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MicroRNAs are small non-coding molecules that control several cellular

functions and act as negative post-transcriptional regulators of the mRNA.

While their implication in several biological functions is already known, an

important role as regulators of different physiological and pathological

processes in fertilization and embryo development is currently emerging.

Indeed, miRNAs have been found in the oviductal fluid packaged within the

extracellular vesicles, which might act as natural nanoshuttles by transporting

lipids, proteins, RNAmolecules andmiRNAs from the oviduct to the gametes or

embryos. Here, an exhaustive bibliography search was carried out, followed by

the construction of a computational model based on the networks theory in an

attempt to recreate and elucidate the pathways potentially activated by the

oviductal miRNA. The omics data published to date were gathered to create the

Oviductal MiRNome, in which themiRNA target genes and their interactions are

represented by using stringApp and the Network analyzer fromCytoscape 3.7.2.

Then, the hyperlinked nodes were identified to investigate the pathways in

which they are involved using the gene ontology enrichment analysis. To study

the phenotypical effects after the removal of key genes on the reproductive

system and embryo, knockout mouse lines for every protein-coding gene were

investigated by using the International Mouse Phenotyping Consortium

database. The creation of the Oviductal MiRNome revealed the presence of

important genes and their interactions within the network. The functional

enrichment analysis revealed that the hyperlinked nodes are involved in

fundamental cellular functions, both structural and regulatory/signaling,

suggesting their implication in fertilization and early embryo development.

This fact was as well evidenced by the effects of the gene deletion in KO

mice on the reproductive system and embryo development. The present study

highlights the importance of studying the miRNA profiles and their enormous

potential as tools to improve the assisted reproductive techniques currently

used in human and animal reproduction.
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Introduction

In mammals, the oviduct provides a favourable

microenvironment for several events related to

fertilization, as the sperm acquisition of fertilizing ability

(the capacitation) (Gadella and Boerke, 2016), the sperm-egg

recognition and binding (Coy et al., 2012) and the first phases

of the embryo development (Li and Winuthayanon, 2017). It

exerts its function either by direct or indirect mechanisms:

while the oviductal epithelial cells (OECs) directly interact

with the spermatozoa storing them in the so-called

“functional sperm reservoir” until ovulation (Suarez,

2016), the key molecules contained in the oviductal fluid

(OF) contribute to sustain and drive the biochemical

machinery of spermatozoa and early embryo development

(Avilés et al., 2010; Coy and Yanagimachi, 2015). In this

regard, the OF is a complex mixture of molecules that are

either passively or actively transported over the epithelial

barrier from the circulating blood or the interstitial tissue, or

de novo secreted by the OECs (Saint-Dizier et al., 2020). It is

mainly composed by aminoacids, energy sources , inorganic

salts, glycosaminoglycans and numerous proteins (Ballester

et al., 2014; Coy and Yanagimachi, 2015; Canha-Gouveia

et al., 2019). In particular, the two most abundant proteins

identified are the oviduct-specific glycoprotein (OVGP1) and

albumin (Mondéjar et al., 2012; Canha-Gouveia et al., 2019),

with important roles mainly for sperm capacitation and

embryo development. Growth factors are also key proteins

of the OF, which exert an activity of cell division control and

contribute to the efficient development of early embryos

(Pillai et al., 2017). Other components of the OF include

low molecular weight hormones such as steroids

(progesterone and estradiol) and prostaglandins, which are

secreted by the ovarian follicles and the corpus luteus and can

reach the OF via a local countercurrent transfer (Einer-

Jensen and Hunter, 2005). Among these lipid-based

molecules stands up progesterone, which is known to play

a key role in multiple sperm capacitation events as

hyperactivation (Fujinoki et al., 2016), chemotaxis (Teves

et al., 2006; Guidobaldi et al., 2008; Oren-Benaroya et al.,

2008), induction of acrosome reaction (Therien and

Manjunath, 2003; Baldi et al., 2009) and in vitro

capacitation (Foresta et al., 2009; López-Torres and

Chirinos, 2017). Furthermore, steroid hormones and

prostaglandins may participate in the transport of gametes

and embryos by modulating both muscular contractility and

ciliary beat frequency in the oviduct (Ezzati et al., 2014).

