
Modulation of the high-order
chromatin structure by
Polycomb complexes

Yiran Guo1,2,3* and Gang Greg Wang1,2,3,4*
1Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of
Medicine, Chapel Hill, NC, United States, 2Department of Biochemistry and Biophysics, University of
North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States, 3Curriculum in
Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC,
United States, 4Department of Pharmacology, University of North Carolina at Chapel Hill School of
Medicine, Chapel Hill, NC, United States

The multi-subunit Polycomb Repressive Complex (PRC) 1 and 2 act, either

independently or synergistically, to maintain and enforce a repressive state of

the target chromatin, thereby regulating the processes of cell lineage

specification and organismal development. In recent years, deep

sequencing-based and imaging-based technologies, especially those tailored

for mapping three-dimensional (3D) chromatin organization and structure,

have allowed a better understanding of the PRC complex-mediated long-

range chromatin contacts and DNA looping. In this review, we review

current advances as for how Polycomb complexes function to modulate

and help define the high-order chromatin structure and topology,

highlighting the multi-faceted roles of Polycomb proteins in gene and

genome regulation.
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Introduction

The lysine methyltransferase EZH2, together with EED, SUZ12 and RBBP4/7, forms the

PRC2 “core” complex that is sufficient to conduct progressive methylation of histone H3 lysine

27 (H3K27) in vitro (Kuzmichev et al., 2002; Cao and Zhang, 2004; Margueron and Reinberg,

2011; Guo et al., 2021; Blackledge and Klose, 2021). An EZH2-related enzyme, EZH1, was

reported to have similar cellular functions in PRC2 assembly and H3K27me3 deposition

(Margueron et al., 2008; Shen et al., 2008). In cells, the PRC2 “core” complex additionally

associates with a set of auxiliary cofactors, which can either facilitate the chromatin targeting or

mediate functional modulation of PRC2. On the other hand, the PRC1 “core” complex is

established by a RING1 catalytic subunit (either RING1A or related RING1B) (Wang et al.,

2004), a PHCprotein (PHC1, PHC2, or PHC3), a PCGF protein (PCGF1-6), and a CBXprotein

[CBX2/4/6/7/8; which contains a chromodomain that can recognize H3K27 trimethylation

(H3K27me3)] (Blackledge and Klose, 2021; Kim and Kingston, 2022). The CBX subunit can be

replaced by YAF2 or RYBP. Based on the composition of complex subunits, PRC1 can be

divided into the canonical PRC1 (cPRC1, which contains a CBX) or non-canonical PRC1
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(ncPRC1, which contains either YAF2 or RYBP but not CBX)

(Figure 1). PRC2 and PRC1 serve as the primary “writer” enzyme

for H3K27me3 and mono-ubiquitination of histone H2A Lys119

(H2AK119ub), respectively. PRC2 and PRC1 can act in concert or

independently to maintain a repressive state at target chromatin

regions. Part of PRCs-associated repressive activities can be

attributed to PRC’s enzymatic product per se (i.e., H3K27me3 and

H2AK119ub). For example, somatic heterozygous gain-of-function

mutation of EZH2 at its residue Tyr-646 occurs frequently in human

B cell lymphoma patients, which leads to a global increase of

H3K27me3 and a more closed chromatin structure (Sneeringer

et al., 2010; Xu et al., 2015; Donaldson-Collier et al., 2019). PRC

complex-generated histone modifications, H3K27me3 and

H2AK119ub, can serve as a docking site for recruiting “reader” or

effector proteins, which subsequently mediate the processes of gene

silencing and/or chromatin compaction. Formation of various PRC1/

2 sub-complexes and their respective gene-regulatory functions have

been extensively reviewed elsewhere and readers shall refer to recent

comprehensive review articles (Margueron and Reinberg, 2011; Vizan

et al., 2015; Schuettengruber et al., 2017; Deevy and Bracken, 2019;

Blackledge and Klose, 2021; Guo et al., 2021; Piunti and Shilatifard,

2021; Kim and Kingston, 2022; Parreno et al., 2022).

