancies. People can modulate the functional and

differential states of T cells prior to cell infusion to make

them more lethal to cancer.

Metabolic modulation is critical for promoting tumor

cytotoxicity and the effectiveness of ACT. Therefore,

enhancing the metabolic adaptation of therapeutically used

T cells in the nutritionally competitive TME is promising to

improve ACT efficacy (Sudarsanam et al., 2022). Particularly,

glycolysis has unfavorable effects on these ACT-used T cells

during the expansion phase and intratumoral function. For

example, less differentiated CAR-T cells have superior

persistence and anti-tumor ability, whereas high glycolytic flux

is against developing long-lasting memory phenotypes for T cells

(Madden and Rathmell, 2021). Adding glutamine antagonist 6-

Diazo-5-oxo-l-norleucine (DON) into the culture medium can

enhance CAR-T cell FAO and reduce glycolysis. In this way,

CAR-T cells remain in more undifferentiated states (Shen et al.,

2022). Interestingly, in the culture medium for CAR-T cell ex

vivo expansion, IL-2, IL-7, and IL-15 are commonly added

cytokines (Sudarsanam et al., 2022). IL-2 can propel terminal

differentiation and enhance aerobic glycolysis of CD8+T cells,

consequently leading to poor efficiency after adoptive transfer

(Hermans et al., 2020).On the contrary, IL-21 upregulates the

OXPHOS utilization and stem-like phenotype of CAR-T cells

(Hermans et al., 2020). IL-7-secreting CD4+CAR-T cells have

lower metabolic activity in the resting stage and respond to

neoplastic stimulation with faster metabolic activation (Li et al.,

202a). The influence of culture medium supplements on CAR-T

cell metabolism is worthy of more attention to optimize

therapeutic efficiency.

Moreover, studies focusing on the outcome of combining

glycolysis inhibition with ACT have further proved the

detrimental effects of the glycolytic pathway on ACT cells.

HK2 inhibitor 2-DG upregulates AMPK phosphorylation

which negatively regulates mTOR activity to shut down

glycolysis in adoptive transfer CD8+T cells (Sukumar et al.,

2013). These CD8+T cells treated with 2-DG express more

memory phenotype-related markers, and glycolysis inhibition

can promote the proportion and quality of memory CD8+T cells

even during T cell priming (Sukumar et al., 2013). In agreement

with the PI3K-AKT-mTOR pathway is pivotal in activating

aerobic glycolysis, CD19-CAR-T cells have remarkable

central-memory phenotypes and more robust tumor

elimination efficacy when treated with AKT inhibitors

(Klebanoff et al., 2017). Oppositely, mitochondrial oxidation is

necessary for long-term survival and the maintenance of the

memory-like phenotype of CAR-T cells. Therefore, rewiring

mitochondria, such as enhancing mitochondrial lipid

metabolism and oxygen consumption, is a feasible strategy to

improve CAR-T cell superiority (Madden and Rathmell, 2021).

Beyond the direct glycolysis inhibition, short-term culture, less

glucose, and the inosine inhibitors addition are also helpful for

CAR-T cells to develop a desirable phenotype (Sudarsanam et al.,

2022). Transient glucose restriction (TGR) can enhance the

anabolic program and tumor clearance efficiency of effector

CD8+T cells after glucose re-exposure (Klein Geltink et al.,

2020). Intracellular lactate accumulation also impedes T cell

proliferation and NAD+ regeneration (Quinn et al., 2020).

Thus LDH inhibition is proposed as a feasible strategy to

optimize CAR-T cell therapy (Hermans et al., 2020; Mane

et al., 2020).

Immune checkpoint blockades therapy

Chronic antigen stress and the immunosuppressive

molecules within the TME can focus cytotoxic T cells to an

exhausted status, characterized by immune checkpoint

expression and impaired cytotoxic effects. Checkpoint

molecules, such as CD28, CD40L, and cytotoxic T

lymphocyte-associated protein 4 (CTLA-4), cooperate with

TCR signaling to initiate activation, persistence, and

exhaustion of TILs. Functional alternations during the

exhaustion process are concurrent with metabolic adaptations,

which further support the immunosuppressive functions of

checkpoints. Therefore, targeting critical glycolytic regulators

or metabolites that contribute to immune checkpoints-

mediated T cell inhibition is a promising therapeutic strategy

in combination with ICBs.