During the last years, an additional and more complex

component has been identified within the OF. Extracellular

vesicles (EVs), also known as oviductosomes (OVS) (Gross

et al., 2017; Fereshteh et al., 2018), are released by epithelial

cells to the oviductal lumen, being thus classified as exosomes

(30–100 nm) or microvesicles (>100 nm) based on their size

(Almiñana et al., 2018). They carry bioactive molecules such

as lipids, proteins, mRNA and microRNAs (miRNAs)

(Asaadi et al., 2021) that can be delivered and fuse with

gametes or embryo regulating their

functions and interactions and participating in the

maternal-embryo communication (Almiñana and

Bauersachs, 2019; Bauersachs et al., 2020; Bridi et al.,

2020; Harris et al., 2020).

Since the information available on this regard is still poor,

here we followed a computational strategy using the networks

theory in an attempt to reconstruct the pathways potentially

activated by the oviductal miRNA. To this aim, we gathered

the omics data published to date to create the Oviductal

MiRNome, in which are represented the miRNA target

genes and their interactions. The network obtained and the

subsequent analysis allowed us to infer important

information, useful to improve our knowledge on the

potential role of miRNAs in the reproductive events.

Materials and methods

Data collection, network construction and
analysis

To create the network representing the murine oviductal

miRNome (MiRNome and MiRnome_MC), we collected

recent data regarding the mirRNome from published peer-

reviewed international manuscripts included in Scopus

(https://www.scopus.com; accessed on 14/12/2021). To date,

only one study systematically analysing the oviductal miRNA

profile in the mouse model has been published (Fereshteh and

coll, 2018, PMID: 30382141 (Fereshteh et al., 2018)). For each

differentially expressed miRNA, we identified the target genes

using miRDB (http://mirdb.org/, last accessed on 10/06/

2022), an online database for miRNA target prediction and

functional annotations (Chen and Wang, 2020). The

identified target genes were selected for a target

score >90 and submitted to network creation in stringApp

for Cytoscape 3.7.2 (Doncheva et al., 2019). The interaction

provided by the stringApp were filtered for the Mus musculus

species, adopting a confidence score of 0.700. The main

topological parameters of the network (Table 1) were

analysed using Network Analyzer, a plugin of Cytoscape 3.

7.2.

In keeping with Bernabò et al. (Ordinelli et al., 2018; Bernabò

et al., 2019), we identified the hubs within Murine Oviductal

MiRNome as the nodes with a degree at least one standard

deviation above the network mean. In details, the hubs were

identified based on the following formula:

ND> μ + σ

where:
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ND = node degree

μ = averaged node degree

σ = standard deviation of node degree.

Enrichment analysis

We carried out an enrichment Gene ontology (GO)

characterizes the relationship between genes by specifically

annotating and categorizing the molecular function of a gene

product, the associated biological process and the cellular

component, referring to the place in the cell where a gene

product performs a function (Ashburner et al., 2000). We

used The Gene Ontology Consortium’s online tool (http://

www.geneontology.org/, last accessed on 10/06/2021) for the

enrichment analysis of our hubs list, selecting as species Mus

musculus.

Identification of phenotypical effects of
the deletion of genes relative to murine
oviductal MiRNome hubs in KOmice in the
reproductive system and embryos

To study the phenotypical effects after the removal of key

genes (i.e., genes codifying for the murine oviductal

MiRNome hubs) on the reproductive system and embryo,

we used the International Mouse Phenotyping Consortium

(IMPC) (https://www.mousephenotype.org/), a portal that

provides a freely available comprehensive catalogue of

mammalian genes function, by producing a knockout

mouse line for every protein-coding gene.

Results

Murine oviductal MiRNome creation,
analysis and visualization

The experimental design, including all the steps for the

creation and analysis of the network, is illustrated in Figure 1.

We collected the experimentally validated targets for the gathered

oviductal miRNAs from miRDB. A total of 2,689 miRNA-target

were collected from mouse and were used to build the Murine

Oviductal MiRNome. Specifically, the network obtained is

TABLE 1 Topological parameters of the network. The table shows the definitions of the main topological parameters assessed in this study.

Parameter Definition

Connected component Number of networks in which any two vertices are connected to each other by links and which is connected to no additional vertices
in the network

Number of nodes (N) Total number of elements involved within the network

Number of edges Total number of interactions among the nodes within the network

Clustering coefficient It is calculated as CI = 2nI/(kI − 1), where nI is the number of links connecting the kI neighbors of node I to each other. It is a
measure of how the nodes tend to form clusters

Network diameter The longest of all the calculated shortest paths in a network

Shortest paths Length of the shortest path between two nodes n and m is (n, m). The shortest path length distribution gives the number of node
pairs (n, m) with (n, m) = k for k = 1, 2,