Increasing evidence points to critical roles of three-

dimensional (3D) chromatin organization and high-order

structure during organismal development and cell

differentiation, and deregulation of chromatin topology is

associated with development of human diseases (Bonev and

Cavalli, 2016; Yu and Ren, 2017; Hansen et al., 2018; Hug

and Vaquerizas, 2018; Brien and Bracken, 2019; Zheng and

Xie, 2019; Quiroga et al., 2022). In recent years, deep

sequencing- and imaging-based technologies developed for

mapping 3D chromatin structure have shed new light on

spatiotemporal organization of 3D chromatin organization

and long-range contacts. Increasing evidence also shows that

high-order chromatin structure is established at multi-level

genomic length scales and can be regulated by a variety of

molecular mechanisms.

First, segregating chromatin regions can be achieved through

DNA loops formed in the interphase cells. Here, the “loop

extrusion” model (Figures 2A,B) is the most prevalent one to

explain the formation of chromatin looping. In this model,

cohesin complex, a multi-subunit ring-like motor protein

machinery, uses the ATP hydrolysis-generated energy to

extrude DNA and progressively enlarge DNA loops until it is

stalled by the CCCTC-binding factor (CTCF) (Sanborn et al.,

2015; Fudenberg et al., 2016; Merkenschlager and Nora, 2016;

Wutz et al., 2017; Rowley and Corces, 2018; Davidson and Peters,

2021; Kraft et al., 2022) (Figure 2A). Further studies

demonstrated that cohesin complex is loaded to DNA through

the Nipped-B-like (NIPBL) protein and its binding partner

MAU2, which are strong activators of cohesin’s ATPase

activity (Davidson et al., 2019; Kim et al., 2019). In addition,

BRD4, a histone acetylation “reader” and general transcriptional

co-activator, recruits NIPBL and/or stabilizes its binding (Olley

et al., 2018; Luna-Pelaez et al., 2019; Linares-Saldana et al., 2021).

Cohesin can be either stabilized by PDS5 or released by WAPL

(Vaur et al., 2012; Tedeschi et al., 2013) (Figure 2A). Loop

extrusion by cohesin is terminated until it is anchored by a

pair of CTCFs in a convergent direction (Rao et al., 2014). Such a

convergent CTCF rule can be explained by a fact that an

N-terminal region of CTCF (amino acids 222–231 of human

CTCF) binds the SA2-SCC1 subunit of cohesin, thereby

prohibiting WAPL binding to sustain cohesin on the

chromatin (Li et al., 2020) (Figures 2A,B).

Loops are further folded into the self-interacting genomic

regions, often termed Topologically Associating Domains

(TADs), which span hundreds of kilobase pairs (Kbp) of

DNA with boundaries usually anchored by CTCF. Chromatin

in the same TADs shares similar chromatin state and

transcriptional activity and is interactive and generally avoid

FIGURE 1
Subunit composition of Polycomb repressive complex 1 (PRC1), either canonical PRC1 (cPRC1, left) or non-canonical PRC1 (ncPRC1; right). The
cPRC1 complex is composed of four core subunits, include a RING (either RING1A or RING1B), a PHC protein, a CBX (either CBX2, CBX4, CBX6, CBX7,
or CBX8), a PCGF (either PCGF2 or PCGF4), in addition to associating proteins. For the ncPRC1 complex, CBX is replaced by either RYBP or YAF2, the
PCGF being either PCGF1, PCGF3, PCGF5, or PCGF6, in addition to other ncPRC1-specific associating factors.
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of interactions to other domains, thereby regulating the

transcription of embedded genes in a coordinated fashion

(Rao et al., 2014).

At a larger genome scale (~1 Mbp or more), chromatin forms

two distinctive compartments, referred to as the A (active) and B

(inactive) compartment, which display an enhanced frequency of

contacts among themselves and correspond to open (A-type) and

closed/compact (B-type) chromatin, respectively (Lieberman-

Aiden et al., 2009).

Recent studies lend strong support for a notion that PRC

complexes have important functions in spatial determination

and fine-tuning of high-order chromatin structure. In this

review, we discuss about recent advances on these topics.