Programmed cell death protein 1 (PD-1) and CTLA-4 are

two well-known immune checkpoints. CTLA-4 only expresses

on T cells, plays an immunosuppressive role in the initial phase

when naïve T cells are activated by antigen-presenting cells

(APCs) in lymphoid tissues, and impedes primary T cell

activation-induced glycolysis (Rudd et al., 2009). PD-1

expresses following T cell activation in peripheral tissues, as a

marker of activated T cells and early exhausted T cells (Morad

et al., 2021). PD-1 and CTLA-4 can impair the metabolic

reprogramming induced by CD28 co-stimulation.

Mechanistically, CD28 signaling senses ATP/ADP levels in

T cells to control glucose uptake, and then activates the PI3K-

AKT signaling pathway that increases glycolytic flux (Frauwirth

et al., 2002). CTLA-4 competes with CD28 for binding to CD80/

CD86 and inhibits the downstream signaling of CD28. The

YVKM motif of CTLA-4 is bound by PI3K and phosphatases

SHP-2 and PP2A with negative signaling to inhibit T cell

activation (Parry et al., 2005; Rudd et al., 2009). CTLA-4

blockades can enhance the metabolic fitness of CD8+T cells

and destabilize Tregs in glycolysis-defective tumors, indicating

that the combination of CTLA-4 blockers and glycolysis

inhibitors is a promising strategy in cancer (Zappasodi et al.,
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2021). Additionally, when effector T cells are activated, PD-1

signaling inhibits glycolysis and induces OXPHOS dysregulation

by interrupting AKT phosphorylation and recruiting SHP1/

2 phosphatase to inhibit PI3K activation before T cells show

significant incapacitation (Parry et al., 2005; Bengsch et al., 2016;

Ogando et al., 2019). PD-1 also promotes FAO by upregulating

CPT1A expression in T cells (Patsoukis et al., 2015). Tkachev

et al. found that during allogeneic bone marrow transplantation,

PD-1 could increase ROS by FAO to destroy alloreactive T cell

survival (Tkachev et al., 2015). Of note, a recent study found that

Tregs enhanced lactate absorption and then upregulated the PD-

1 expression competing out effector T cells in glucose-limited

TME, and in this setting anti-PD-1 therapy promoted Treg

function, suggesting a novel immunotherapy resistance

mechanism (Kumagai et al., 2022).

In addition to PD-1 and CLTA-4, there are various targetable

coinhibitory molecules or positive immune regulators

participating in cancer and immune cells’ metabolic rewiring

(Morad et al., 2021). High T-cell immunoglobulin mucin

receptor 3 (TIM-3) expression in a large subset of tumor-

infiltrating Tregs can enhance Tregs’ repressive functions by

upregulating glycolysis (Banerjee et al., 2021). TIM-3 is also

highly expressed in human myeloid leukemia cells, mediating

PI3K-mTOR and hypoxic pathway activation to enhance

glycolysis (Prokhorov et al., 2015), In contrast, another study

found that glycolytic flux negatively correlates with TIM-3

expression in Jurkat T cells (Lee et al., 2020), so the

association between TIM-3 and glycolysis warrants further

illustration. These findings indicate that TIM-3 has effects on

the metabolism pathway in both lymphoid and myeloid lineages.

The co-stimulator OX40 is also positively correlated with

glycolysis and fatty acid metabolism activity in Tregs (Pacella

et al., 2018). V-type immunoglobulin domain-containing

suppressor of T-cell activation (VISTA) is another inhibitory

checkpoint molecule. And the co-inhibitory receptor P-selectin

glycoprotein ligand-1 (PSGL-1) can bind to the extracellular

domain of VISTA and repress T cell function in the acidic TME

(Johnston et al., 2019). 4-1BB (CD137) is a stimulator for

CD8+T cell proliferation, and its agonist significantly activates

the glycolysis, mitochondrial functions, and fatty acid

metabolism of T cells by increasing GLUT1 expression and

activating the AMPK-acetyl-CoA carboxylase (ACC) pathway

(Choi et al., 2017). Based on the positive association between 4-

1BB signaling and the TILs biogenesis, 4-1BB agonist in

combination with adoptive cell therapy and PD-1 blockade

can further augment cancer elimination based on

immunotherapy potency (Menk et al., 2018). Likewise, the

immune co-stimulator (ICOS) can also activate mTORC1 and

mTORC2 to drive glycolysis and lipogenesis of follicular helper

T cells and enhances their responses (Zeng et al., 2016).

