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Recent research in plant epigenetics has increased our understanding of how

epigenetic variability can contribute to adaptive phenotypic plasticity in natural

populations. Studies show that environmental changes induce epigenetic

switches either independently or in complementation with the genetic

variation. Although most of the induced epigenetic variability gets reset

between generations and is short-lived, some variation becomes

transgenerational and results in heritable phenotypic traits. The short-term

epigenetic responses provide the first tier of transient plasticity required for

local adaptations while transgenerational epigenetic changes contribute to

stress memory and help the plants respond better to recurring or long-term

stresses. These transgenerational epigenetic variations translate into an

additional tier of diversity which results in stable epialleles. In recent years,

studies have been conducted on epigenetic variation in natural populations

related to various biological processes, ecological factors, communities, and

habitats. With the advent of advanced NGS-based technologies, epigenetic

studies targeting plants in diverse environments have increased manifold to

enhance our understanding of epigenetic responses to environmental stimuli in

facilitating plant fitness. Taking all points together in a frame, the present review

is a compilation of present-day knowledge and understanding of the role of

epigenetics and its fitness benefits in diverse ecological systems in natural

populations.
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Introduction

In recent years, epigenetic modifications of chromatin

material have been discovered as a major player in

modulating plant fitness under challenging environmental

conditions. Epigenetics refers to the study of changes in

gene functions that are mitotically and/or meiotically

heritable and do not involve a change in DNA sequence

but are based on modifications in chromatin organization

(Dupont et al., 2009). Epigenetic regulation consists of

covalent modifications of DNA and histone proteins

affecting the accessibility of chromatin to transcriptional

machinery (Iwasaki and Paszkowski, 2014). Three major

types of epigenetic marks or signatures include DNA

methylation, histone modifications, and small RNAs.

During DNA methylation, the methyl groups get covalently

bound to cytosine nucleotides (5 mC) (Bartels et al., 2018;

Gomez-Cabellos et al., 2022) and along with covalent

modifications like methylation, acetylation, and

phosphorylation in histone proteins regulate the local

chromatin landscape (Zhu et al., 2021; Tian et al., 2022).

Non-coding small RNAs such as microRNAs play a significant

role in post-transcriptional regulation directing DNA

methylation and chromatin remodeling at their target loci

(Bossdorf et al., 2008; Robertson and Wolf, 2012; Bond and

Baulcombe, 2014; Ariel and Manavella, 2021). Covalent

modifications on DNA and histone proteins and small

RNAs impact the condensation of chromatin and its

accessibility to transcriptional machinery (Meyer, 2015).

Epigenetic control mainly operates at the transcriptional

level and affects the activity of genes, repetitive sequences,

and transposable elements, thus providing genome integrity

and helping plants survive and reproduce successfully in

unpredictable environments (Kumari et al., 2022). Both

genetic and epigenetic variations control gene expression

independently and together.

Epigenetic mechanisms help sessile plants cope with

environmental changes either by acclimation or adaptation to

the changing environment. Acclimation outcomes include

phenotypic responses achieved by altering gene expression

and physiological attributes without incurring any genotypic

changes in organisms, a phenomenon called phenotypic

plasticity (Pigliucci, 2005). In other words, phenotypic

plasticity is the capacity for non-genetic modifications of the

phenotype. On the other hand, when phenotypic alterations are

hereditary and increase the reproductive fitness of a species in

relation to the environment, they are deemed to be of

evolutionary adaptive significance. It has been fairly reasoned

that there might be a close connection between phenotypic

plasticity and adaptation, stating that plants with better plastic

responses might have better adaptive ability to enhance their

relative fitness, a narrative that needs to be empirically tested

(Wang et al., 2021).

Environmental stress response management is quite complex

and involves integrating physiological, biochemical, and genetic

changes in the genome and modulating vital processes including

vernalization response, genomic imprinting, and mobility of

transposable elements (TEs) among others. These responses of

plants could be transient in the short run or may persist over the

long term. For example, Jackson and colleagues (Jackson et al.,

2002) found an immediate decrease in the frequency of

arbuscules formation during phosphorous sufficiency in

lettuce (Lactuca sativa). In the longer term, only a few plant

species could survive due to higher competitive abilities under

resource-limiting conditions, whereas plants that control water

use by reducing sap flux sensitivity survived under long-term soil

moisture changes (Grossiord et al., 2018).

The most common stress-induced changes include ion

toxicity, reactive oxygen species (ROS) production, redox/

osmotic imbalances, nutritional disproportionality, and lipid

peroxidation that bring changes in the ultrastructure of

cellular and organellar membranes, chlorophyll content,

photosynthetic capacities, and turgor pressure (Anamika et al.,

2019; Mehta et al., 2019; Malhi et al., 2021; Singh et al., 2022).

Upon perceiving these stresses, a cascade of genetic, molecular,

biochemical, anatomical, physiological, and morphological

changes occur in plants. While phenotypic plasticity provides

plant fitness under changing environmental conditions through

the spontaneous generation of epimutations (chemical changes

that result in a new epi-allelic state without changing the DNA

sequence), transgenerational inheritance of these epimutations

induces local adaptation after many generations. These heritable

epimutations encompass DNA methylation or histone

modifications of a genetic locus generating epialleles (the

epigenetic equivalent of genetic alleles that are stably

transmitted across generations) (Robertson and Wolf, 2012;

Taudt et al., 2016). These epialleles provide another layer of

heritable variation to natural genetic diversity.

During the last few decades, climate change has had an

unprecedented impact, which is critically categorized as a

global threat to mankind in terms of agricultural and forest

productivity (Leisner, 2020; Shahzad et al., 2021). Adding to

risks, the average global temperature is expected to rise by 2°C by

2100 as per Intergovernmental Panel on Climate Change (IPCC)

predictions (Tollefson, 2020; Pielke et al., 2022). The global

climate changes have immensely impacted both the biotic and

abiotic components of the environment by bringing changes in

growth, multiplication, spread, virulence, and the emergence of

many plant pathogens/insect pests and escalating abiotic stresses

like drought, floods, heat, and cold stresses (Tito et al., 2018;

Vilela et al., 2018; Juroszek et al., 2020; Skendžić et al., 2021).

These environmental stresses conjointly act as a daunting

obstacle that incurs fitness costs to plants. In this context,

rapid phenotypic diversity that results due to alterations in

epigenetic marks related to changes in chromatin architecture

plays an important role. The epigenetic effects combat both
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short- and long-term stresses allowing natural populations to

mitigate climate-change-related stresses by enhancing plant

fitness (Lämke et al., 2016a).

Although epigenetic variation can be induced in the absence

of genetic variability, the presence of the latter can influence the

former. The genetic makeup of an individual, for instance, can

affect the epigenetic marks by altering the number of cytosines

available for methylation, small RNA production, availability of

transposable elements, genes controlling DNA methylation

enzymatic machinery, and histone-mediated chromatin

modification (Feinberg and Irizarry, 2010; Robertson and

Wolf, 2012). This offers further lability and advantage to the

species population and adds to the ability to show

transgenerational plasticity and further fuel adaptive change

(Beldade et al., 2011; Robertson and Wolf, 2012). In a

nutshell, genetic and epigenetic processes may complement

each other or work independently, and subtle DNA

polymorphisms can affect the epigenetic processes, selection,

and adaptive evolution of a species. Therefore, the present

review tries to compile relevant studies dealing with epigenetic

processes involved in modulating plant fitness in natural

populations in changing environments. The information

collated will provide a platform to plan and execute in-depth

studies to unravel underlying mechanisms of epigenetic

regulation of plant response to environmental changes.

Epigenetic variability generates
phenotypic plasticity leading to
adaptive divergence

The growth, reproduction, and survival of natural

populations are largely determined by functional attributes

like morphological traits, physiology, and phenology. Amidst

global climatic changes that have resulted in accentuated biotic

and abiotic stresses, plants have made fine adjustments and

acquired additional stress mitigation strategies for their

survival leading to the adaptive phenotypic divergence that

depends upon natural selection, gene flow, and phenotypic

plasticity (Hendry et al., 2002). Natural selection operates

faster in populations with a high degree of gene flow and can

fix genes that respond positively to changing environments

(Charlesworth and Charlesworth, 2017; Charlesworth and

Charlesworth, 2017). Adaptive divergence mechanisms in

populations with a narrow genetic base, with no association

with the habitats, on the other hand, indicate the involvement of

epigenetic mechanisms independently or in complementation

with the genetic mechanisms in facilitating adaptive evolution

(Saze et al., 2012; Song et al., 2013; Amaral et al., 2020; Yi and

Goodisman, 2021). Plants maximize their phenotypic plasticity

either by increasing the natural variation through large

population sizes or by modulating the gene expression

patterns to produce altered gene functions and novel

phenotypes (Wang et al., 2021). Ultimately, it is the

availability of sufficient and meaningful plastic response that

determines the capacity of plants to fuel reproductive success

leading to fitness benefits in changing environments (Dar et al.,

2022). Increased reproductive fitness serves as the basis for the

survival of natural populations and their colonizing ability in the

changing environments, through the amelioration of various

kinds of stresses.

Notably, phenotypic plasticity patterns do not always follow

the principles of Mendelian genetics (Foust et al., 2016; Yi and

Goodisman, 2021; Guarino et al., 2022) and instead are shown to

be supported largely by epigenetic mechanisms that generally

originate as combinatorial effects of the interactions of genotypes

with the environment (Genotype x Environment, abbreviated as

GxE) (Peltier et al., 2018). The classic example showing that

epigenetic mechanisms generate phenotypic variability came

from studies in Linaria vulgaris (Cubas et al., 1999).