Polycomb repressive complexes
mediate CCCTC-binding factor-
independent chromatin contacts in
Drosophila

By generating a sub-kilobase-resolution (500bp) Hi-Cmap in

the cultured Kc167 Drosophila melanogaster embryonic cells,

Eagen et al. (2017) found that over 70% of chromatin loops

exhibit a general lack of CTCF binding at their anchors, which is

in stark contrast to a high percentage (about 86%) of loop

anchors actually associated with CTCF in human cells

(Figures 2A,B). A large majority (72.8%) of chromatin loop

anchors in Drosophila cells, however, did display binding by

Rad21, a subunit of cohesin complex, indicating a possibly

distinct loop formation mechanism mediated by cohesin in

the fly (Eagen et al., 2017). In addition, a significant fraction

of loop anchors in fly cells was found associated with binding of

Polycomb complex—in fact, approximately a quarter of all

chromatin loop have Polycomb binding (PRC1 and

H3K27me3) at both anchors (Eagen et al., 2017). Of note, the

Polycomb-associated chromatin loops in Drosophila tend to

target the genes related to transcription regulation and

development, and the promoters associated with Polycomb-

bound loop anchors exhibit significantly lower activities in

transcription than those without association to Polycomb loop

anchors, suggesting a repressive function of these PRC-bound

chromatin loops (Eagen et al., 2017).

Separate studies further revealed that both PRC1 and PRC1-

associated DNA motifs (Polycomb Response Elements or PREs)

FIGURE 2
Schematic of 3D genome structure. (A) Illustration of a loop extrusion model, in which NIPBL, stabilized by BRD4, loads the ring-like cohesin
complex onto target chromatin and activates its ATPase to extrude the DNA fiber. A pair of convergent CTCF proteins, and not those in the non-
convergent configuration, stall cohesin’s sliding and prevent WAPL from releasing the cohesion complex off chromatin. PDS5 binds cohesin to
stabilize its residence on the loop anchor. (B) Long-range chromatin interactions driven by the cohesion complex, with CTCFs serving as
anchors. (C) Long-range chromatin contacts driven by a phase separation-based mechanism.
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are necessary for stabilization of chromosome architecture and

maintenance of gene repression in the fly (Cheutin and Cavalli,

2018; Ogiyama et al., 2018). Using DNA-FISH and RNA-FISH

technologies, Cheutin and Cavalli focused on the roles of Ph

(homologous to PHC proteins in themammalian PRC1 complex;

Figure 1) and Pc (homologous to mammalian CBX proteins;

Figure 1) in the formation of PRC1 chromatin loops at HOX loci

during Drosophila embryogenesis and found that PRC1-

associated chromatin folding imposes an architectural effect

leading to gene repression (Cheutin and Cavalli, 2018). This

work also illustrated that the loss of PRC1-associated loops

proceeds gene derepression, indicating a causal effect of

looping (Cheutin and Cavalli, 2018). Also, Ph and Pc show

rather distinct functions in this biological process—loss of Ph

led to diffusion of nuclear Pc and more significant gene

derepression in fly embryos; in contrast, Ph proteins still

accumulated as the nuclear foci in those Pc-null embryos and

Pc-loss-associated gene derepression was found much weaker

(Cheutin and Cavalli, 2018). Similar to what was observed with

deletion of Polycomb proteins (Ph and Pc), perturbation of PRE

also disrupted the 3D chromatin architecture at target regions

(Ogiyama et al., 2018). As discussed above, the PRC-mediating

DNA loops in Drosophila appear independent of CTCF;

however, involvement of cohesin complex in PRC loop

formation remains to be fully understood.