Collectively, metabolic dysfunction is an essential

mechanism through which immune checkpoint molecules

constrain anti-tumor immunity. The combinatorial regimen of

ICBs and metabolic regulators is a promising therapeutic

strategy. Glycolysis-targeted agents which show favorable

efficacy in combination with immunotherapies are listed in

Table 1.

Available glycolysis-targeted
therapies

mTOR

As an oncogenic signaling pathway, direct inhibition of the

mTOR axis regulates the metabolic characteristics of tumor-

infiltrating immune cells and blocks the malignant phenotype of

cells. Based on their inhibitory effects on cancer metabolism and

growth, rapamycin analogs have been approved for cancer

treatment (Holloway and Marignani, 2021). However, these

agents are likely to diminish anti-tumor immunity (Bader

et al., 2020). The glycolytic activity affected by rapamycin is

the pivotal determinant for lineage differentiation (Shi et al.,

2011). Rapamycin suppresses the Th17 differentiation and

promotes Tregs differentiation under the induction of TGFβ
(Kopf et al., 2007). Studies found that enforced AKT-mTORC1

signaling can restore T cell function and reduce the expression of

immune checkpoint molecules such as PD-1 and TIM-3 to retard

T cell exhaustion (Siska et al., 2016). And

mTORC1 overactivation impairs the immunosuppressive

capacities of Tregs, whereas a low level of mTORC1 can

enhance Tregs activity (Chapman et al., 2018). Therefore,

identifying the most optimized inhibitory and activated level

of the PI3K-AKT-mTOR axis is significant to the efficiency of

mTOR-related therapy.

AMP-activated protein kinase

As a classical activator of AMPK, metformin has exhibited

satisfactory treatment effects in various cancer types (Chow et al.,

2022). Metformin regulates metabolic signature by interacting

with the PI3K-AKT-mTOR axis and HIF-1α (Nozhat et al., 2018;
Shao et al., 2020), both of which are the main regulators of

Warburg effects. A bulk of studies have validated that metformin

also promotes the cancer-killing functions of CD8+T cells in

metabolic regulation-dependent manners (Pearce et al., 2009;

Chen et al., 2021b; Chao et al., 2022). Metformin treatment

downregulates immune checkpoint expression and glycolytic

cancer flux in a HIF-1α inhibition-dependent manner, thereby

improving ICB therapy (Chung et al., 2021; Song et al., 2022b).

Furthermore, the metabolic rewiring effects-mediated by

metformin can affect the metabolic interaction between cancer

cells and non-malignant cells within TME. For example, lactate

and ketone bodies produced by cancer-associated fibroblasts

(CAFs) produce can be utilized by cancer cells in the TME.
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Metformin disturbs the cross-feeding of CAFs and cancer cells to

repress the additional nutrient support for cancers (Mostafavi

et al., 2022).

Hexokinase

2-DG is an effective HK inhibitor to repress the Warburg

effect phenotype of cancers (Pouysségur et al., 2022). Luo et al.

(2022) designed a novel multi-targeted nano drug termed D/B/

CQ@ZIF-8@CS enveloping 2-DG, BAY-876 (GLUT1 inhibitor),

and chloroquine (CQ), which sufficiently inhibits the aerobic

glycolysis procedure of cancer cells. Significantly, the drug

synthetically improves the anti-CTLA-4 immunotherapy

efficacy by reducing Tregs metabolic fitness in the relieved

TME, which is used to be glucose-deficient and lactate-

enriched (Luo et al., 2022). In ovarian cancer, Tregs

pretreated with 2-DG also alleviate the inhibition of effector

T cell proliferation (Xu et al., 2021b). In addition, HK recently

has been found to upregulate PD-L1 expression in cancer cells in

an NF-κB-dependent pathway, and HK inhibitor Lonidamine

has shown favorable cancer elimination in combination with

anti-PD-1 therapy in mice model (Guo et al., 2022). However, the

severe systemic toxicity induced by HK inhibitors in clinical

studies warrants further investigation (Pouysségur et al., 2022).