Consequently, many more instances showing the contribution

of epigenetic variability to phenotypic and functional diversity

were reported (Manning et al., 2006; Martin et al., 2009; Miura

et al., 2009; Herrera and Bazaga, 2013; Quadrana et al., 2014;

Nicotra et al., 2015; Song et al., 2015; Ci et al., 2016; Lämke and

Bäurle 2017; Schmid et al., 2018; Alonso et al., 2019; Chen et al.,

2020; Baduel et al., 2021). The documentation of subtle

phenotypic plasticity in homogeneous genetic populations of

many self-pollinating and asexually reproducing plant species

later strongly substantiated these observations (Preite et al., 2015;

Wilschut et al., 2016). Although the molecular underpinnings of

the causal relationship between the epigenetic mechanisms and

phenotypic plasticity are yet to be clearly understood, epigenetic

responses to environmental changes are shown to be mediated by

the epigenome that works like a regulatory system and integrates

the environmental and genetic variation to shape the inventory of

available adaptive phenotypic variation (Marin et al., 2020). In

this context, the epigenetic marks, especially changes in DNA

methylation, can result in the induction of rapid epimutations

much faster than genetic alterations and provide useful epi-allelic

diversity that contributes to phenotypic plasticity. While the

somatic epialleles are capable of conferring short-term

responses, they provide a rapid and immediate means of

negotiating the imposed stresses and ensuring the survival of

populations; the long-term adaptations, on the other hand, are

brought about by epialleles that show transgenerational

inheritance (Figure 1) (Ashapkin et al., 2020; Yi and

Goodisman, 2021).

In recent decades, emerging epigenetic processes have been

highlighted as promising mechanisms to facilitate the generation

of the first tier of rapid phenotypic diversity required to improve

the fitness and adaptive responses in the natural populations of

plants (Bräutigam et al., 2013; Amaral et al., 2020; Ashe et al.,

2021). A survey of published literature shows that a large number

of research investigations wherein the epigenetic route has been

shown to deploy rapid phenotypic plasticity for adaptation and
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evolution have come from studies in model plant and crop

species (Ding et al., 2018; Guarino et al., 2022; Varotto et al.,

2022) which is primarily due to the availability of large genomic

resources accumulated in this group of plants. The advancement

in sequencing technologies and their cost effectiveness, has lately

facilitated the availability of genomic resources in natural

populations of non-model species as well. This data has

provided useful insights into the role of epigenetic

mechanisms in expanding phenotypic plasticity and adaptive

responses. Even for model species, efforts have begun to compare

the epigenetic and genetic heritability in field conditions.

With many published reports (Table 1, Table 2, Table 3,

and Table 4), it has been convincingly shown that epigenetic

processes vary among populations, affect phenotypes, stress

responses, adaptability, fitness, range distribution and can

also become heritable across generations. Therefore, they

produce an additional, first and rapid tier of ‘epi-variability’,

which individually or in combination with genetic variations

have been observed to play a significant role in regulating

ecological and evolutionary processes in plants (Richards

et al., 2017; Baduel et al., 2021; Boquete et al., 2021). The

acquired epigenetic changes allow populations to initiate the

mechanisms to colonize, adapt and evolve in novel

environments and the adaptations achieved get stabilized

slowly by long-lasting genetic variations (Yona et al., 2015;

Amaral et al., 2020). The cross-talk between the epigenetic

and genetic components of variability is mediated by an

interplay between changes in chromatin organization and

physiological responses (Ashe et al., 2021; Boquete et al.,

2021) and represents one of the most important factors

contributing to the adaptive success of populations under

climatic stresses.

FIGURE 1
Diagrammatic representation of the epigenetic modifications based on their plastic or adaptive response to various environmental cues.
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TABLE 1 Instances of epigenetic regulation in plant species from different ecological communities.

Plant species (family) Ecological community type Inference References

Pinus sylvestris (Pinaceae) Alpine vegetation Global DNA methylation (GDM) levels and expression of DNMT and
circadian clock genes indicated that DNAmethylation contributes to local
adaptation

Alakärppä et al.
(2018)

Ranunculus kuepferi
(Ranunculaceae)

Alpine vegetation The methylation patterns across two cytotypes (diploid, tetraploid) and
three reproduction modes (sexual, mixed, and apomictic) were studied
using MSAP. Epigenetic variation reflected an ecological gradient rather
than discrete geographical differentiation

Schinkel et al. (2020)

Wahlenbergia ceracea
(Campanulaceae)

Alpine vegetation AFLP revealed low but significant variation between low and high-altitude
seedlings. There were indications of the involvement of epigenetic
mechanisms in adaptive responses to temperature stress based on
MS-AFLP analysis

Nicotra et al. (2015)

Deyeuxia angustifolia
(Poaceae)

Alpine vegetation MSAP and AFLP analysis revealed overall low genetic diversity and
epigenetic regulation suggested to be the basis for rapid adaptation to the
environment

Ni et al. (2021)

Chorispora bungeana
(Brassicaceae)

Alpine vegetation Differential DNA methylation changes were observed due to chilling
(4 °C) and freezing (-4°C) stress. Epigenetic variations are proposed as a
rapid and flexible regulatory mechanism to respond to cold stresses

Song et al. (2015)

Betula ermanii (Betulaceae) Alpine vegetation A study of two habitat types, namely alpine and subalpine, from Changbai
Mountain, China revealed that the alpine populations exhibited higher
genetic and epigenetic diversity in the form of higher degrees of genome
methylation than the subalpine populations

Wu et al. (2013)

Rhodiola sachalinensis
(Crassulaceae)

Alpine vegetation Four different populations s showed an association of altitudinal gradient
and DNA methylation levels, revealing distinct genetic and epigenetic
population structures in the analyzed four populations

Zhao et al. (2014)

Prunus avium (Rosaceae) Temperate deciduous forests In the five natural wild cherry populations analyzed from northern
Greece, 97% of the epigenetic variability was observed within the
populations. Epigenetic and genetic diversity did not differ significantly
and were not significantly correlated

Avramidou et al.
(2015)

Quercus lobata (Fagaceae) Temperate deciduous forests Single methylation variants (SVMs) showed significant association with
four climatic variables (mainly mean temperature). SVMs located within
or near the genes were known to be involved in responses to the
environment

Gugger et al. (2016)

Differential CG methylation patterns helped in adaptations to
environmental changes

Populus nigra cv. Italica Duroi
(Salicaceae)

Temperate deciduous forests Sixty Lombardy Poplar epigenotypes unique to each adult clone (with a
single genotype), collected from thirty-seven different locations in Europe
and Asia, exhibited transgenerational epigenetic variation that had an
association with the bud set phenology variation suggesting the
contribution of epigenetic signatures in adaptive traits

Vanden Broeck et al.
(2018)

Populus tremuloides
(Salicaceae)

Temperate deciduous forests Significant epigenetic variability was observed between two coastal
Marine stands at the Brunswick Naval Air Station. Epigenetic acclimation
played an important role in the ecological success of aspen populations

Ahn et al. (2017)

Pinus pinea (Pinaceae) Colder continental and Mediterranean
climate communities

AFLP analysis highlighted the absence of genetic variability but MSAP
identified significant epigenetic variation

Saéz-Laguna et al.
(2014)

Fragaria vesca (Rosaceae) Subalpine Meadows DNA methylation pattern changes in nine study sites across three
European countries: Italy, Czechia, and Norway along the climatic
gradient ranging from warmest to coldest mean annual temperatures
showed a correlation. With plant response to changed climate conditions.
Moreover, it was found that an increase in temperature will probably be
the limiting factor determining F. vesca survival and distribution.

Sammarco et al.
(2022)

Viola cazorlensis (Violaceae) Grasslands Methylation-based epigenetic differentiation of populations was found to
be associated with adaptive genetic divergence. Epigenetic diversity
exceeded genetic variation

Herrera and Bazaga,
(2010)

Scabiosa columbaria
(Caprifoliaceae)

Temperate grasslands Significant somatic and transgenerational epigenetic variability was
observed between French and British populations both in the field and
common gardens

Groot et al. (2018)

The mean polymorphism observed for genetic bands was 74.8% and
64.2% in the epigenetic bands in the field and 69.4% in common garden
plants

(Continued on following page)
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Epigenetic memory engenders quick
plastic and successive adaptive
responses to mitigate environmental
stresses

Plants being stationary get exposed to various periodic (such

as seasonal variations) or sudden (such as biotic stresses or

climate factors) environmental changes. Epigenetic

mechanisms help plants in generating plastic responses to

stressful environments (Lämke and Bäurle 2017; Ashapkin

et al., 2020; Yi and Goodisman, 2021; Guarino et al., 2022).

The plants may remember the past stress(es) and use their past

responses’ memory to mitigate the recurring stress(es) by

generating a more pronounced and/or faster response through

a phenomenon known as ‘defense priming’ or ‘stress priming’

(Lämke and Bäurle, 2017; Liu et al., 2022). It is primarily achieved

by activation of stress-related genetic pathways induced by

modification of the epigenetic marks cued by the environment

(Bruce et al., 2007; Lämke and Bäurle, 2017; Ashapkin et al.,

2020). There are two categories of genes involved in stress

memory genetic pathways, namely stress-responsive genes

(non-memory genes) and stress-memory genes. While the

stress-responsive genes express at the same level during each

stress exposure, the expression of stress-memory genes increases

significantly upon repeated exposure to the same stress (Ding

et al., 2012; Ashapkin et al., 2020). Table 5 collates various genes

that have been observed to express in plants under stress

conditions. The whole process of recognition of previous

stress cues, retaining the information, and processing it to a

further modified response is termed ‘stress memory’. When the

stress memory is short-term and ranges from days to weeks it is

referred to as ‘somatic stress memory’. However, stress memory

may also become heritable and get transmitted to the offspring as

‘transgenerational stress memory’.

Somatic stress memory involves short-term sustained or

pronounced responses that are often accompanied by

chromatin modification, histone H3K4 methylation, and

reduced nucleosome occupancy (Bäurle and Trindade, 2020).

These responses result in phenotypic plasticity which affects only

the somatic tissues, and the phenotypic changes revert to their

previous normal states when the stress conditions get over. This

type of resetting is advantageous when the stress condition does

not prevail in the long term because to maintain the primed

response, plants need to reallocate resources that cost energy

(Lämke and Bäurle, 2017). Somatic stress memory provides a

specific fitness advantage under short-term stress conditions.

Most of the reports pertaining to epigenetic regulation of

somatic stress memory have been derived from research

investigations undertaken in the model plant Arabidopsis

under different temperature and dehydration stress conditions.