In mammals, polycomb complexes
are involved in long-range interaction
between the poised enhancer/
silencer and promoter for dynamic
transcription regulation

In mammalian cells, Hi-C or Hi-ChIP methods uncovered

about ten thousands of DNA loops and 4,101 loops were

discovered by Hi-ChIP for H3K27me3 in mouse embryonic

stem cells (mESCs) (Mumbach et al., 2016; Roayaei Ardakany

et al., 2020; Kraft et al., 2022). PRC complexes also regulate the

3D chromatin structure in the mammals (Denholtz et al.,

2013; Schoenfelder et al., 2015; Wani et al., 2016; Fursova

et al., 2019). During transition from the native human

pluripotent stem cells to primed ones, which mimics the

pre- to post-implantation stages of embryonic development,

acquisition of H3K27me3 is concomitant with the emergence

of Polycomb-mediated long-range interactions (Chovanec

et al., 2021). In mESCs, key developmental genes, such as

Hox gene clusters, are embedded within Polycomb bodies

formed partly by PRC1 and partners (Schoenfelder et al.,

2015). Depletion of Ring1A/B disrupted the spatial

interactions among Hox promoters (Schoenfelder et al.,

2015). In agreement with this observation, the nuclear

clustering pattern of PRCs’ target loci was found disrupted

following the depletion of RING1B in mESCs, which points to

a PRC1-dependent chromatin compaction (Boyle et al., 2020).

Importantly, such an effect by PRC1 is independent of its

intrinsic enzymatic activity since a RING1B catalytically-dead

mutation (RING1BI53A) did not affect PRC1-dependent

compaction (Boyle et al., 2020). Correlating gene

expression with RING1B’s binding further revealed that, in

the absence of PRC1, genes with RING1B binding at proximal

sites (0–50 kb) were found upregulated whereas those with

distal RING1B peaks (>100 kb) were not, indicating that

PRC1’s repressive effect in mESCs is mainly proximal and

not at a larger genomic scale (Boyle et al., 2020).

Polycomb repressive complex maintain
interactions between the poised
enhancers and promoters

Long-range looping interaction between promoter and

enhancer represents a common means for modulating

transcription. Enhancers are distal gene-regulatory elements,

which contain a characteristic mono-methylation of histone

H3 lysine 4 (H3K4me1) (Creyghton et al., 2010; Rada-Iglesias

et al., 2011). In addition to H3K4me1, the poised enhancers (PEs)

are characterized by an additional presence of H3K27me3 and a

lack of H3K27 acetylation (H3K27ac), while those active

enhancers are marked by the presence of H3K27ac and a lack

of H3K27me3; additionally, a class of so-called primed enhancers

carry H3K4me1 with no modification of H3K27 (neither

H3K27ac nor H3K27me3), which was viewed to be an

intermediate stage between being repressive/poised and being

fully activated (Creyghton et al., 2010; Rada-Iglesias et al., 2011).

Previously, it has been reported that PEs establish physical

interactions with target genes in mESCs and even prior to cell

differentiation (Bonev et al., 2017). In this scenario, PEs often

display association with those developmentally critical genes,

notably ones involved in body patterning and early development

(Schoenfelder et al., 2015; Bonev et al., 2017; Cruz-Molina et al.,

2017; Crispatzu et al., 2021). It was proposed that the PRC

maintains a repressive state via PE-promoter contact in

undifferentiated stem cells, which then enables a quick

response to differentiation-stimulating signals (for example,

gene activation upon loss of PRC) (Gentile et al., 2019). In

agreement, the H3K27me3-decorated chromatin regions are

often partially overlapped with active histone marks and

located at the active chromatin compartments, although

PRC2 target regions are generally more condensed (Vieux-

Rochas et al., 2015; Mas et al., 2018; Xu et al., 2018). Also,

regulation of enhancer-promoter (E-P) interaction seems to rely

more on PRC1 and not H3K27me3, since the retention of

H3K27me3 is not sufficient to maintain E-P interaction upon

neuron differentiation (Bonev et al., 2017). However, PRC2 loss

in differentiating limbs severely compromised the transcriptional

induction of E-P-associated targets, as its depletion disrupts the
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interaction between HoxA genes and remote enhancers (Gentile

et al., 2019). Further investigation is merited to dissect exact roles

of PRC1 versus PRC2, as well as their respective enzymatic

products (H3K27me3 and H2AK119ub), in regulation of E-P

interactions and target gene expression during the mammalian

development.