Characteristic path length Expected distance between two connected nodes

Averaged number of neighbors Mean number of connections of each node

Node degree (k) Number of interactions of each node

Node degree distribution (P(k)) Probability that a selected node has k links

Μ Exponent of node degree equation

R2 Coefficient of determination of node degree vs. number of nodes, on logarithmized data

FIGURE 1
Experimental design. The figure illustrates the steps followed
during the development of the work. 1) we collected the oviductal
miRNA from the literature and we obtained from the miRDB their
experimentally verified targets. 2)The identified target genes
were submitted to network creation in stringApp for Cytoscape
3.7.2.3)We performed an enrichment GeneOntology and used the
International Mouse Phenotyping Consortium to investigate the
phenotypic impact on the reproductive system and embryo after
the removal of important genes.
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undirected and composed by 850 connected components,

2,665 nodes and 6,599 links. Since the largest connected

component has 1746 nodes, representing 65.5% of Murine

Oviductal MiRNome, all the further analysis were carried out

on this network, called MiRNome Main Component,

MiRNome_MC (Figure 2).

The values of its main topological parameters are listed in

Table 2 and in Supplementary Material 1.

The node degree distribution follows a power law,

characterized by a negative exponent (–1.702) and it is with

the node degree (R2 = 0.1989). Thus, the MiRNome_MC does

not possess an evident hierarchical pattern and it can be

considered as a Barabasi—Albert network (Table 3).

Identification of hubs and gene ontology
enrichment analysis

We found a total of 179 hubs inMiRNome_MC (the complete

list of hubs and the topological parameters are available in the

supplementary material 1), representing almost the 10% of the

nodes (179 out of 1746). Then, we recorded the biological

processes in which the hubs are engaged using gene ontology

(GO) annotation, such as metabolic processes, gene expression,

cell signaling, cell cycle and death. Most importantly, several

miRNA targets were associated with GO categories

“reproduction (GO:0000003)”, “developmental process involved

in reproduction (GO:0003006)”, “embryo development (GO:

0009790)” and “embryonic morphogenesis (GO:0048598)”

(supplementary material 2).

And 13 genes were found respectively on reproductive

system and embryo phenotype of mice KO models studies

among the 179 hubs

By evaluating the effects derived from the depletion of genes

among the 179 hubs of theMurine Oviductal MiRNome_MC, we

found that 11 genes have been studied on mice KOmodels due to

their relationship with the reproductive system (Table 4 and

supplementary material 3), while 13 genes were the focus of

works related to the embryo phenotype (Table 5 and

supplementary material 3). Among these miRNAs target

genes, three of them, namely Afdn, Itpr1 and Med1, were

found to be related to both analyzed functions in knock-out

mice (i.e., reproductive system and embryo phenotype), while

only Rac1 showed a much greater number of links with respect to

the other genes (93 versus 30-17).

Discussion

The potential role of miRNAs in the regulation of genes

during fertilization and early embryo development has recently

attracted the attention of several researchers (Gross et al., 2017;

FIGURE 2
MiRNome_MC network. The figure shows the MiRNome
Main Component (MiRNome_MC). The network was created with
Cytoscape 3.7.2.

TABLE 2 Main topological parameters computed on MiRNome and
MiRNome_MC networks.

Parameters MiRNome MiRNome_MC

Number of nodes 2,665 1746

Number of edges 6,599 6,529

Connected components 850 1

Clustering coefficient 0.203 0.310

Diameter 15 15

Shortest paths 3,046,966 (42%) 3,046,770 (100%)

Charact. path length 4.669 4.670

Avg. number of neighbours 4.952 7.479

TABLE 3 Node degree distribution in MiRNome_MC. The node degree
distribution represents the probability that a selected nodes has k
links (γ = exponent of node degree equation; R2 = coefficient of
determination of node degree vs. number of nodes, on logarithmized
data).

Node degree distribution Value

Γ -1.702

R 0.817

R2 0.904
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TABLE 4 Genes studied in mice KO models in terms of their relationship with the reproductive system. The table shows the number of links for each
gene, the genes and the protein for which codifies, the phenotype in mice with the corresponding MGI (mouse genome informatic database
accession number), the role in human diseases and their corresponding references. PCOS: Polycystic ovary syndrome; ALL: Acute lymphocytic
leukemia; MLL: mixed lineage leukemia; AML: acute myeloid leukemia; MPPH: Megalencephaly-polymicrogyria-polydactyly-hydrocephalus.