The somatic stress memory in these cases has been shown to vary

from a few days to months and is observed to be associated with

epigenetic changes in DNA methylation, histone proteins, and

small miRNAs (Ding et al., 2012; Kim et al., 2012; Stief et al.,

2014; Ashapkin et al., 2020). For instance, the trimethylation of

lysine four of histone H3 (H3K4me3) has been observed in

several abiotic stress-responsive genes in Arabidopsis. It has

been observed that the accumulation of memory genes in

dehydration stress regulated by H3K4me3 in the first priming

stimulus is maintained throughout the memory phase (Ding

et al., 2012). Similarly, accumulation of histone acetylation and

activation of the COLD RESPONSIVE (COR) genes pervaded

during cold stress conditions (Pavangadkar et al., 2010; Park

et al., 2018). Kim et al. (2012) reported the accumulation of

RD29A, RD20, and AtGOLS2 transcripts during drought stress

conditions and the reduction of these transcripts to the basal level

during rehydration (Table 5). This is due to the stress memory

associated with acetylation of lysine nine of histone H3 (H3K9ac)

and the recruitment of RNA polymerase II to these genic regions

suggesting that chromatin marks play a role in transcription

memory during stress conditions. Furthermore,

H3K4me3 methyltransferase ARABIDOPSIS TRITHORAX1

(ATX1) which controls several genes in response to drought

stress, showed abscisic acid (ABA) production that promoted

drought tolerance in plants by the production of more ABA and

closing of the stomata (Bäurle and Trindade, 2020).

Transcription factors are identified as key components for

maintaining transcriptional memory and recruiting chromatin-

regulatory proteins to their target loci. HEAT SHOCK FACTOR

A2 (HSFA2) has been found to be responsible for the

methylation of H3K4me in response to heat stress (Lämke

et al., 2016b). Vernalization is another example of

environmentally induced somatic epigenetic memory. It refers

to the induction of flowering in vegetative plants upon cold

exposition, a response that the plants remember as vernalization

memory. This memory allows plants to remember a previous

TABLE 1 (Continued) Instances of epigenetic regulation in plant species from different ecological communities.

Plant species (family) Ecological community type Inference References

Vitex negundo (Lamiaceae) Grasslands and mixed open forests Bayesian analysis showed a significant habitat-related genetic but not
epigenetic differentiation. A significant correlation was observed between
epigenetic and phenotypic variation. Epigenetic variation complemented
with genetic variation to produce functional phenotypic variability for
better performance in heterogeneous and diverse populations

Lele et al. (2018)
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exposure to cold temperatures. For example, the FLOWERING

LOCUS C gene FLC has been shown to accumulate

H3K27 trimethylation in response to cold temperatures in

Arabidopsis. This histone modification at the FLC locus is

brought about by a Polycomb group complex recruited by

VERNALIZATION INSENSITIVE 3 (VIN3) and

VERNALIZATION 5 (VRN5) genes, and long non-coding

RNAs (COLDAIR and COOLAIR) activated by low

temperatures (Heo and Sung, 2011; Bäurle and Trindade,

2020). From the reports cited above, it has been shown that

overall variation in environmental conditions can lead to local

adaptation of plant populations in short term, while long-term

TABLE 2 The instances of epigenetic diversity and its relationship with environmental factors.

Plant species (family) Environmental
factor/Population description

Inference References

Laguncularia racemosa
(Combretaceae)

Riverside and salt marsh habitats; two
populations with different exposure to salt stress

Two populations growing in different environments showed
little variation with AFLP but had clear epigenetic variation as
defined by MSAP.

Lira-Medeiros et al.
(2010)

Trifolium pratense (Fabaceae) Two populations from calcareous and oat grass
meadows

Low levels of genetic and epigenetic variations. Genetic
variation was influenced by the habitat-specific environment
while epigenetic variation was dependent on environmental
conditions

Lehmair et al.
(2022)

Lilium bosniacum (Liliaceae) Altitude and soil type Two habitats, high altitude with limestone soil (1850 m) and
low altitude with serpentine soil (853 m) were studied.
Environment-induced epigenetic marks related to population
differentiation in Lily plants differed in global methylation,
presence of B chromosomes, rDNA repatterning, and
chromosomal rearrangements linked to DNA demethylation
that led to TE activation

Zoldoš et al. (2018)

Populus nigra (Salicaceae) Soil water availability Height and biomass were observed to be negatively correlated
with global DNA methylation under drought stress. The
population differentiation was very well indicated by global
methylation pattern changes under drought conditions

Sow et al. (2018)

Viola elatior (Violaceae) Light availability Epigenetic population differentiation was more strongly
related to habitat types than genetic differentiation

Schulz et al. (2014)

Unmethylated and CG-methylated states of epiloci primarily
contributed to population differentiation

Hydrocotyle vulgaris (Araliaceae) Flooding Different epi-phenotypes and epigenetic differentiation
between semi-submerged and submerged populations were
observed. Variability was observed to be contributed by
unmethylated and CHG-hemimethylated epigenetic states,
specific epiloci were identified for two flood conditions

Wang et al. (2022)

Picea abies (Pinaceae) Temperature and Rainfall 334 differentially methylated positions (DMPs) were
identified between different populations at different
temperature and rainfall levels. Differential Epigenetic
methylation patterns contributed to adaptation in varied
environments

Heer et al. (2018a)

Quercus ilex (Fagaceae) Drought Drought-exposed plants had a higher percentage of
hypermethylated loci and reduced fully methylated loci.
Changes in DNAmethylation could not prevent the reduction
in growth and higher mortality associated with drought

Rico et al. (2014)

Eucalyptus grandis × E. urophylla
and E. urophylla (Myrtaceae)

Water availability Four E. grandis × E. urophylla clones and 1 E. urophylla clone
analyzed at two experimental sites, one with uniform
precipitation and the other with a long dry season and a 4 °C
higher annual average temperature, were studied. A stronger
correlation was observed between the detected DNA
methylation and genetic background than between DNA
methylation and environment. Clone/genotype-specific DNA
methylation changes at specific sites were observed

Pereira et al.
(2020b)

Hybrid Poplar genotypes Drought Global methylation differences were observed within the
genotypes in two of the three hybrids. Effects were more
pronounced in genotypes grown for the longest durations at
different habitats. Genetically identical ramets show
epigenetic differences correlated to different environments

Raj et al. (2011)

DN34, Walker and Okanese
(Salicaceae)

Environmental epigenetic differentiation was transmitted to
vegetative offspring
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adaptive fitness is largely derived from transgenerational effects

(Lämke et al., 2016a; Lämke and Bäurle, 2017; González et al.,

2018).

Transgenerational stress memory is transmitted from

stressed parental generations to unstressed offspring (Bruce

et al., 2007; Robertson and Wolf 2012) to help prepare future

generations to mitigate environments with the same stress (es).

The first instance of phenotypic variation linked to the epigenetic

down-regulation of a gene (MgMYBML8) was related to the

transmission of simulated herbivory (leaf damage) induced

trichome production on the underside of leaves in Mimulus

guttatus. The epimutation was transgenerational and the

unstressed offspring also exhibited increased trichome

production, as a response showing preparedness for future

herbivory (Scoville et al., 2011). Following this, there have

been many ecologically relevant intergenerational and

transgenerational stress responses that are associated with

epigenetic processes induced by the modification of epigenetic

marks cued by the environment (Huang et al., 2010; Pecinka

et al., 2010; Ding et al., 2012; Lämke et al., 2016b; González et al.,

2018; Ashe et al., 2021). For instance, chromatin modification

induced transcriptional activation of a repetitive element in heat-

stressed Arabidopsis thaliana (Pecinka et al., 2010), switching

from C3 to crassulacean acid metabolism (CAM) photosynthetic

pathway assisted by the down-regulation of associated loci in

Mesembryanthemum crystallinum induced by acute salt-stress

(Huang et al., 2010), an increase in drought tolerance in Oryza

sativa induced by drought-induced methylation changes (Wang

et al., 2011), retention of more water by Arabidopsis plants

subjected to multiple cycles of dehydration than the plants

TABLE 3 Epigenetic regulation during various biological processes and functional traits development in natural plant populations.

Plant species (family) Biological process/Phenotypic traits
studied

Inference References

Populus x euamericana (Salicaceae) Winter dormancy in shoot apical meristem Differentially methylated regions (DMRs) are identified
for epigenetic memory by targeting the genes regulating
the developmental response to abiotic stress under harsh
environmental conditions

Gac et al. (2018)

Populus simonii (Salicaceae) Photosynthesis and leaf shape development Epigenetic regulations in the form of global methylation
changes were found to correlate with developmental and
functional plant traits such as leaf shape and
photosynthesis

Ci et al. (2016)

Corydalis yanhusuo (Papaveraceae) Sexual and asexual reproductive strategies Significant epigenetic variation was found as compared
to genetic modifications in the cultivated populations.
Genetic variation was slightly higher in natural than
cultivated populations. The difference was attributed to
different reproductive strategies and suggested that
epigenetic variation rescues response to environmental
conditions in asexually cultivated plants

Chen et al.
(2020)

Dactylorhiza traunsteineri, D.
ebudensis, and D. majalis
(Orchidaceae)

Polyploidization: Allotetraploid sibling orchid species
with radical differences in ecological and geographical
contexts

Genetic variation was unable to demarcate three
established polyploid species with similar genetic
heritage but epigenetic variation distinguished them
clearly. Water availability and temperature appeared to
be the key factors for this environmental allopatry in the
genus

Paun et al.
(2010)

Quercus lobata (Fagaceae) Plant height, trichome density, leaf shape, and
pathogen resistance

DNA methylation (CG/CHG/CHH) changes served as
biomarkers for phenotypic variance in traits like plant
height, trichome density, lobbed leaves, and powdery
mildew infection

Browne et al.
(2021)

Helleborus foetidus (Ranunculaceae) Functional traits of leaf, flower, fruit, and seeds The plant possessed greater epigenetic diversity than
genetic variation. MSAP markers are more associated
with functional traits than AFLP markers, and the
epigenetic variation correlated with intra-specific
functional diversity

Medrano et al.
(2014)

Hydrocotyle vulgaris (Araliaceae) Plant introduction: clonal herb of marshes in China Ten populations of introduced clonal herb showed
extremely low genetic diversity but high epigenetic
diversity. The phenotypic diversity was found to be
associated with intra-population and inter-population
epigenetic diversity

Wang et al.
(2020)

Hordeum brevisubulatum (Poaceae) Habitat fragmentation Higher epigenetic diversity was found in fragmented
populations than in un-fragmented populations.
Population epigenetic variability was found to be more
sensitive than a genetic variation to habitat
fragmentation in wild barley

Guo et al. (2018)
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exposed to dehydration stress for the first time (Ding et al., 2012),

sustained induction and persistence of several ‘stress memory

genes’ in response to heat stress correlated with different

histones’ methylation (H3K4me3 and H3K4me2) (Lämke

et al., 2016a) represents some stress amelioration instances

mediated by epigenetic processes. The epigenetic

transgenerational effects may occur across generations of both

asexually (Verhoeven et al., 2010) and sexually reproducing

species (González et al., 2018) and modify phenotypes of

offspring generations. These changes can set a rapid pace of

adaptation and microevolution in a population (Ashe et al.,

2021).