Polycomb repressive complex bring the
“silencer” elements to proximity for
repressing gene expression

Like enhancers, silencers are distal cis-regulatory regions but

usually harbor the repressive histone marks. Silencers can

mediate gene repression when being brought to promoters via

DNA looping; meanwhile, they can turn into enhancers under

different contexts (Doni Jayavelu et al., 2020; Pang and Snyder,

2020; Segert et al., 2021). Recently, Ngan et al. (2020) reported

that PRC2 mediates extensive looping between promoters, or

between promoters and distal intergenic or intragenic enhancers,

in mESCs; further, they showed that a subset of PRC2-enforced

chromatin loops physically connect distal regulatory elements

(DREs) with development-related genes, whose expression is

known to be epigenetically silenced or poised in the

undifferentiated mESCs. Disruption of PRC2-bound DRE

caused the loss of PRC2-associated chromatin loop, decrease

of H3K27me3, and de-repression of the target gene (Oksuz et al.,

2018; Ngan et al., 2020). Thus, akin to how enhancers activate

target gene expression via (co)activator-associated chromatin

looping, these PRC2-bound DREs function as “silencers” and

repress target gene transcription through chromatin looping

associated with PRC2 and (co)repressors (Ngan et al., 2020).

Not surprisingly, these “silencers” can turn into active enhancers

during the development and lineage specification, demonstrating

a dynamic nature of DREs (Ngan et al., 2020). These findings are

in agreement with what was reported in a separate study showing

that, in hematological cancer cell lines, the H3K27me3-rich

genomic regions interact preferentially with each other, some

of which serve as “silencers” for regulating gene expression via

chromatin looping (Cai et al., 2021).

Polycomb repressive complex-
mediated and CCCTC-binding
factor-mediated chromatin looping
mechanisms operate independently,
pointing to a multi-level regulation of
3D chromatin structure

Polycomb associated domains

Polycomb complexes have been shown to mediate the

formation of self-interacting domains of compacted

chromatin, sometimes referred to as Polycomb Associated

Domains or PRC1-associated domains (PADs), in animal cells

(Denholtz et al., 2013; Schoenfelder et al., 2015; Kundu et al.,

2017; Ogiyama et al., 2018; Boyle et al., 2020; Du et al., 2020).

Similar PADs or PRC-repressed compartments were reported in

the plant as well (Huang et al., 2021). Like TADs, chromatin

inside the same PAD is self-interacting, which is essential for the

maintenance of appropriate gene and chromatin state. For

instance, during the neuronal differentiation of mESCs, those

PADs harboring neuron-specific genes were found

deconstructed (Bonev et al., 2017; Kundu et al., 2017).

Interestingly, the PAD deconstruction was found correlated

with a decrease of RING1B targeting and not H3K27me3,

suggesting the latter histone mark is not necessary for PAD

maintenance (Bonev et al., 2017). In early embryo, Polycomb

complexes also drive dynamic loop formation and some of these

loops could be important for gene imprinting (Chen and Zhang,

2020; Du et al., 2020). Disruption of PRC1, but not PRC2,

attenuated PADs in the fully grown oocytes, although the

loop anchors are covered by H3K27me3 (Du et al., 2020).

Though H3K27me3 appears neither sufficient nor necessary to

maintain PADs, it is required for the re-establishment of PADs in

the two-cell stage of early mouse embryos (Du et al., 2020).

Collectively, these studies demonstrated that Polycomb

complexes, especially cPRC1, induce loop formation between

DREs and genes involved in early development; and PRC2 may

play a role in loop establishment, possibly by deposition of

H3K27me3 to recruit cPRC1 at the nucleation sites, which

could function as PADs’ anchors (Kraft et al., 2022).