N of
links

Gene Protein Phenotype in
mice

MGI
accession
number

Role in
human diseases

References

93 Rac1 Rac family small GTPase Abnormal testis
morphology; small testis

97845 Germline mutations causative of
MRD48; Somatic mutations involved
in cardiovascular, cerebrovascular,
renal and cardiac diseases; Proto-
oncogene (glioblastoma, melanoma,
leukemia, brain, lung, testicular and
breast cancers)

Nagase and Fujita, 2013;
Carrizzo et al., 2014; Feng et al.,
2021

38 Itpr1 Inositol 1,4,5-
trisphosphate receptor 1

Small epididymis 96623 Germline mutations causative of
Gillespie syndrome, SCA15 and
SCA29; Proto-oncogene (multiple
myeloma, breast, lung and renal
carcinomas)

Whaley et al., 2011; Messai et al.,
2014; Gerber et al., 2016;
Alfugham et al., 2018

36 Ppp1cc Protein phosphatase
1 catalytic subunit gamma

Male infertility 104872 Proto-oncogene (malignant fibrous
histiocytoma, osteogenic and soft
tissue tumors)

Yamada et al., 1994; Sogawa
et al., 1996; Chakrabarti et al.,
2007; MacLeod and Varmuza,
2012

32 Ube2n Ubiquitin conjugating
enzyme E2 N

Abnormal seminal vesicle
morphology

1934835 PCOS; transsexuality; Proto-
oncogene (melanoma, colorectal,
cervical, ovarian carcinomas and
others)

Pulvino et al., 2012; Cheng et al.,
2014; Wu et al., 2014; Dikshit
et al., 2018; Gemoll et al., 2019;
Song et al., 2020; Dong et al.,
2021

27 Med1
(Mbd4)

Mediator complex
subunit 1

Enlarged uterus 1100846 Hepatic autophagy; Tumor
suppressor gene (colorectal, gastric,
endometrial, pancreatic cancers)

Howard et al., 2009;
Lucci-Cordisco and Neri, 2009;
Leonard and Zhang, 2019

26 Ppp2r1b Phosphatase 2 scaffold
subunit Abeta

Male infertility 1,920,949 Azoospermia; Tumor suppressor gene
(lung, colon, endometrial carcinomas
and others)

Wang et al., 1998; Sablina et al.,
2007; Tzur et al., 2009;
Remmerie and Janssens, 2019

24 Plcb1 Gene phospholipase C
beta 1

Male infertility; female
infertility; abnormal ovary
morphology

97613 Germline mutations causative of
DEE12 and MMPEI; Proto-oncogene
(cholangiocarcinoma, colorectal,
hepatocellular, ovarian cancers)

Lu et al., 2019; Lin et al., 2020;
Liang et al., 2021

20 Afdn
(Mllt4)

Adherens junction
formation factor

Abnormal uterus
morphology

1,314,653 Tumor suppressor gene (ALL); Proto-
oncogene (endometrial, gastric, colon
cancers and others)

Takai and Nakanishi, 2003; Sun
et al., 2014; Yamamoto et al.,
2015; Lai et al., 2020

18 Skp2 S-phase kinase associated
protein 2

Male infertility; Female
infertility

1,351,663 Proto-oncogene (osteosarcoma,
lymphomas, colorectal, breast and
prostate cancers)

Hershko, 2008; Katoh et al.,
2013; Asmamaw et al., 2020; Shi
et al., 2021; Wu et al., 2021

18 Sacm1l SAC1 like
phosphatidylinositide
phosphatase

Enlarged epididymis;
abnormal testis
morphology; small testis;
abnormal epididymis
morphology

1,933,169 Associated to COVID-19 severity;
MLL–SACM1L rearrangement in
absence of leukemia

Mori et al., 2010; Wu et al., 2021

18 Ccnd2 Cyclin D2 Small testis 88314 Germline mutations causative of
MPPH3; Tumor suppressor gene
(lymphomas; AML) and proto-
oncogene (ovarian, testicular, breast,
colorectal cancers and others)

Sicinski et al., 1996; Mirzaa et al.,
2012; Chen et al., 2018; Jardim
et al., 2021
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TABLE 5 Genes studied in mice KO models in terms of their relationship with the embryo phenotype. The table shows the number of links for each
gene, the genes and the protein for which codifies, the phenotype in mice with the corresponding MGI (mouse genome informatic database
accession number), the role in human diseases and their corresponding references. ALL: Acute lymphocytic leukemia; AML: acute myeloid leukemia.