TABLE 4 Studies on epigenetic regulation in invasive plant species.

Plant species (family) Inference References

Alternanthera philoxeroides (Amaranthaceae) The weed can be both terrestrial as well as aquatic. The genetic variation was found to
be low but MSAP analysis showed significant epigenetic variation within and between
the populations. Common garden experiments showed a correlation between
epigenetic reprogramming and the reversible phenotypic response

Gao et al. (2010)

Carpobrotus edulis (Aizoaceae) The plant was sampled from native and invaded areas and grown in experimental plots
with changing climatic conditions. Variation was studied throughMSAP. No variation
was observed in response to changes in climatic variables although higher levels of
DNA methylation were observed in invasive taxa as compared to the native ones

Campoy et al.
(2022)

Phragmites australis (Poaceae) Invasive North American populations originated from native European and
Mediterranean populations. Both genetic and epigenetic mechanisms contributed to
invasion success in N. America, although no epigenetic convergence was seen between
native and introduced groups before genetic convergence.

Liu et al. (2018)

Furthermore, a strong correlation was found between epigenetic and phenotypic traits
than between genetic variation and the traits of twelve analyzed natural populations.
Though, genetic differentiation correlated well with heterogenous habitats of the
populations

Qiu et al. (2021)

Mikania micrantha (Asteraceae) The analyzed 21 populations in Southern China differentiated into sub-populations
with both genetic and epigenetic structures. The populations maintained an almost
equally high level of transposable element-based genetic and epigenetic variation.
Furthermore, the epigenetic and genetic population structure correlated with
environmental variables namely, precipitation, temperature, vegetation coverage, and
soil metals. The temperature variable was found to play a more important role than soil
in shaping the epigenetic differentiation amongst the populations studied

Su et al. (2021)
Shen et al. (2021)

Spartina alterniflora (Poaceae) and Borrichia frutescens
(Asteraceae)

The two species were studied along a natural salt marsh environmental gradient. More
epigenetic than genetic loci were correlated with habitat in both species. The
relationships between genetic and epigenetic variation and habitat were observed to be
species-specific

Foust et al. (2016)

Spartina anglica (Poaceae) Methylation patterns (30%) between the parental and hybrids and the
allopolyploid Spartina anglica were found to be different. The observations
revealed the association between an increase in epigenetic marks and higher
morphological plasticity in the invasive plant species catering to its higher
ecological amplitude

Salmon et al. (2005)

Spartina alterniflora (Poaceae) Significant genetic structure was observed between oil-contaminated and
uncontaminated sites along with five MS-AFLP loci that correlated with oil-exposed
sites. Bisulfite sequencing and epiGBS demonstrated that genetic and epigenetic
variation and the expression pattern of genes correlated well with exposure to oil
pollution. Both domains probably reinforced each other and contributed to the
response to environmental pollution or stress

Robertson et al.
(2017)
Alvarez et al. (2020)

Fallopia species complex: F. japonica, F. sachalinensis, and F.x
bohemica (Polygonaceae)

The analysis included five marsh sites, six roadside sites and five beach sites across
eastern New York studied for habitat differentiation. Epigenetic variability was
associated more with habitat differentiation in invasive taxa with poor genetic
differentiation

Richards et al.
(2012)

Reynoutria species (Polygonaceae) The epigenetic differences observed correlated with the genetic differentiation, with a
possibility of the epigenotype being dependent on the genotype. The methylation loci
probably accumulated as stable epimutations and the mutations and epimutations
tended to reinforce each other

Robertson et al.
(2020)

Taraxacum officianale (Asteraceae) In the clonal apomictic populations of invasive dandelions, range expansion
along colder ecological gradients was linked to heritable DNA methylation.
Furthermore, flowering time difference, an adaptive trait in colder ecological
gradients was shown to be mediated by inherited DNA methylation differences

Preite et al. (2015)
Wilschut et al.
(2016)
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In long-term stress conditions, stress memory has been

observed to be inherited by successive generations mainly

through the maternal parent (Wibowo et al., 2016).

Expression of DNA glycosylase DEMETER (DME) in the

male gametes inhibits paternal inheritance of methylation

marks as they are removed by DEMETER in the absence of

the hyperosmotic stress in Arabidopsis while in dme mutants

the transmission of the stress memory through the paternal is

restored in next generations (Wibowo et al., 2016; Lämke and

Bäurle, 2017). In the natural populations of a mangrove

species Rhizophora mangle, Mounger et al. (2021) observed

a low genetic and high epigenetic diversity. About 25% of the

epigenetic differences were observed among the offspring of

the maternal trees and the inheritance of epigenetic

variations among them was regulated by the stressed

maternal environments.

The activation of many genetic components is involved in the

induction of transgenerational epigenetic effects that combat

long-term stress conditions allowing species to mitigate

climate-change-related problems by enhancing plant fitness

(Lämke et al., 2016b). Many genes have been reported in

Arabidopsis that are influenced by GxE effects and regulated

by epigenetics (Table 5). For example, Kim et al. (2012) reported

the accumulation of RD29A, RD20, and AtGOLS2 transcripts

during drought stress and the reduction of their amounts to the

basal level during rehydration (Table 5). In another set of studies,

novel phenotypes were induced in Arabidopsis thaliana and were

linked to epigenomic patterns inherited (Schmid et al., 2018). Xu

TABLE 5 List of candidate genes regulated by epigenetics in GxE interactions.

Epigenetic
marks

Name Function References

DNA methylation Ac/Ds transposon Transposon/Low-temperature
stress

Steward et al. (2000)

DNA methylation ZmMI1 (Retrotransposon) Cold stress Steward et al. (2000)

DNA methylation HSP70 (Heat shock protein 70) Heat stress Aparicio et al. (2005)

DNA methylation PSBO1 (Oxygen-evolving enhancer protein 1–1) Oxidative stress Jones et al. (2006)

DNA methylation TAM3 (Transposon) Low-temperature stress Hashida et al. (2006)

DNA methylation NtGPDL (Glycerophosphodiesterase-like protein) Oxidative stress Choi and Sano, (2007)

DNA methylation CIPK6 (CBL-interacting serine/threonine-protein kinase 6) Drought stress Tripathi et al. (2009)

DNA methylation FLOWERING WAGENINGEN (FWA) Flowering time Johannes et al. (2009)

DNA methylation LEA46 (Late embryogenesis abundant protein 46) Drought stress Olvera-Carrillo et al.
(2010)

DNA methylation Asr1 Water stress González et al. (2011)

DNA methylation ONSEN (Transposon) Heat stress Gao et al. (2011)

DNA methylation POX1 (Proline dehydrogenase 1) Drought stress Sharma et al. (2011)

DNA methylation MgMYBML8 (Transcription factor) Biotic stress Scoville et al. (2011)

DNA methylation GRDP1 (Glycine-rich domain-containing protein 1) Biotic stress Rodríguez–Hernández
et al. (2014)

Small RNA miR394a Drought stress Ni et al. (2012)

Small RNA miR398 Heat stress Guan et al. (2013)

Small RNA miR156 Heat stress Stief et al. (2014)

Small RNA miR408 Drought stress Hajyzadeh et al. (2015)

Histone modifications FLOWERING LOCUS C Flowering repressor/
Vernalization

Michaels and Amasino,
(1999)

Histone modifications FLOWERING LOCUS D Flowering Bastow et al. (2004)

Histone modifications ARP6 (Actin-related protein 6) Heat stress Kumar and Wigge,
(2010)

Histone modifications ZmDREB1 and ZmCOR413 (Dehydration responsive element binding 1; cold-
regulated)

Cold stress Hu et al. (2011)

Histone modifications RD29A, RD20, and AtGOLS2 (Drought-inducible genes) Drought stress Kim et al. (2012)

Histone modifications ZmEXPB2 and ZmXET1 Salt stress Li et al. (2014)

Histone modifications OsHAC703, OsHAG703, OsHAF701, and OsHAM701 Drought stress Fang et al. (2014)

Histone modifications HSFA2 (Transcription factor) Heat stress Lämke et al. (2016a)

Histone modifications WRKY (Transcription factor) Biotic stress Alonso et al. (2019)
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et al. (2021) showed retention of transgenerational epigenetic

memory in Arabidopsis thaliana. A great deal of epigenetic

regulation has also been observed through the activation of

transposable elements (TEs) in Arabidopsis. The

retrotransposon ONSEN which remains suppressed by RdDM

(RNA-dependent DNA methylation) mechanism gets activated

under heat stress in Arabidopsis. RdDM plays an important role

in heat stress defense as mutations in RdDMmachinery can limit

the heat stress tolerance of plants by activating heat stress-

responsive genes (Popova et al., 2013) that have been

observed to be carried to future generations (Erdmann and

Picard, 2020). Baduel and Colot (2021), also observed TEs-

associated epi-variation that persisted for at least eight

generations in Arabidopsis under drought, salt, UV, heat, and

cold stress (Lang–Mladek et al., 2010; Ganguly et al., 2017).