Glucose-6-phosphate isomerase

Glucose-6-phosphate isomerase (GPI) catalyzes glucose-6-

phosphate (G6P) toward fructose-6-phosphate (F6P), and its

overexpression is documented in various cancer types, such as

lung adenocarcinoma (Han et al., 2021) and gastric cancer (Ma

et al., 2018), associated with highly activated Warburg effect

phenotype of cancer cells and poor prognosis. GPI knockout

experiments demonstrate that cancer cells will motivate

OXPHOS following GPI KO-induced glycolytic inhibition to

sustain survival. Still, GPI silencing combined withmTORC1 and

OXPHOS inhibition significantly represses tumor growth

(Pouysségur et al., 2022). GPI inhibition is found to

determine autoimmunological-related and homeostatic-related

Th17 immune cell persistence in a context-dependent manner

(Wu et al., 2020), but the evidence explaining the role of GPI

silencing in anti-tumor immunity is absent. Whether GPI-

targeted metabolic reprogramming can enhance

immunotherapy is explored further.

TABLE 1 The combination regimens for glycolysis-targeted agents and immunotherapies in preclinical studies.

Target Human cancers/
murine
cancer models

Agents Mechanisms Immunotherapy References

Hexokinase Breast cancer, ovarian cancer 2-DG, Lonidamine Inhibiting Treg metabolism
reprogramming in TME; derepressing
T cell proliferation; Upregulating PD-L1
expression in cancer cells

Anti-CTLA-4/PD-
1 therapy

Xu et al., 2021a; Guo
et al., 2022; Luo et al.,
2022

GAPDH Breast cancer, colon
adenocarcinoma

Dimethyl fumarate Promoting oxidative pentose phosphate
pathway in cancer cells and inhibiting
cancer cells’ competition for glucose

ICB/IL-2 therapy Lei et al. (2022)

Acidified
TME

Melanoma, pancreatic
carcinoma

PPI(Esomeprazole),
Bicarbonate

Buffering the acidification TME ACT/anti-CTLA-4/anti-
PD-1 therapy

Calcinotto et al., 2012;
Pilon-Thomas et al.
(2016)

PFKFB Hepatocellular carcinoma,
myeloma, breast cancer

PFK15 Disturbing the metabolic support of
cancer-associated fibroblasts for cancer
cells; Inhibiting PD-L1 expression in
cancer cells and macrophages

Anti-PD-1 therapy Chen et al., 2019; Liu
et al., 2022; Zang et al.,
2022

PKM2 Pancreatic carcinoma, lung
cancer, melanoma

Shikonin, isovitexin Reducing PD-L1 expression Anti-PD-1/PD-
L1 therapy

Zhao et al., 2018; Chen
et al., 2021a

NAD+ Melanoma, colon tumor NAD precursor
(nicotinamide riboside)

NAD+ reduces mitochondria abnormality
in TILs

Anti-PD-1 therapy Yu et al. (2020)

LDH Melanoma, non-small cell
lung cancer

Oxamate Impeding IL-2-induced CD8+T cell
terminal differentiation; Increasing T cell
tumor infiltration

ACT/anti-PD-1 therapy Mane et al., 2020; Qiao
et al. (2021)

MCT1 Melanoma, head and neck
squamous cell carcinoma,
colon carcinoma

AZD3965 Repressing lactate uptake and PD-1
expression in Tregs; Reducing TME
acidification

Anti-PD-1 therapy Huang et al., 2021;
Watson et al. (2021)

MCT4 Hepatocellular carcinoma VB124 Promoting effector T cell infiltration;
reducing acidification

Anti-PD-1 therapy Fang et al. (2022)
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Glyceraldehyde-3-phosphate
dehydrogenase

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

reduces glyceraldehyde-3-phosphate toward 1,3-

bisphosphoglycerate within the glycolytic pathway. GAPDH

inhibitor, Dimethyl fumarate (DMF), is reported to facilitate

the oxidative pentose phosphate pathway (PPP) while inhibiting

glycolysis and OXPHOS in tumor cells. The reduced glucose

competition between cancer cells and T cells mediated by DMF

improves the efficacy of ICB and IL-2 therapy in BRCA and

COAD patients (Lei et al., 2022). Intriguingly, low-dose

osimertinib can inhibit GAPDH activity and tumor

endothelial glycolysis, thereby promoting adequate

vascularization and immune cell infiltration to improve the

tumor repression efficacy of PD-1 blockade (Shan et al., 2022).