N of
links

Gene Protein Phenotype in
mice

MGI
accession
number

Role in
human diseases

References

38 Itpr1 Inositol 1,4,5-
trisphosphate receptor 1

Embryonic growth
retardation; abnormal
embryo size

96623 Germline mutations causative of
Gillespie syndrome, SCA15 and SCA29;
Proto-oncogene (multiple myeloma,
breast, lung and renal cancers)

Whaley et al., 2011; Jayadev and
Bird, 2013; Messai et al., 2014;
Gerber et al., 2016; Alfugham et al.,
2018

27 Med1
(Mbd4)

Mediator complex
subunit 1

Abnormal placenta size;
abnormal embryo size

1100846 Hepatic autophagy; Tumor suppressor
gene (colorectal, gastric, endometrial,
pancreatic cancers)

Bellacosa, 2001; Howard et al.,
2009; Leonard and Zhang, 2019

24 Ap2b1 Adaptor-related protein
complex 2, beta-1
subunit

Abnormal embryo size 1,919,020 Tumor suppressor gene (triple-negative
breast cancer); Proto-oncogene
(prostate and chemioresistant ovarian
cancers)

Cheng et al., 2010; Rangel et al.,
2017; Kaikkonen et al., 2020; Fang
et al., 2021

24 Ubxn7 UBX domain protein 7 Abnormal embryo size;
embryonic growth
retardation

2,146,388 Proto-oncogene (lungs squamous cell
carcinoma)

Wang et al. (2013)

21 Cacna1c Calcium voltage-gated
channel subunit
alpha1 C

Abnormal placenta
morphology

103013 Germline mutations causative of
Brugada syndrome, Romano-Ward
syndrome and Timothy type
1 syndrome); Polymorphisms
associated to neuropsychiatric
disorders; Proto-oncogene (leukemia,
breast, brain tumors); Tumor
suppressor gene (ovarian and
endometrial cancers)

Splawski et al., 2004; Fukuyama
et al., 2014; Wang et al., 2015;
Gourraud et al., 2017; Moon et al.,
2018; Gardner et al., 2019; Qiao
et al., 2019; Chang and Dong, 2021

21 Plod2 Procollagen-lysine,2-
oxoglutarate 5-
dioxygenase 2

Abnormal embryo size 1,347,007 Germline mutations causative of Bruck
syndrome; Proto-oncogene
(breast,.colorectal. lung, bladder,
cervical, ovarianrenal, and bone
cancers)

Hu et al., 2019; Du et al., 2020;
Wan et al., 2020; Wei et al., 2021

20 Afdn
(MIIt4)

Adherens junction
formation factor

Abnormal neural tube
morphology; abnormal
neural tube closure

1,314,653 Tumor suppressor gene (ALL); Proto-
oncogene (endometrial, gastric, colon
cancers and others)

Takai and Nakanishi, 2003; Sun
et al., 2014; Yamamoto et al., 2015;
Lai et al., 2020

20 Gna13 G protein subunit
alpha 13

Abnormal visceral yolk
sac morphology;
abnormal embryo size

95768 Proto-oncogene (B-cell lymphoma;
ovarian, prostate, colorectal and gastric
cancers and others)

Guney et al. (2022)

20 Ncoa2 Nuclear receptor
coactivator 2

Abnormal umbilical
cord morphology;
abnormal placenta
vasculature

1,276,533 Translocations in various cancers
(AML, ALL; mesenchymal
chondrosarcoma); Proto-oncogene
(prostate cancer)

Taylor et al., 2010; Leiner and Le
Loarer, 2020

19 Arhgef12 Rho guanine nucleotide
exchange factor 12

Abnormal embryo size;
embryonic growth
retardation

1,916,882 Glaucoma; Tumor suppressor gene
(AML, lymphomas, pancreatic cancer)

Springelkamp et al., 2015; Yang
et al., 2020; Panagopoulos et al.,
2021

19 Bmi1 Polycomb ring finger Abnormal embryo size 88174 Proto-oncogene (breast, gastric,
ovarian, lung, pancreatic cancers and
others)

Liu et al., 2017; Janaki Ramaiah
and Vaishnave, 2018; Zhao et al.,
2018; Wang et al., 2019; Chen
et al., 2021

18 Dnmt3a DNA methyltransferase
3 alpha

Abnormal embryo size 1,261,827 Germline mutations causative of
Tatton-Brown-Rahman syndrome and
Sporadic pheochromocytoma/secreting
paraganglioma; Tumor suppressor gene
(AML, leukemia and other hematologic
cancers); Proto-oncogene (testicular
tumor)