In wild-type Arabidopsis, siRNAs target the methylation of

~2.6 kb upstream region of the HKT1 (HIGH-AFFINITY K+

CHANNEL 1) gene. In the mutants of small RNA biogenesis

pathway genes such as the rdr2 mutant, the methylation is

reduced at CHG and CHH contexts. In a mutant of another

gene involved in DNA methylation MET1 (Methyltransferase

1), methylation is reduced in all three contexts (Baek et al.,

2011). During salt stress, met1 plants were observed to be

hypersensitive while the rdr2 mutant showed normal salt

sensitivity. Therefore, non-CG methylation regulates the

expression of HKT1 in leaves, which may be essential in

providing long-term adaptation of plants to salinity stress

(Ashapkin et al., 2020).

To combat heavy metal stress, treatment of rice seedlings

with heavy metals inhibited the shoot and root development in

response to changing DNA methylation patterns of TEs and

different protein-encoding genes (Cong et al., 2019; Ashapkin

et al., 2020). In Hg2+-treated plants (F0 generation), changed

methylation (CHG hypomethylation) was observed in most

studied DNA sequences. In the progeny, stable inheritance of

the modified methylation patterns was observed. These studies

showed that the altered epigenetic state induced by heavy metal

stress is heritable between plant generations for providing long-

term adaptations. Further, Salicylic acid has been observed to

induce epigenetic changes in the F2 progeny of dandelions (Preite

et al., 2018).

The above studies indicate that epigenetic variation induced

in response to climate changes can increase plant fitness and

show transgenerational inheritance influencing long-term

adaptation in populations. Thus, epigenetic mechanisms seem

to play an important role in the survival, adaptation, and

microevolution of plant species under challenging climatic

conditions. However, future research efforts are required to

establish the extent of stress response, phenotypic plasticity,

their transgenerational capacity, and the mechanistic and

ecological impact of epigenetics on plant adaptations in

natural populations. Nonetheless, even if the induced

epigenetic changes are not heritable, these rapid stress

responses play a crucial role in generating transient fitness

ensuring survival without switching on the expensive

constitutive expression of stress-tolerant genes.

The role of model plants in
understanding epigenetic variation

During the last decade, a myriad of studies has signified

the role of epigenetics in plant adaptations and its comparison

with the innate genetic diversity in diverse taxa. These studies

have compared genetic and epigenetic variation in natural

populations of plants in contrasting environments (discussed

in the next section). An alternate approach involves

generating epigenetic variability in systems with little

genetic diversity and has been adopted in model plants

where the availability of detailed biological information,

genetic resources, and immense genomic data allows

answering complex questions. Many such studies have been

conducted on model plants like Arabidopsis thaliana, Oryza

sativa, and Zea mays (Richards et al., 2017).

Moreover, A. thaliana is ideally suited for studies of natural

phenotypic variation and is a good experimental system to

explore the mechanistic link between genetic and epigenetic

variation, especially with regard to cytosine methylation

(Schmitz and Ecker 2012). Epigenetic studies in A. thaliana

have largely involved analysis of genome-wide methylation

and epiRILs. One such study used demethylating agent 5-

azacytidine and revealed differential responses in genotypes in

terms of plant trait and plasticity suggesting that epigenetic

variation contributes significantly to plant fitness in addition

to genetic variability (Bossdorf et al., 2010). Furthermore, the

investigators created epigenetic recombinant inbred lines

(epiRILs) by crossing a ddm1 mutant of A. thaliana (col-

ddm1) with its wild type resulting in lines that were

homozygous for ddm1. These epiRILs were genetically nearly

identical but differed in the pattern of DNA methylation (Latzel

et al., 2013) and exhibited functional diversity having an effect

similar to genetic diversity and leading to phenotypic variations.

These two studies suggest that epigenetic diversity is an

important component of functional biodiversity and can

contribute to evolutionary adaptation by responding to

selection at the community level (Richards et al., 2017). In a

fitness-based study, the A. thaliana population subjected to

selection in rapidly changing environments revealed a reduced

epigenetic diversity suggesting that epigenetic variation is

subjected to selection (Schmid et al., 2018). A study on

Swedish accessions of A. thaliana revealed that CHH

methylation is temperature sensitive while CpG gene body

methylation was not affected by growth temperature.

Moreover, the study concluded that local adaptation involves

changes in the epigenetic landscape (Dubin et al., 2015). All these

studies indicate that epigenetic diversity is providing an
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additional layer of variation that helps in local adaptation just like

genetic variation when subjected to selection.

The studies in rice and maize are not as detailed as in A.

thaliana, but some interesting comparative studies can be found

on natural populations. These studies draw similar conclusions

as from the A. thaliana-based studies. Targeted DNA

methylation profiling has been carried out on 263 maize

inbred lines (Xu et al., 2019). The study identified

16,000 differentially methylated regions (DMRs) that were not

tagged by SNPs, suggesting that these DMRs possess unique

information. The epigenetic variation has also been linked to

inbreeding in maize (Han et al., 2021), showing

hypermethylation of CHH genomic regions. DMRs have also

been identified based on genome-wide DNAmethylation profiles

of 20 maize inbred lines. The study found that DMRs are

heritable and are associated with genetic variation identified

near transposable elements that may contribute to the

variation in DNA methylation (Eichten et al., 2013). Similarly,

MSAP marker genotyping was carried out on 50 accessions of

japonica rice varieties to show more epigenetic and phenotypic

similarities between the accessions grown at the same latitude

(Zhang et al., 2022).

Besides these model/crop plants, several studies conducted

on non-model systems exposed to diverse environments have

revealed significant plasticity and can answer questions related to

plant adaptations in varied environments (Thiebaut et al., 2019).

These plants can serve as model plants for such studies. Examples

of such systems can be identified in Table 1, Table 2, Table 3, and

Table 4.

Underpinning of epigenetic adaptive
responses in natural populations by
various biological processes and
ecological factors

Traditionally, studies on ecological adaptations in natural

populations have been comprehended through biological

processes, namely genetic drift, mutation, and natural

selection that work upon populations and the pre-existing

genetic diversity therein. These processes are slow and take a

long time to engender evolutionary divergence. To cope with the

fast-changing climate and novel stresses, populations need rapid

responses like phenotypic plasticity to provide the required

reproductive success. It has been shown that stresses can

modify epigenetic marks and generate a rapid epigenetic

response(s) in the form of a wide range of novel and stable

ecological phenotypes in just a few generations through gene

expression regulation (Grativol et al., 2012; Heer et al., 2018a;

Ashapkin et al., 2020; Ashe et al., 2021; Baduel et al., 2021;

Boquete et al., 2021; García–García et al., 2022). Among all the

known epigenetic mechanisms, DNA methylation is relatively

stable with transgenerational heritability and contributes

importantly to phenotypic variability under stress. In this

context, it is extremely important to understand the

mechanisms that generate phenotypic plasticity and convert

local phenotypic adjustments into adaptive variability of

ecological and evolutionary significance.

Rapid strides have been made in recent years to understand the

role of various biological processes and other ecological factors in

orchestrating strong epigenetic support to species in natural

populations in generating phenotypic plasticity and acquiring

evolutionary adaptations (Heer et al., 2018b; Paun et al., 2019;

Amaral et al., 2020; Ashapkin et al., 2020; Campoy et al., 2022;

Sun et al., 2022). The conclusive testament of their involvement in

modulating epigenetic adaptive divergence in plants has come from

studies conducted in plant resources representing genetically

uniform backgrounds such as recombinant inbred lines (RILs

and epi-RILs), asexually reproducing plant species (apomictic,

and vegetative propagation) growing in varied habitats, and rapid

adaptations shown by a single genotype of invasive plant species in

different alien invaded habitats. Additionally, various other factors

like pollination type and mating systems, polyploidy and

hybridization, sympatry and allopatry as well as contrasting

habitats of communities have been observed to influence the

epigenetic dynamics of the genome in natural populations. The

effect of these biological processes on the epigenetic landscape is

reflected in the form of modifications in 1) reproductive

mechanisms, 2) nuclear-cellular ratio, 3) copy number of genes

altering the genome organization, 4) alterations in the expression of

genes, and 5) alterations in phenotypes producing ecotypes (see

examples in Tables 1, 2, 3, and 4). Studies have been undertaken to

understand the spectrum of epigenetic variability in natural

populations thriving under the influence of the above factors and

to better comprehend the regulatory dynamics of adaptations. The

findings have been tabulated for clarity, better readability, and

comparisons (Table 1, Table 2, Table 3, and Table 4).

The magnitudes of heritable phenotypic variation in

epigenetic recombinant inbred lines (epi-RILs) of Arabidopsis

thaliana differing in DNA methylation but with little divergence

in DNA sequence was compared with standard RILs that had

considerable DNA sequence variation (Zhang et al., 2018). The

lines were grown in the same environment and assessed for

heritable variation in growth, phenology, and fitness. Results

indicated that in some traits the phenotypic variation among epi-

RILs was comparable to that among RILs and natural ecotypes,

indicating that phenotypic variability can have an epigenetic

basis.

Since the asexually reproducing plants lack meiotic

recombination, their narrow genetic base demonstrates poor

prospects for genetic adaptations. For this reason, asexually

reproducing plants have even been considered as evolutionary

dead ends (Lynch et al., 1993). Notwithstanding this

consideration, however, there are many clonally reproducing

species adapted to varied environments. Some of the most

successful invasive plants of the world, for example, are
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clonally reproducing and many a times, a single genotype is

observed to expand and thrive in diverse habitats successfully.

Among the 468 invasive plants listed in the IUCN Global

Invasive Species Database (http://www.issg.org/database), as

many as 70% reproduce clonally. Some of the most successful

invasive plants are found to be genetically uniform in their

introduced ranges. Invasive clonal plant species like

knotweeds in the United States, Europe alligator weed

(Alternanthera philoxeroides) in China, Spartina anglica in

Europe, and water hyacinth (Eichhornia crassipes) outside of

South America show almost no detectable genetic diversity even

after their establishment into a new environment (Salmon et al.,

2005; Gao et al., 2010), which is primarily attributed to genetic

bottlenecks and founder effects (Dlugosch and Parker, 2008).