Polycomb associated domains or PRC1-
associated domains are distinct from
topologically associating domains

PADs are also distinct from TADs in terms of their

regulatory factors and anchor features. First, unlike TADs,

which are highly conserved in different tissues and even

species, PADs could be highly dynamic (Du et al., 2020;

Loubiere et al., 2020). Second, similar to what was seen in

the fly cells, PADs in mESCs operate independently of CTCF

since PADs are not anchored by CTCF and their formation

was not altered without CTCF (Boyle et al., 2020). In contrast,

TADs are often anchored by CTCF (Nora et al., 2017; Hansen

et al., 2018). This indicates a multilevel regulation of 3D

chromatin organization by different mechanisms such as

the CTCF-driven one and PADs. However, previous studies

of other biological processes also showed that CTCF often

colocalizes with H3K27me3 marks and that CTCF can recruit

PRC2 via interaction with SUZ12 to repress target genes (Li

et al., 2008; Wang et al., 2020); and whether or not such a

CTCF:PRC2 interaction regulates looping remains to be

investigated.
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Moreover, PADs are independent or even antagonized by

cohesin complex, as PADs are not diminished and even

enhanced upon cohesin removal (Du et al., 2020; Rhodes

et al., 2020; Kriz et al., 2021). For example, depletion of

SCC, a cohesin complex subunit, seems to enhance the

chromatin interactions within PADs, indicating an

antagonism between the two (Du et al., 2020). In agreement,

the pro-longed cohesin residence inhibits the Xist-associated

polycomb spreading and gene silencing, while removal of

cohesin on active X chromosome causes the formation of

mega-domain that is typically seen on inactivated X

chromosome (Kriz et al., 2021). Interestingly, the above

antagonism may also be cell type-specific, since it was

observed only in mESCs and not in some examined cancer

cells (Rhodes et al., 2020). A recent work further specified the

role for different cohesin complex variants during the

formation of PADs and found that cohesin-SA1 (STAG1)

variant primarily exists on TADs’ boundaries whereas

cohesin-SA2 (STAG2) variant colocalizes with PRC1 and

facilitates Polycomb domain compaction through

PRC1 recruitment (Cuadrado et al., 2019). Consistently,

SA2 occupies PRC2-bound regulatory region in Ewing’s

sarcoma cells and its binding is critical for gene regulation

(Adane et al., 2021).

Phase separation as a mechanism
underlying polycomb repressive complex-
mediated chromatin compaction

Phase separation such as liquid-liquid phase separation

(LLPS) was proposed to be crucial for transcriptional control

and chromatin structure organization (Hnisz et al., 2017).

Ahn et al. (2021) have demonstrated that NUP98-HOXA9, an

oncogenic transcription factor (TF) with potent LLPS

capability, mediates CTCF-independent DNA loops among

cognate NUP98-HOXA9-bound sites, forming long-range E:P

contacts, and that such a looping mechanism requires the

presence of NUP98-HOXA9’s intrinsically disordered regions

(IDRs), which is essential for LLPS; similar looping was also

reported for another cancer-related TF, EWS-FLI (Showpnil

et al., 2022). Moreover, a recent work indicated that LLPS

plays a role in weakening the insulation properties of a subset

(~20%) of TAD boundaries, which exhibit the feature of

“house-keeping” genes, high transcription and a lack of

CTCF (Gamliel et al., 2022). Mounting evidence points to

critical roles for nuclear condensation and LLPS of TFs and

chromatin factors, including PRC complexes, during the long-

distance association and 3D organization of chromatin

(Figure 2C).

FIGURE 3
Schematic to show formation of Polycomb Associated Domains (PADs). PRC2 deposits H3K27me3, preferentially at regions with unmethylated
CpG-rich sequence. H3K27me3 is then “read” by the CBX subunit of cPRC1. The cPRC1 variant complex then drives chromatin compaction by liquid-
liquid phase separation (LLPS), which is at least achieved through the subunit of CBX2 (with its chromodomain reading H3K27me3 while its IDRs
mediating LLPS) and/or PHC1 (with the SAM domain mediating LLPS). PRC2 deposits more H3K27me3 marks to maintain PADs and repression
of the embedded genes.
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Indeed, studies revealed that cPRC1 can form condensates