Fructose-2,6-bisphosphatase

Fructose-2,6-bisphosphatase (PFKFB) catalyzes the synthesis

and degradation of fructose 2-6 biphosphate (F-2,6-BP), the

positive allosteric effector of glycolytic rate-limiting enzyme

PFK. Zheng et al. (2022) found that fructose-2,6-

bisphosphatase 3 (PFKFB3) is upregulated in various cancer

types, and its inhibition represses the glycolysis of cancer cells

and concomitantly upregulates PD-L1 expression. Furthermore,

glucose deficiency can reversibly upregulate PD-L1 expression

through EGFR/ERK/c-Jun pathway in cancer cells and then

increased PD-L1 upregulates PFKFB3 to promote glycolysis

(Chen et al., 2019; Liu et al., 2022). The finding uncovers a

new therapeutic resistance mechanism: checkpoint molecule and

glycolytic metabolism construct an immunosuppressive positive

feedback loop (Yu et al., 2021). Zang et al. (2022) designed a dual-

target drug of paclitaxel and PFKFB3 inhibitor PFK15 to block

the CAF-mediated metabolic support for cancers. The drug

synthetically inhibits cancer growth and concomitantly

reduces lactate concentration in the TME. Moreover,

PFK15 cripples diabetogenic CD4+T cell effects by leading to

metabolic expression and upregulating PD-1 and LAG-3

expression in the context of Type 1 Diabetes, suggesting the

considerable role of PFK15 plays in T cell immunogenetic

regulation (Martins et al., 2021). Combined with anti-PD-

1 treatment, the efficacy of PFKFB3 inhibitors can be

enhanced in cancer therapy (Zheng et al., 2022).

Pyruvate kinase isoform M2

Pyruvate kinase isoform M2 (PKM2) is the critical enzyme

for the final rate-limiting step of glycolysis, converting

phosphoenolpyruvate toward pyruvate. Palsson-McDermott

found that PKM2 accelerates tumor progression by promoting

PD-L1 expression in macrophages, DCs, and tumor cells

(Palsson-McDermott et al., 2017). In PDAC, the high

expression of PKM2 is a poor prognostic factor.

PKM2 knockdown decreases PD-L1 expression and improves

the anti-tumor efficacy of PD-1/PD-L1 blockade (Xia et al.,

2022). Several newly found PKM2 inhibitors with high cancer

repression in vitro and mice xenograft models, such as Shikonin

and Isovitexin (Zhao et al., 2018; Chen et al., 2021a), need more

clinical trials to detect the efficiency and toxicity of

PKM2 inhibition in complex internal environments.

Targeting lactate generation and
transportation for immunotherapy

Directly buffering the acidic tumor
microenvironment

The reversibility of adverse effects on anti-tumor immunity

mediated by TME acidification is the prerequisite for targeting

lactate to improve anti-tumor immunity and optimize

immunotherapy. A study validates that the attenuated

functions of CTLs would be restored when cultured in the

lactic acid-free medium (Fischer et al., 2007). The treatment

of proton pump inhibitors (PPIs) can optimize adoptive transfer

lymphocyte therapy by buffering the acidized TME to revert the

effector T cell functions (Calcinotto et al., 2012). Moreover,

bicarbonate monotherapy can slow cancer growth sufficiently

in the mice model, and bicarbonate combined with ICB or ACT

further improves therapeutic responses, suggesting lactate

acidosis could induce immunotherapy resistance (Pilon-

Thomas et al., 2016).