Chen and Chan, 2014; Brunetti
et al., 2017; Bullinger et al., 2017

(Continued on following page)
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Reza et al., 2019; Salilew-Wondim et al., 2020). MicroRNAs are

small (22 nucleotides) non-coding molecules involved in the

control of cellular functions and that act generally as negative

post-transcriptional regulators of mRNA (Lau et al., 2001). They

have been shown to participate in numerous biological processes,

including gametogenesis and embryo development (Salilew-

Wondim et al., 2020), and are present in several tissues of the

reproductive system such us testis, epididymis, spermatozoa and

seminal plasma (Salas-Huetos et al., 2020), evincing their strong

involvement in the reproductive field. Moreover, microRNAs are

emerging as regulators of different physiological and pathological

processes in fertilization and embryo development (Hossain

et al., 2012; Gross et al., 2017; Tesfaye et al., 2018; Salilew-

Wondim et al., 2020). Interestingly, they have been discovered

also in the oviductal fluid (Almiñana et al., 2018; Fereshteh et al.,

2018; Gonella-Diaza et al., 2021; Mazzarella et al., 2021),

packaged within the extracellular vesicles (EVs, also called

oviductosomes, OVS) (Gross et al., 2017; Fereshteh et al.,

2018) that might act as natural nanoshuttles, bringing key

components (lipids, proteins, RNA molecules and miRNAs)

from the oviduct to the gametes or the embryos (Almiñana

et al., 2018). As a result, the OVS may encapsulate miRNAs,

preventing degradation and increasing their stability in OF. The

oviductal EVs may then release their contents into the embryo

via mechanisms such as membrane fusion or endocytosis.

However, it is still unknown whether these vesicles can use

more than one route or if vesicular uptake is cell type specific

(Pavani et al., 2017). Little is known regarding their biogenesis

but that are transcribed as primary miRNAs (pri-miRNAs) (Lee

et al., 2002) and processed to precursor miRNAs (pre-miRNA)

by the nuclear RNase III, DROSHA (Ha and Kim, 2014; Leitão

and Enguita, 2022). Pre-miRNAs are then transferred to the

cytoplasm, where an RNase III endonuclease DICER cleaves the

pre-miRNA to the mature form of the miRNA (Ha and Kim,

2014). The mature miRNA generated by DICER is chained with

Argonaute (AGO) protein to form an effector complex called

RNA-induced silencing complex (RISC) able to exert its

regulatory action (Ha and Kim, 2014; Leitão and Enguita,

2022). However, little is still known about the biological

functions of miRNAs expressed in the EVs.

Here, we adopted a computational biology approach

gathering the available data to reconstruct the pathway that

may be activated by the oviductal miRNA in a mouse model.

Mouse (Mus musculus) is the most commonly used animal

model in biomedical research, including reproductive biology

(Jamsai and O’Bryan, 2011; Ramal-Sanchez et al., 2021).

Furthermore, the mouse model allows the assessment of IVF

rates and early stages of embryo development, as well as the

ascertainment of the resulting offspring in terms of health status

and potential epigenetic modifications. Most importantly,

because of their high genetic similarity to humans and ease of

genetic manipulation, mice models are largely used to study the

vast majority of human diseases (Rosenthal and Brown, 2007;

Perlman, 2016). Nowadays, many types of mouse models, such as

knockout/knockin, transgenic and chemical-mutagenized

mutant mouse models have been made available not only for

biomedical research but also to reveal disease-associated genes,

including causes of male infertility (Jamsai and O’Bryan, 2011).

Specifically, we realized the network representing the murine

oviductal miRNome (MiRNome and MiRnome_MC), with the

available published omic data. Once the network model was

obtained, we assessed its topology to infer important biological

information. As evident for the parameters listed in Table 3, the

miRNome is a scale-free network that follows the Barabasi-

Albert (BA) model. It means that the node degree distribution

follows a power-law with a negative exponent and is not

correlated with the clustering coefficient (Albert and Barabasi,

2002; Ravasz and Barabási, 2003). Thus, it is possible to identify a

low number of highly connected nodes (the “hubs”) coexisting

with a higher number of scarcely connected nodes (Barabási and

Oltvai, 2004). These networks are characterized by a high

robustness against the random damages and by an efficient

information transfer. In particular, the hubs exert a significant

control over the whole network, assuring that the information is

spread within the network in a very robust, fast and efficient way

and that the network is able to quickly response to internal and

external stimuli (Albert and Barabasi, 2002; Ravasz and Barabási,

2003; Barabási and Oltvai, 2004).

In this regard, first we carried out the identification of the

hyperlinked nodes and then investigated the pathway in which

TABLE 5 (Continued) Genes studied in mice KOmodels in terms of their relationship with the embryo phenotype. The table shows the number of links
for each gene, the genes and the protein for which codifies, the phenotype in mice with the corresponding MGI (mouse genome informatic database
accession number), the role in human diseases and their corresponding references. ALL: Acute lymphocytic leukemia; AML: acute myeloid leukemia.