The expansion and adaptive success of invasive species with

clonal uniformity and narrow genetic base in novel habitats is

perplexing and challenges our understanding of the process of

adaptation and indicates the involvement of additional

mechanisms (Richards et al., 2012). For this reason, the study

of ecology and evolutionary epigenetics has lately attracted a lot

of attention in invasive plants (Salmon et al., 2005; Richards et al.,

2008, 2012; Gao et al., 2010; Preite et al., 2015; Foust et al., 2016;

Wilschut et al., 2016; Robertson et al., 2017, 2020; Liu et al., 2018;

Alvarez et al., 2020; Qiu et al., 2021; Shen et al., 2021; Su et al.,

2021; Campoy et al., 2022).

To elaborate on a few instances, Shen and coworkers (2021)

reported the incidence of higher epigenetic diversity compared to

genetic diversity in Mikania micrantha which contributed to its

invasive success. They could also predict that under global

warming, the populations are expanding northward,

emphasizing the usefulness of such a study in predicting

future invasions. The clonal plants collected from distinct

habitat types of invasive Japanese knotweed (Fallopia

japonica) in the northeastern United States showed habitat-

specific phenotypes when grown in common environments

(Richards et al., 2008). Further, the epigenetic differentiation

with MSAP to habitat type was also found in these clonal

genotypes that showed no AFLP variation (Richards et al.,

2012) implying thereby that epigenetic variation allows a

single clonal genotype to adjust its phenotype to different

environments. Induction of environment-specific epigenetic

modifications is suggested by observations in Alligator weed

(Alternanthera philoxeroides), an invasive weed in China that

reproduces clonally through stolons. MS-AFLP analysis of

natural field-grown plants showed very little genetic but high

epigenetic variation. Even after 10 asexual generations, some of

the epigenetic differences appeared to be induced by

environmental differences (Gao et al., 2010).

The aquatic invasive plant, Ludwigia grandiflora

subsp. hexapetala, is classified as being harmful to European

rivers. In French wet meadows, this species has shown a rapid

transition from aquatic to terrestrial environments with the

emergence of two distinct morphotypes over a period of

5 years. Both genetic and epigenetic mechanisms have been

involved in adjustment to the new environment, and are

supposed to be possible contributors to this fast terrestrial

transition. Artificial hypomethylation was induced on both

morphotypes to assess the role of epigenetics. The

hypomethylation of the aquatic morphotype mimicked the

characteristics of the terrestrial morphotype. This suggests that

DNA methylation in a new adaptive genetic capacity is playing a

key role in L. grandiflora subsp. hexapetala plasticity during its

rapid aquatic to terrestrial transition (Genitoni et al., 2020).

The studies conducted on epigenetic regulation of

adaptations in invasive taxa have been collated in Table 4 and

show that plants adapt to different environments in many ways,

and genomic and epigenomic variation provides the basis for

plant adaptation and invasiveness. Epigenetic variation such as

induction of DNA methylation is projected to be involved in

response to diverse local environments, thus representing one

crucial mechanism to promote invasion success.

Epigenetic inheritance has also been observed to be influenced

by reproductive strategies, for instance, pollination type, and the

kind and time of events leading to germline development. In plants,

late germline segregation results in a longer temporal windowduring

which epigenetic alterations caused by the environment can be

integrated. A study by Preite et al. (2018) showed that alteration in

DNA methylation and ncRNA expression induced by drought was

inherited for two to three generations in unexposed offspring in

apomictic dandelions (Taraxacum spp.). The study underlines the

potential of long-term epigenetic inheritance in species reproducing

without fertilization. Similarly, self-pollinating plants show long-

term persistence of epigenetic inheritance compared to cross-

pollinated plants (Wang H et al., 2009). This persistence of

epigenetic inheritance might be a rescue mechanism to tackle the

deprivation of genetic diversity in self-pollinating plants. Self-

pollination has been thought to be derived from cross-pollination

and generally leads to a loss in genetic diversity in self-pollinating

plants (Stebbins, 1957). The evolutionary dynamics in self-pollinated

and vegetatively reproducing plants that lack a germline have

remained mystifying scientific queries for a long time. Based on

the recent evidence, it is reasonable to argue that there seems to be an

evolutionary correlation between the presence of self-pollination and

epigenetic marks across angiosperms (Figure 2). It seems that a

dearth of genetic variability is compensated by substantial epigenetic

structure in a plant species (Meller et al., 2018; Kuźnicki et al., 2019;

Perrin et al., 2020).

Further, the time of germline development can also affect

epigenetic patterns. The mature nuclei of pollen grains that are

associated with chromatin organization showed different epigenetic

marks reflecting the plants’ fertilization timing strategies. For

instance, DNA cytosine hypermethylation comparison of the

MROS1 gene between the vegetative and generative nuclei in

pollen grains of Silene latifolia (Caryophyllaceae) indicated

hypermethylation of DNA sequences in the vegetative nucleus

during pollen grain maturation. Hypermethylation was essential
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for the long-term survival of the pollen until it reaches the stigma

(Janousek et al., 2002). In contrast, a low level of DNAmethylation

was observed in the vegetative nuclei ofQuercus suber (Fagaceae), a

wind-pollinated tree, leading to active chromatin and hence a

higher potential for transcription, compensating for the

chromatin silencing of the generative nuclei. Further, the

chromatin compaction level and transcription level of generative

nuclei ofQ. suberwere greater than that of Lilium sps. which can be

linked to differences in their pollination or fertilization processes

(Ribeiro et al., 2009).

Polyploid species show increased methylated DNA, and

activation of several transposons which may be essential for

phenotypic divergence, adaptation, and biotic interactions (Paun

et al., 2007; Fulnecek et al., 2009; Li et al., 2011; Mirouze and

Paskowski, 2011; Alonso et al., 2016; Song et al., 2017;

Picazo–Aragonés et al., 2020). Besides cell size, biomass,

seed weight, and seed size, polyploidization is also known

to affect flowering phenology between diploid and polyploid

cytotypes. For example, partitioning due to ploidy differences

influenced the persistence of a novel cytotype of Anacamptis

pyramidalis that might otherwise have been out-competed by

its diploid progenitor (Pegoraro et al., 2016). Niche

differentiation of allopolyploid species relative to their

progenitors could help the survival of invasive

allopolyploid hybrids.

Hybridization and introgression also occur extensively in

natural populations and contribute to diversification and

speciation. Along with genomic changes, hybridization can

result in epigenomic changes like activation of transposable

elements (Kashkush and Khasdan, 2007; Rathore et al., 2020),

small RNA changes, as well as changes in DNAmethylation and

histone modifications (Ha et al., 2009; Marfil et al., 2009;

Kraitshtein et al., 2010; Zhao et al., 2011) which can lead to

the establishment of new species via these stabilizing

mechanisms (Feldman and Levy, 2005). In genus Spartina,

the hybridization of an European native and an American

hexaploid resulted in two genetically uniform hybrids that

showed massive methylation changes in their genomes

compared to their ancestors (Salmon et al., 2005). In general,

allopolyploids show high epigenetic variation due to which

many novel phenotypes are observed with increased species

fitness (Jackson, 2017). It has also been reported that synthetic

hybridization may induce chromosomal instability and hence

changes in epigenetic patterns (Comai 2000; Li et al., 2010; Cara

et al., 2013). Accumulating evidence also shows the significant

contribution of epigenetics to heterosis.

FIGURE 2
An illustration of a hypothesis of evolutionary correlation between the occurrence of self-pollinating species and the presence of abundant
epigenetic marks citing three examples found across angiosperm. The illustration shows closely related pairs of sister taxa in which one is
predominantly self-pollinating (taxa name in green) and the other is cross-pollinating (taxa name in blue). The predominantly self-pollinating species,
namely, Arabidopsis (Klosinska et al., 2016), Gossypium (Rehman et al., 2021), Hordeum (Guo et al., 2018), and Triticum (Qiu et al., 2017) show
high epigenetic marks. The phylogenetic background is drawn to show the relative systematic positions. It is generally assumed that self-pollination
has evolved from cross-pollination and self-pollinating taxa have low genetic variability. Higher values in species numbers in predominantly cross-
pollinating taxa might be associated with higher genetic variability in these species. The approximate species number for each taxon reported so far,
has been taken from World Flora Online (World Flora Online, 2022), except for Bromus (Soreng et al., 2017).
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Epigenetic regulation studies have been carried out in

various ecological communities like grasslands, temperate

deciduous forests, and alpine biomes (Table 1) to further

understand the effect of contrasting habitats on ecological

adaptations. In this context, alpine biomes represent extreme

environments with harsh abiotic conditions such as extremely

low temperatures, dryness, low oxygen concentration, strong

ultraviolet (UV) radiation, and violent winds. Plant life in such

habitats is challenging, as environmental influences can alter

the conditions for development and reproduction. All these

factors make alpine habitats a fragile ecosystem, ideal for

studying the effect of the environment on epigenomes. Many

studies in alpine plants have indicated that epigenetic

modifications play an important role in the adaptive

response to climatic changes and local adaptations (Wu

et al., 2013; Zhao et al., 2014; Nicotra et al., 2015; Song

et al., 2015; Alakärppä et al., 2018; Schinkel et al., 2020; Ni

et al., 2021) (Table 1). Further, studies have also revealed

interesting observations of epigenetic regulation of fitness

and adaptability of populations in ecological communities

like grasslands (Herrera and Bazaga, 2010), temperate

deciduous forests (Avramidou et al., 2015; Gugger et al.,

2016; Ahn et al., 2017; Vanden Broeck et al., 2018) and

communities from colder continental and Mediterranean

climates (Saéz-Laguna et al., 2014) (Table 1).

To study the effect of various environmental factors on the

regulation of epigenetic dynamics, many studies have combined

investigations involving field screenings of natural populations in

contrasting habitats. Epigenetic variations have been enlisted in

populations of selected species under ecological habitats of salt-

marsh conditions against the riverside habitats or contrasting

altitudes, soil, water, temperature, or rainfall conditions

(Table 2). Efforts have also been done to study epigenetic

regulation during various biological processes and functional

traits’ development in natural plant populations (Table 3).