Lactate dehydrogenase

LDHmediates the interconversion of lactate and pyruvate,

composed of different combinations of LDHA and LDHB

towards a tetramer (Decking et al., 2022). LDHA has a strong

affinity for pyruvate, while LDHB binds lactate more (Decking

et al., 2022). LDH controls the regeneration of NAD+, which

will be consumed at the glyceraldehyde-3-phosphate

dehydrogenase step of glycolysis. Thus, LDH is

indispensable for glycolytic persistence. The research found

that NAD precursors like nicotinamide riboside (NR) can

reduce the mitochondrial disability in CD8+T cells and elicit

more potent inhibition of cancers when combined with ICBs

(Yu et al., 2020). Serine supplementation can poise the LDH-

mediated NAD+/NADH redox unbalance in high lactate

cellular environment to relieve the proliferation of T cells,

based on the findings by Quinn et al. that redox homeostasis is

a therapeutic target for developing immunotherapy (Quinn

et al., 2020).
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Notably, the MCT-mediated efflux of lactate from

CD8+T cells is determined by the relative lactate gradient

between intracellular and extracellular environments.

Therefore, a high lactate level in TME will lead to high lactate

inside stacking (Fischer et al., 2007). The intracellular

acidification impairs T cell energy metabolism and functions

(Brand et al., 2016), abrogating the cancer repression of effector

T cells and NK cells by preventing the NFAT and IFNγ
expression (Brand et al., 2016). LDHA inhibitor oxamate

increases the TME infiltration of CD8+T cells, and the

combination of oxamate and pembrolizumab shows a

favorable response in NSCLC mouse models (Qiao et al.,

2021). However, LDHA inhibition shows bi-directional effects

on T cell functions. LDHA knockout would impair glucose

consumption and lactate production in T cells, especially

interrupts glycolytic ATP production and the

FOXO1 expression in PI3K-AKT dependent manner (Peng

et al., 2016; Xu et al., 2021). In the activated Th1 cells, LDHA

promotes histone acetylation by maintaining a high cytoplasmic

acetyl-CoA concentration; in this way, Th cells upregulate IFNγ
expression and enter the differentiation course (Peng et al., 2016).

Besides, genetic and pharmacological LDHA inhibition may

induce unexpectedly metabolic rewiring in cancer cells, such

as alternative metabolic pathways, including lipid metabolism

and the FAO pathway. The compensatory LDHB upregulation-

inducible lactate consumption can facilitate cancer

aggressiveness (Maeda et al., 2022). Therefore, approaches are

needed to handle LDH activation to inhibit cancer growth

without inducing anti-tumor immunity destruction. In

addition, LDHB overexpression also enhances the cytotoxic

capacity of murine T cells in HCT116 tumor spheroids

(Decking et al., 2022). These findings suggest the close

crosstalk between lactate metabolism and immunity.

Monocarboxylate transporter

MCT neutralization helps alleviate the acidification state of

TME, creating a habitable surrounding for T cell infiltration and

cytotoxicity. MCT1, 2, and 4 are the major transporters for

products of the glycolysis cycle in cancers (Felmlee et al.,

2020). Mechanistically, MCT1 inhibition enhances effector

T cell infiltration and eases T cell exhaustion, further

repressing the immunosuppressive function of Tregs by

blocking lactate uptake and associated metabolic program.

Especially in high glycolytic cancers, such as MYC-driven

cancers, MCT1 facilitates lactate uptake and PD-1 expression

in Tregs, a novel mechanistic view of anti-PD-1 therapy

resistance (Kumagai et al., 2022). MCT1 inhibitor

AZD3965 mounted on a nano drug combined with anti-PD-

1 therapy can provide additional tumor suppression effects

(Huang et al., 2021; Watson et al., 2021). MCT4 silencing also

improves immunotherapy response in hepatocellular carcinoma

(HCC) (Fang et al., 2022). Of note, MCT1 inhibitors can restrain

lactate excretion from effector T cells concomitantly (Fischer

et al., 2007). So similar to LDH inhibition, it is essential to

determine the right MCT dose to enhance immunotherapy

without disturbing prime immune surveillance.