N of
links

Gene Protein Phenotype in
mice

MGI
accession
number

Role in
human diseases

References

17 Acvr2a Activin A receptor
type 2A

Abnormal embryo size 102806 Susceptibility to preeclampsia Glotov et al., 2019; Pinyol et al.,
2021

Tumor suppressor gene (hepatocellular
carcinoma)
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they are involved using the gene ontology enrichment analysis. In

general, the functional enrichment analysis revealed that these

genes codify for proteins that are involved in fundamental

cellular functions, both structural (membrane, cell junction

and cytoskeleton organization, collagen synthesis) and

regulatory/signaling (cell cycle regulation, signal transduction,

transcriptional activation, endocytosis, calcium channel activity,

ubiquitination, dephosphorylation, methylation, chromatin

repression), by referring to 4 and 18 genes, respectively. All

these roles suggest their implication in fertilization and early

embryo development, as evidenced by the effects of the gene

deletion in KO mice on the reproductive system and embryo

development (Tables 4 and 5). Our findings are consistent with

previous research, since Fereshteh and coll. (2018) have

demonstrated that murine EVs can deliver miRNAs to the

sperm cells, such as miR-34c-5p, which is located in the

sperm centromere and promotes the first zygote cleavage

(Fereshteh et al., 2018). At the same time, murine EVs

contain other miRNAs that may target several embryonic

development-related genes (Fereshteh et al., 2018). In vitro,

EVs supplementation altered the bovine transcriptome,

implying that oviductal EVs miRNA cargo may have a

potential role in controlling embryonic development

(Bauersachs et al., 2020). Furthermore, it has been recently

showed that the expressed miRNA in bovine EVs modulate

different pathways, including PI3K/AKT, mTOR and MAPK,

which are related to transcription, translation, proliferation,

growth, control of the cytoskeletal organization and

metabolism, and that may influence the early embryo

development within the oviduct (Mazzarella et al., 2021).

PI3K/AKT/mTOR signaling pathways also regulates

angiogenesis (Karar and Maity, 2011), a crucial process for

the proper functioning of the female reproductive system and

for pregnancy establishment (Rizov et al., 2017). Additionally,

several reports have suggested that the deletion of miRNA

processing genes may have a serious effect on reproductive

functions or embryo development, mostly due to altered

miRNA levels (Kaczmarek et al., 2020). Notably, the loss of

Dicer1 and Ago2 in mice are embryonically lethal (Bernstein

et al., 2003; Yang et al., 2005; Alisch et al., 2007). Among others,

the deficiency of Dicer in the mouse reproductive tract hampered

uterine development, resulting in pregnancy loss after wild-type

embryo transfer (Gonzalez and Behringer, 2009). Thus,

microRNAs are involved in several processes affecting the

function of the reproductive system, as well as the conception,

the implantation process, and the embryonic development.

Noteworthy, all events in the oviduct are orchestrated by the

neuroendocrine axis through the dynamic changes induced by

steroid hormones. In a recent study, Almiñana and coll. (2018)

showed interesting differences in the miRNAs content and the

protein composition of oviductal extracellular vesicles isolated

from cows at various stages of the estrous cycle, suggesting that

ovarian steroid hormones may regulate the EVs production and

secretion (Almiñana et al., 2018). These changes, directed by the

neuroendocrine axis, are reflected on the early embryonic

genome reprogramming. In fact, the delicate process known

as the maternal-zygotic transition (MZT) occurs in the

oviduct (Baroux et al., 2008). In mammalian pre-implantation

embryos, the maternal gene products regulate the initial events of

embryogenesis, while the zygotic genome remains

transcriptionally silent (Baroux et al., 2008; Hamm and

Harrison, 2018). Developmental control is then passed from

the mother to the zygote (Hamm and Harrison, 2018). In

addition, a recent comprehensive characterization of the

bovine OF proteome revealed a spatiotemporal regulation of

the OF according to the anatomical region of the oviduct, the

proximity to the ovulating ovary and the stage of the cycle (Mahé

et al., 2022). Future approaches should investigate the potential

involvement of miRNA in the fine-tune regulation of the

oviductal microenvironment.

Importantly, miRNAs play a significant role in

reproduction and may represent excellent research

candidates with the potential to improve the understanding

of the complex landscape in which fertilization occurs, as well

as the underlying molecular mechanisms that prevent

implantation and embryo progression. This knowledge may

be useful in developing new in vitro fertilization (IVF) systems

that mimic the physiological condition as closely as possible.