All the above settings have provided valuable insights into

epigenetic differentiation and the role of epigenetic mechanisms

in regulating trait variations. An exhaustive collation of

epigenetic research conducted in natural populations in

relation to various biological processes, ecological factors,

communities, mating types, reproductive behaviors, and

habitats will help provide a better understanding of how

epigenetics can get affected by environmental stimuli and

regulate phenotypic plasticity and adaptive responses during

changing climates. The findings strongly propound the

involvement of epigenetic regulation of phenotypic plasticity

induced by environmental stimuli and substantiate the

viewpoints that epigenetics plays a major role in the adaptive

evolution of natural populations alone or in conjunction with

genetic variability.

As evident, natural populations have been observed to show

distinct genetic and epigenetic population structures. Even when

there is low genetic variation in the population, higher epigenetic

variation could be observed and vice versa. In some instances,

epigenetic variation aligned more strongly with habitat than

genetic variation indicating the link between DNA

methylation patterns and the environment. We hypothesize

that the interaction between the reproductive strategy of the

population and its inhabited environment is crucial in

determining whether the genetic and epigenetic variability

exists as a balancing determiner through trade-offs or

reinforce each other through the contributions of both

mutations and epimutations. The plant strategizes to invest

predominantly in asexual reproduction, self-pollination, or

cross-pollination based on the inhabited environment that

could be stable (homogenous or heterogenous) or unstable.

Based on these factors, genetic and epigenetic variability finds

a balance for providing a competitive edge to the plant, and

finally these two pools of variability either show a trade-off or

reinforcement with each other (Figure 3).

Applications of epigenetic
mechanisms in crop breeding and
domestication for adaptation to the
changing environment

Epigenetics plays an important role in developing strategies

for crop breeding and domestication through the selection of elite

crop varieties by generating more phenotypes. The induction of

novel epi-alleles as plants respond to changing climates provides

an additional tier of epigenetic diversity to select desirable crop

traits and improve resilience. This is important as the genetic

base of most of today’s crop cultivars has become narrow due to

recurrent selections (Gallusci et al., 2017). The availability of

sufficient variability in the gene pools is pivotal for executing

meaningful and successful crop improvement programs to

ameliorate various biotic and abiotic stresses arising due to

the changing stressful global climates (Samantara et al., 2021;

Krishnaswami et al., 2022). Stress exposure cascades a response-

signaling cycle in plants that along with genetic modifications

leads to many epigenetic changes routed through mechanisms

such as chromatin remodeling, DNA methylation, histone

modification, and non-coding RNAs (Turcotte et al., 2022).

These epigenetic mechanisms have resulted in novel epialleles

associated with morphological, metabolic, and developmental

traits in plants (Tirnaz and Batley 2019) that can be exploited for

developing new climate-resilient crop varieties to mitigate the

challenges of changing environments (Springer and Schmitz,

2017; Kawakatsu and Ecker, 2019; Varotto et al., 2020;

Kakoulidou et al., 2021; Guarino et al., 2022) and help in crop

domestication by targeting epigenetic diversity to engineer crop

plants for optimal crop production (Ding and Chen, 2018).

The epigenetic variability has shown tremendous potential for

the selection of agronomic traits and QTLs in Arabidopsis and other

important crops like rice, rapeseed, soybean, cotton, maize, and
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tomato. The bilateral symmetry of flower development in Linaria

cycloidea, FWA locus involved in regulating flowering time in

Arabidopsis, colorless non-ripening locus in tomato, vitamin E

accumulation in tomato, improved anthocyanin production in

apple, dwarf plant stature in rice, sex determination in melon,

slower fruit ripening in mature tomato, somaclonal variation in

oil palm, increased embryogenesis in pineapple, high heterosis in

pigeon pea, altered oil content in oilseed rape, enhanced yield in

soybean and adaptation of upland domesticated rice in response to

osmotic stress among others exemplify some of the epigenetic

variants showing useful traits in crops (Kakutani, 1997; Cubas

et al., 1999; Manning et al., 2006; Martin et al., 2009; Miura

et al., 2009; Telias et al., 2011; Zhong et al., 2013; Nonogaki,

2014; Quadrana et al., 2014; van Zanten et al., 2014; Ong-

Abdullah et al., 2015; Xia et al., 2016; Ding and Chen, 2018;

Luan et al., 2020; Sinha et al., 2020).

In rice, changes in DNA methylation and/or histone

methylation and acetylation patterns have resulted in many

epialleles linked to desired crop traits like increased panicle

branching and yield (OsSPL14) (Miura et al., 2010), delayed

flowering (SDG724 induced loss of function mutant Ivp1),

increase in grain size, weight, height and yield (down- and

upregulation of the genes OsLAC and OsglHAT1, respectively)

(Song et al., 2015) and grain yield (OsPCF7) (Li et al., 2020).

Likewise, while an increase in DNA methylation mitigated cold

stress in tomato, heat and salinity stress in rapeseed, drought

stress in faba bean and controlled photosynthetic activity in rice

(Wei et al., 2017; Samantara et al., 2021), the hypomethylation of

ESP gene regulated the improved panicle architecture in rice

(Luan et al., 2019). The methylation of histone H3 lysine 36

(H3K36), acetylation of H3K9, and histone H3 lysine

27 trimethylation (H3K27me) have played key roles in

bringing about many epigenetic changes in rice (Gupta and

Salgotra 2022). Similarly, alterations in H3K4me2 in maize

helped in mitigating abiotic and biotic stresses (Samantara

et al., 2021) and histone acetylation was shown to regulate

drought stress in tomato and Arabidopsis (González et al.,

2013; Zheng et al., 2016). It has been demonstrated that

FIGURE 3
An illustration of the hypothesis that as a response to environmental conditions, different reproductive strategies of plants are associated with
the coordination of genetic and epigenetic variability within the gene pool. Mostly, plant reproductive strategies show trade-offs, i.e. balancing of
genetic and epigenetic variability. Environmental conditions (or Environ) 1, 2, and 3 show a trade-off between genetic and epigenetic variability in the
gene pool. In Environment (1), the environment is stable with a heterogenous plant community, where plants generally tend to reproduce
sexually. In this type of environment, the plant tends to have high genetic variability and low epigenetic variability. In Environment (2), the
environment is stable with a homogeneous plant community, where plants generally tend to reproduce asexually or only through self-pollination. In
this type of environment, the plant tends to have high epigenetic variability and low genetic variability. In Environment (3), when the plant transitions
into an environment that is peculiar in some characteristic then the plant tends to perform specialized reproductive strategy suited for that narrow-
ranged environment. In this type of environment too, there is a trend of a decrease in genetic variability and an increase in epigenetic variability. In
Environment (4) opportunistic or invasive plants with diverse (i.e. broad) and robust reproductive responses can survive in unstable or fluctuating
environments, here the genetic variability and epigenetic variability reinforce each other.
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histone deacetylase HDA9 plays a key role in regulating drought

stress in plants (Turcotte et al., 2022). Further, miRNAs regulated

the expression of the OsSPL14 gene affecting the panicle

branching and increasing the rice yield (Miura et al., 2010).

Further, a comprehensive epigenomic and functional

analysis of domesticated allotetraploid cotton and their

tetraploid and diploid relatives revealed differentially

methylated cytosines regions that contribute to

domestication traits such as flowering time and seed

dormancy in cotton (Song et al., 2017). In another study,

domestication was exhibited through DMRs using 45 soybean

accessions. Interestingly, no association was observed with the

genetic variation enriched in carbohydrate metabolic

pathways (Shen et al., 2018). In rice, flowering time is

crucial for seed set which is regulated by histone

methyltransferase (HMTase) genes such as SET DOMAIN

GENE 724 (SDG724) that promotes flowering by

methylating the histone H3 lysine 36 (H3K36) (Sun et al.,

2012; Gupta and Salgotra, 2022). The useful epigenetic

diversity in many other crops has been collated well in

recent review articles (Varotto et al., 2020; Kakoulidou

et al., 2021; Alfalahi et al., 2022; Gill et al., 2022; Guarino

et al., 2022; Gupta and Salgotra 2022; Sharma et al., 2022;

Villagómez-Aranda et al., 2022). All these studies suggest that

the identification of agronomic traits regulated through

epigenetics will provide new opportunities for crop

improvement and domestication.

Since it has been established that the epigenetic mechanisms

aid plants in stressed conditions (Chachar et al., 2022), efforts

are underway to understand the mechanism of epigenetic

enzymatic systems that help in recognizing, installing, and

erasing the epigenetic marks. The availability of cutting-edge

sequencing technologies coupled with computing methods

like machine learning and deep learning is geared towards

decoding the role of epigenetic regulation in crop species (Ali

et al., 2022). Although many instances of spontaneous epi-

allelic diversity have been documented, efforts are also

underway to induce epigenetic diversity in crops. In this

context, ‘Eustressors’ that involve low-dose exposures to

stress factors to trigger positive responses in plants

through effects on their physiology, biochemistry,

genetics, and epigenetics have emerged as potent breeding

tools (Villagómez-Aranda et al., 2022). This is an emerging

area of research and future efforts aimed at identifying

eustressors capable of generating stable epigenetic marks,

understanding mechanisms leading to trans-generational

memory to stimulate a priming state and their

adaptability potential are essential before they can be

used to induce epigenetic variability for the advancement

of important agronomic traits in crop plants. In the nutshell,

emerging epigenetics-based technologies highlight the

prospects of novel epi-alleles to broaden the genetic base

of crop plants and open vistas to use epi-variability to

support future crop epi-breeding and domestication

programs. Integrating epigenetic methods into traditional

and modern crop breeding and domestication exercises can

serve as an expanded toolbox to address the agricultural

productivity challenges.