through LLPS, which is driven by IDRs harbored within

cPRC1’s subunits, CBX2 and PHC1, and that PRC1’s

condensation and LLPS contribute to chromatin compaction

and target gene silencing (Isono et al., 2013; Lau et al., 2017; Plys

et al., 2019; Tatavosian et al., 2019; Seif et al., 2020; Eeftens et al.,

2021). Here, LLPS may mediate chromatin contacts by locally

concentrating PRC proteins and PRC-bound chromatin,

thereby facilitating the spread of repressive histone marks

(Cheutin and Cavalli, 2019; Guo et al., 2021) (Figure 3). In

accordance with this notion, single-molecule tracking studies in

live cells found that about 10% of PRC1, mostly cPRC1, stably

binds chromatin at “Polycomb body,” which is a known phase-

separated entity, in a H3K27me3-dependent manner (Huseyin

and Klose, 2021). In addition, it has been shown that PRC2 and

PRC1 deposit H3K27me3 and H2AK119ub, respectively, which

further recruits PRC1/2 variant complex onto same chromatin

regions (Blackledge and Klose, 2021; Guo et al., 2021; Kim and

Kingston, 2022); thus, it is possible that a feedforward loop

exists, promoting PRCs’ LLPS and PAD formation (Figure 3).

Also, it is possible that CBX2 can nucleate on chromatin

independently of H3K27me3 and other PRC1 subunits (Kent

et al., 2020). Upon nucleation, CBX-PRC1 assembles

condensates, and the consequence of this event is to shorten

diffusion time in the 3D space and to reduce trials for finding

specific sites through revisiting the same or adjacent sites

repetitively, thereby accelerating CBX2-mediated searching

for H3K27me3-decorated sites (Kent et al., 2020).

Conclusion and outstanding
questions

It becomes increasingly clear that PRC complexes play crucial

roles in the determination and/or modulation of 3D chromatin

structure, thereby regulating gene expression patterns during

organismal development. In future, effort shall be made to further

decipher causal roles for the recruitment and binding of PRC1, PRC2,

loop anchors and various cofactors in the formation and

maintenance of loops. Many of the works covered in this review

used either early embryo or ESCs as model system and further

research is warranted to investigate the dynamics of PRCs-mediated

3D chromatin organization during development, given that PRC

components are dynamically expressed among various differentiated

cells and tissue types. Furthermore, a phase separation model for

PRC-mediated chromatin compaction (Figure 3) is appealing but

requires further examination. In ESCs where CBX7 is the main CBX

form in cPRC1, there are only about 10 PRC1 molecules per

Polycomb body, which is lower than what would be required to

support and establish the PRC1 phase separation (Huseyin and

Klose, 2021). Thus, it needs further investigation whether or not

LLPS underlies PRC-associated chromatin compaction under

different biological contexts. Moreover, certain long-coding RNAs

are critical for the genomic targeting of PRC2 complex to establish

long H3K27me3 domains (Colognori et al., 2019; Schertzer et al.,

2019; Trotman et al., 2021); here, it is possible that RNA and

transcription can coordinate the 3D organization of chromatin

thereby mediating PRC’s targeting and spreading. The detailed

mechanism remains to be fully understood. In addition to the

above discussed gene-repressive roles, PRC1 and some polycomb

proteins such as EZH2 and RING1B were reported to have gene-

activation functions as well (Mousavi et al., 2012; Cohen et al., 2018;

Loubiere et al., 2020; Wang and Wang, 2020; Zhang et al., 2020;

Zhang et al., 2021; Wang et al., 2022). Some of these gene-activation

activities of polycomb proteins were suggested to be related to PRCs’

looping effect (Loubiere et al., 2020), others due to the intrinsic

transactivation activity harbored within polycomb proteins such as

EZH2 (Jiao et al., 2020; Wang et al., 2022), and the rest remain

completely unknown, which merits additional studies. Lastly,

Polycomb mis-regulation often perturbs the normal processes of

development and cell differentiation, leading to pathogenesis. A

better understanding of PRC-mediated gene and genome

regulation shall aid in therapeutic development.
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