Indeed, the current IVF systems lack the interaction of

gametes with several components naturally present in the

reproductive tract during fertilization and the early stages

of development, that may be responsible for the impaired

in vitro development and viability, but also for some

epigenetic changes in in vitro-produced embryos, resulting

in imprinting disorders such as Beckwith-Wiedemann

Syndrome (BWS) and Angelman syndrome (AS) (Harris

et al., 2020). Therefore, detailed knowledge on oviductal

transcriptome and secretome are needed to develop better

embryo culture medium and conditions in order to reduce the

adverse periconceptional environment in in vitro derived

embryos.

Interestingly, 7 out of the 21 protein-coding genes studied

here (RAC1, ITPR1, PLCB1, CACNA1C, PLOD2, CCND2,

DNMT3A) are causative of inherited monogenic diseases

when germinally mutated in humans, and all of them (with

the possible exclusion of SACM1L), result to be deregulated in

several types of human cancers when somatically mutated. As

such, they can be classified as proto-oncogenes (RAC1, ITPR1,

PPP1CC, UBE2N, PLCB1, UBXN7, PLOD2, GNA13, NCOA2,

BML1, SKP2), tumor suppressor genes (MED1, PPP2R1B,

ARHGEF12, ACVR2A) or both (AP2B1, CCANA1C, AFDN,

CCND2, DNMT3A) (Tables 4 and 5). This last observation

highlights the importance of oviductal miRNAs in acting

themselves as tumor suppressor genes or oncogenes,

depending on the cancer type and cellular context (Barbato

et al., 2017; Ghafouri-Fard et al., 2020).
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The most prominent role as proto-oncogenes and the fact

that at least 9 of these oviductal miRNA-target genes (PPP1CC,

PPP2R1B, CCND2, ACVR2A, MED1, NCOA2, PLCB1,

ARHGEF12, GNA13) are involved in proliferation regulatory

pathways (i.e. cell cycle regulation, transcriptional activation,

signal transduction) may explain the observed effect of their

deletion in KO mice on embryo development, suggesting as the

embryo could be the mainly sensitive target of their action.

Regarding the reproductive system, three of these genes

(UBE2N, PPP2R1B and ACVR2A) have been shown to be

involved in reproductive disfunctions in humans (polycystic

ovary syndrome and transsexuality, azoospermia, and

susceptibility to preeclampsia, respectively (Fitzpatrick et al.,

2009; Dong et al., 2021; Du et al., 2021). So far, a total of

15 genes out of 21 (UBE2N, PPP2R1B, CACNA1C, AP2B1,

NCOA2, RAC1, MED1, PLOD2, GNA13, AFDN, CCND2,

BMI1, PLCB1, DNMT3A and SKP2) have been associated to

tumors of the female or male reproductive tracts (cervical

carcinoma, ovarian, endometrial, prostate, and testicular cancers

(Tables 4 and 5), in addition to other types of cancers or diseases.

All the human orthologs genes have been better described in

Supplementary material 4, including their functional role and

implications in human diseases, both inherited and acquired.

These results support the idea that understanding the role of

oviductal miRNAs in human cancer pathogenesis could be

fundamental for their application as biomarkers and as potential

therapeutic options for malignancies treatments. More specifically, a

recent in vitro study has shown the involvement of 20 specific

miRNAs in promoting the development and progression of ovarian

carcinoma, the most aggressive and hard-to-detect gynecological

cancer worldwide (Loginov et al., 2022). More recently, the

protective role exerted by two miRNAs, miR-145 and miR-93-5p,

in suppressing ovarian cancer cell proliferation and migration

through a negative transcriptional regulation of the proto-

oncogene CCND2 have been described in two different studies

(Hua et al., 2019; Chen et al., 2022).

In conclusion, the adoption of a biological network-based

approach allowed us to infer new and interesting processes

involved in fertilization and in the early embryo development,

demonstrating the utility of computational modelling strategies

in the reproductive field. Our data clearly revealed that the

targets of the miRNAs are involved in processes critical for

fertilization and early embryo development. Interestingly, data

from the KO mice model seem to support the biological

relevance of our findings; nevertheless, more functional

experiments are required to further our understanding of the

role of oviductal miRNA in fertilization or early embryo

development. However, we highlight here the importance of

studying the miRNA profiles and their enormous potential as

tools to improve the assisted reproduction techniques (ARTs)

currently used in human and animal reproduction and as

biomarkers or potential therapeutic options for malignancies

treatments in humans.
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