Other promising therapeutic targets

Preclinical studies demonstrated that the metabolic switch

from glycolysis toward oxidative metabolism could enhance

effector T cell anti-tumor performance. Ning et al. found that

carbonic anhydrase Ⅻ (CA12) is upregulated in tumor-

infiltrating monocytes and macrophages upon the glycolytic

switch induced by HIF-1α. CA12 promoted macrophage

survival and HCC metastasis, and CA12 inhibitors

synthetically repress cancer growth and metastasis by

combining with ICBs in Hepa1-6 mouse models (Ning et al.,

2022).

Glucose shunted to other metabolic pathways is also helpful

for glycolysis constraint. The Glucose-6-phosphate

dehydrogenase (G6PD) is the rate-limiting enzyme of PPP,

whose high expression will partition glucose flux from

glycolysis. Lu et al. found that G6PD activator AG1 could

increase H3K9 acetylation at the Gzmb locus through

upregulating acetyl-CoA to enhance Gzmb expression and

TILs cancer-lytic ability (Lu et al., 2022).

Glutamine metabolism is closely associated with glycolysis by

supplying substrates for TCA cycle (Madden and Rathmell,

2021). Glutamine converts into α-ketoglutarate which drives

the TCA cycle and synthesizes intermediates for other

metabolic tracers and anabolic growth. In MYC-driven

cancers, glutamine deletion impairs the TCA cycle and

inhibits cancer cell viability in an energetic-demand

mechanism (Edwards-Hicks et al., 2022). Instead, in T cells,

the inhibition of glutamine metabolism focuses T cell adaption to

glycolytic strategy and promotes their proliferation and effector

differentiation (Leone et al., 2019). In addition, glutamine

antagonism inhibits both glucose and glutamine metabolism

in cancers, along with increasing the nutrient contents of

TME, whereas CD8+T cells synchronously increase acetate

metabolism to fuel TCA-coupled OXPHOS and achieve more

prolonged survival upon glutamine inhibition (Leone et al.,

2019). This divergence in metabolic plasticity to glutamine

antagonism demonstrates the cancer-targeting ability of

glutamine inhibition in TME.

Besides the metabolic crosstalk between glycolysis and

glutamine, subsets of TILs that can not uptake glucose

efficiently have high ROS levels in hyperpolarized

mitochondria, and in this case, pyruvate supplementation can

ignore glycolysis defects and eliminate ROS to partially

reinvigorate T cells (Siska et al., 2017). Collectively, the basic

metabolic interplay underpinning novel “immunometabolism”
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strategy development needs more elucidation to achieve better

efficacy in clinical practice.

Discussion

Glycolytic activation is a key link process of metabolism

reprogramming in cancer and immune cells, tightly associated

with the efficiency of anti-tumor immunity, and affects the

performance of immunotherapies. We explain at length the

glycolytic barriers within checkpoint inhibition and adoptive

cell therapies, and emphatically summarize the critical

glycolytic targets helpful for enhancing immunotherapy.

However, only the tip of the iceberg has been unraveled

regarding the mechanisms related to cellular metabolism in

optimizing cancer immunotherapy, and large-scale studies are

warranted for a deeper understanding of the crosstalk between

metabolic pathways with cancer immunity.

Given the complication and systematicness of cellular

metabolism regulation, it is reasonable to consider the holistic

influence induced by genetic or pharmacological interference of

metabolic-related molecules in future studies. Especially, due to

the metabolic plasticity of cancer cells and immune cells, more

attention is warranted to focus on the secondary effects of

metabolic therapy, including compensatory activation of

metabolic pathways and the TME reshaping. In addition, the

metabolic interaction between cells in the TME may play a

crucial role in cancer behavior and immunity. For example,

the enhanced methionine uptake promoted by

SLC43A2 upregulation in cancer cells significantly causes

T cell dysfunction (Bian et al., 2020), the nutrient support of

cancer-associated fibroblasts promotes cancer progression

(Mostafavi et al., 2022), and the metabolic symbiosis between

glycolytic cancer cells and oxidative cancer cells (Wang et al.,

2021). These findings stress that metabolic cooperation and

antagonism happening in TME is promising for novel target

development.

In conclusion, we give a full-scale review of glycolysis in

cancer immunity. We hope our work can offer novel insights into

cancer metabolism and contribute to the development of novel

therapeutic strategies in the era of immunotherapy.
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