Techniques to identify and quantify
epigenetic signatures

Traditionally, the study of epigenetic changes has been based

on DNA methylation profiling, methylation-sensitive

amplification polymorphism (MSAP) (Waalwijk and Flavell,

1978), and bisulfite sequencing (Cokus et al., 2008; Kurdyukov

and Bullock, 2016), though the advent of techniques like

chromatin immunoprecipitation (ChIP), next generation

sequencing (NGS), and bisulfite reduction sequencing

(bsRAD) (Trucchi et al., 2016) in the recent years has

changed the scenario of data generation in studying epigenetic

aspects. Significant efforts have been undertaken for

technological simplification to study DNA methylation

changes in natural populations or species with large genomes

(Chwialkowska et al., 2017). The methods used in epigenetic

studies are listed in Table 6.

Of all the methods discovered so far, MSAP remains the most

widely used due to the associated ease of performance and the

simplicity of the technique. It is similar to amplified fragment

length polymorphism (AFLP) in procedure but uses two

isoschizomers HpaII and Msp1, that differ in their sensitivity

to the methylation state of cytosine (Waalwijk and Flavell, 1978).

The advent of NGS has allowed MSAP to become a high-

throughput method known as methylation-sensitive

amplification polymorphism sequencing (MSAP-Seq)

(Chwialkowska et al., 2017). However, poor efficiency of the

restriction enzymes to cut at CHH and CHG contexts than CG

context is a limitation associated with this technique as this can

portray an incorrect methylation status of the genome.

The bisulfite treatment is the next most widely used

technology after MSAP. It is used for the detection of cytosine

methylation both at specific loci and genome-wide levels.

Bisulfite treatment of genomic DNA results in the

deamination of unmethylated cytosines to uracil but

methylated cytosines are not prone to this treatment and still

read as C and can be distinguished from unmethylated cytosines

(Jones, 2012). The downstream analysis after bisulfite treatment

can be done by using several methods such as direct sequencing

of bisulfite PCR product, sub-cloning of PCR product followed

by sequencing, combined bisulfite restriction analysis (COBRA),

methylation-specific PCR (MSP), and pyrosequencing (Li and

Tollefsbol, 2011).

The advent of NGS has made it possible to look at DNA

methylation changes at the whole genome level using whole

genome bisulfite sequencing (WGBS) (Meissner et al., 2008;
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Lister et al., 2009). However, the required depth becomes a

bottleneck for large, complex genomes, resulting in increased

costs. To address this problem, a method like reduced

representation bisulfite sequencing (RRBS) was developed,

where an enzyme is used to target a specific portion of the

genome, which often is an enzyme like MspI, which targets

5′CCGG3′ sites often found in promoters (Meissner et al.,

2005). RRBS allows working with large genome sizes as it

constitutes genome fragmentation that reduces the complexity

of genomes (Davey et al., 2011).

The methods have also been developed to target particular

sequences for DNAmethylation analysis such as bisulfite padlock

probes (BSPP) (Diep et al., 2012). Although the bisulfite-based

NGS methods have provided a single base resolution of

epigenetic changes, it fails to provide information on specific

cells when it comes to complex tissues. In this context, the

recently developed, single-cell bisulfite sequencing (Smallwood

et al., 2014) technique provides whole epigenetic insights into

individual cells.

The utility of bisulfite sequencing in natural populations

became possible after adapting the RADseq and GBS protocols to

procure the methylation profile of reduced genome libraries for

species where a reference genome is not available. Three RRBS

protocols namely epiRAseq (Schield et al., 2016), bsRADseq

(Trucchi et al., 2016), and epiGBS (van Gurp et al., 2016) find

great utility in this context. Methylation-sensitive, MS-DArT

(Pereira et al., 2020a) has emerged as another promising

technique to study DNA methylation profiling. It is a

genotyping technology that involves double digestion preceded

by adaptor ligation and NGS. The technology is attractive and

amenable to use for any species as the availability of a reference

genome is not imperative, though it is useful to establish the

genomic context of methylated bases.

Another technique for accurately studying DNAmethylation

has been through the deployment of antibodies developed against

5-methylcytidine (Mohn et al., 2009). This method is called

Methylated DNA immunoprecipitation (MeDIP) which can be

combined with simple PCR, microarrays, or NGS to create a

powerful tool for the unbiased detection of methylated DNA.

MeDIP can be combined with MRE-seq (methylation-sensitive

restriction enzyme sequencing) for more accuracy in methylation

studies (Maunakea et al., 2010). MRE-seq involves fragmentation

of DNA using methylation-sensitive restriction enzymes

followed by sequencing. Methyl-binding domain isolated

genome sequencing (MBDiGs) is another technique that

involves recombinant Methyl Binding Domain (MBD) and

MBD2 proteins for the enrichment of methyl-rich DNA

fragments (Serre et al., 2010).

Antibodies have also been used to develop various other

methods for epigenetic analysis to look at DNA-protein

interaction and protein modifications including those present

in histone proteins. Chromatin immunoprecipitation (ChIP) can

be used to identify protein modifications and DNA-protein

interactions. It involves in vivo cross-linking of proteins to

DNA with formaldehyde and then isolation of crosslinked

chromatin from nuclei. The isolated chromatin is further

sheared into smaller fragments followed by

immunoprecipitation with the help of specific antibodies. The

isolated DNA with this procedure can be investigated with

specific primers or combined with high throughput NGS

creating powerful tools like ChIP-Seq (Diaz et al., 2017).

Various useful modifications like sequential ChIP where

QPCR and ChIP are used in combination to assess the

modifications present on histone proteins H3 and H4 on the

target location (Tollefsbol, 2011) and ChlP-chip/ChlP-

microarray have been added. Coupled with whole genome

microarrays, ChlPs allow the determination of all DNA-

binding sites of any protein.

The latest innovations in technology development are

anticipated to change the dynamics of DNA methylation

research investigations in the future. Efforts have been

undertaken to develop methods to study epigenomes where

high-quality reference genome sequences are not available.

One such transformational technology launched recently

(April 2022) is Sequel II/IIe Platform which includes

methylation calling in native DNA (MCND) at the same time

sequencing is done (https://www.pacb.com). Moreover, the

expression of small RNAs can be studied through RNA-seq, RT-

TABLE 6 Commonly used NGS-based techniques for epigenetic analysis.

Technique Application References

WGBS (Whole genome bisulfite sequencing) The whole genome with all cytosine contexts can be studied Lister and Ecker (2009)

MeDIP-seq (Methylated DNA Immunoprecipitation) The whole genome can be studied with a small amount of initial DNA Mohn et al. (2009)

RRBS (Reduced Representation Bisulfite Sequencing) Can be applied to large-size genomes without a reference genomes and all cytosine
contexts can be studied

David et al. (2017)

MSAP-seq (Methylation Sensitive Amplification
Polymorphism Sequencing)

Can be applied for large-size genomes without a reference genomes Chwialkowska et al.
(2017)

ChIP-seq (Chromatin Immunoprecipitation Sequencing) Can assess histone modifications; provides a genome-wide map Diaz et al. (2017)

MS-DArT (Methylation Sensitive Diversity Array
Technology)

The whole genome can be studied without a reference genomes Pereira et al. (2020a)
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qPCRs northern blot, and in situ hybridization (Wang Z et al., 2009).

All these techniques enable the study of expression and

identification of small RNAs and their target predictions.

Databases of ncRNAs sequences and their functional annotation

from plants like CANTATAdb 2.01 (Szcześniak et al., 2016) with

over 200,000 lncRNAs from 39 plant species, MiRbase and TAIR

(Rhee et al., 2003; Kozomara et al., 2019) have been very important

resources.

Conclusion and future perspectives

Diverse studies on natural populations of plants including

investigations in 1) species from various ecological communities,

2) model and non-model species, 3) species of contrasting habits,

4) species from extreme habitats, 5) species from varied climatic

gradients, 6) species with asexual reproduction, and 7) invasive

taxa have empirically pointed out the involvement of epigenetic

phenomenon in facilitating adaptative ability in plants to cope

with the changing environments. Epigenetic mechanisms, either

individually or in accompaniment with genetic variation,

represent long-term stress responses as compared to transient

metabolic and physiological modifications. While short-term

responses ensure survival, long-term genetic and epigenetic

changes contribute toward plastic and adaptive responses of

evolutionary significance. The incidence of phenotypic

plasticity in genetically homogeneous populations strongly

supports its epigenetic ontogeny, although the causal

relationship between the stresses and plasticity still remains to

be deciphered. The ability to modulate gene expression to

produce stable and heritable alternate phenotypes that affect

reproductive success strongly suggests the role of epigenetics in

developing adaptability in natural populations in changing and

stressful climates. Furthermore, epiallelic transgenerational

diversity resulting in novel phenotypes seems to play a major

role in helping plants to adapt to new environments by aiding

them in expanding their habitat range.

To sum up, evidence indicates that 1) epigenetic marks lead to

phenotypic changes in plants and serve as important drivers to

rapidly widen the total phenotypic plasticity and phenotypic

variance of natural populations, 2) plant epigenomes show high

diversity and rapidly generate responses to external stimuli, 3)

epigenetic mechanisms help to provide the required variability for

selection and expand the plants’ repertoire of adaptive responses 4)

epi-variability creates epialleles, that serve as an additional tier of

diversity for adaptive evolution 5) epigenetic variability is amenable to

selection and may eventually become heritable, 6) epigenetic and

genetic fields may complement each other for better execution of

phenotypic plasticity and adaptive responses and 7) various biological

processes, ecological factors and habitats strongly influence the

epigenetic regulatory processes in natural populations (Robertson

and Wolf 2012; Trucchi et al., 2016; Amaral et al., 2020; Ashapkin

et al., 2020; Ashe et al., 2021; Baduel et al., 2021; Boquete et al., 2021;

Qiu et al., 2021; García–García et al., 2022). It has been shown that

both genetic and epigenetic variations contribute to environmental

stress-induced heritable phenotypic divergence. Many studies have

shown higher epigenetic variability than genetic variation (Medrano

et al., 2014; Foust et al., 2016; Guo et al., 2018; Wang et al., 2020).

Although the population-level studies of epigenetic variability in

species with high genetic diversity distributed across different

habitats are limited (Robertson et al., 2017; Qiu et al., 2021),

future studies in such species would further enhance our

knowledge of the interactions between genetic and epigenetic

domains of the genome that coordinate adaptive responses.
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