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Circular RNAs are single-stranded RNAs with a covalently closed structure

formed by the process of back-splicing. Aberrant expression of circular RNAs

contributes to the pathogenesis of a wide range of cancers. Pancreatic cancer is

one of the most lethal cancers due to diagnostic difficulties and limited

therapeutic options. Circular RNAs are emerging as novel diagnostic

biomarkers and therapeutic targets for pancreatic cancer. Moreover, recent

advances in the therapeutic application of engineered circular RNAs have

provided a promising approach to overcoming pancreatic cancer. This

review discusses the roles of circular RNAs in the pathogenesis of pancreatic

cancer and in potential treatment applications and their usefulness as

diagnostic biomarkers.
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1 Introduction

Pancreatic cancer is the seventh leading cause of cancer-related death worldwide,

responsible for approximately 470 000 deaths per year (Sung et al., 2021). The number of

deaths related to pancreatic cancer is increasing, and the prognosis remains poor, with a 5-

year survival rate of only approximately 11% (Siegel et al., 2022). This poor prognosis is

because most patients are diagnosed at advanced stages, and there is a lack of effective

treatment options. In fact, the 5-year survival rates of patients with stage 0 and stage IV

pancreatic cancer are 85.8% and 2.7%, respectively (Egawa et al., 2012). To improve the

prognosis of pancreatic cancer, it is necessary to elucidate the molecular mechanisms

underlying the pathogenesis of pancreatic cancer, to enable the development of methods

for early diagnosis and effective treatment.

Recent progress in research on circular RNAs (circRNAs), which are single-stranded

RNAs with a covalently closed structure, has shown that many circRNAs are dysregulated

and involved in the pathogenesis of cancers (Vo et al., 2019). The presence of circRNAs

was first reported in pathogens, such as plant viroids (Sanger et al., 1976) and hepatitis

delta virus (Kos et al., 1986), followed by the discovery in the 1990s of circRNAs among

human transcripts (Nigro et al., 1991; Cocquerelle et al., 1992, 1993; Capel et al., 1993).

Over the last decade, advances in RNA sequencing technology and analytical methods

have begun to reveal the overall picture of circRNAs in the human transcriptome. To date,

more than 180 000 circRNAs have been identified, and their expression patterns have
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been shown to vary according to tissue or cell type and disease

state (Jeck et al., 2013; Memczak et al., 2013; Salzman et al., 2013;

Rybak-Wolf et al., 2014; Gao et al., 2015; Dong et al., 2018).

With clarification of the diversity of circRNAs in the human

transcriptome, their biological functions are also being

elucidated. This review discusses the roles of circRNAs in the

pathogenesis of pancreatic cancer and potential therapeutic

applications and their utility as diagnostic markers for

pancreatic cancer.

2 Roles of circRNAs in the
pathogenesis of pancreatic cancer

Although circRNAs have identical exon sequences as those of

their linear cognate mRNAs, they have distinct cellular functions.

circRNAs can interact with DNA, RNA, and proteins to

modulate transcription, act as decoys for miRNAs and

proteins, enhance mRNA stability, provide scaffolds for

protein complex formation, and serve as templates for

translation. In pancreatic cancer, many circRNAs are

dysregulated and play important roles in various aspects of

cancer progression. Most pathogenic circRNAs function as

miRNA decoys, and several circRNAs have been reported to

interact with proteins to stabilize mRNA, inhibit post-

translational modifications, and provide scaffolds for

formation of protein complexes (Figure 1). This chapter

focuses on representative circRNAs involved in the

pathogenesis of pancreatic cancer for which the detailed

mechanisms have been elucidated, and those that could not

be introduced in the text are summarized in Table 1.

2.1 Decoys for miRNAs

As first demonstrated with CDR1as, some circRNAs function

as decoys that bind tomiRNAs and prevent them from binding to

their target mRNAs (Hansen et al., 2013; Memczak et al., 2013).

Hansen et al. also demonstrated that CDR1as reduced miR-7

activity, whereas the cognate linear RNA of CDR1as had little

effect on miR-7 activity, suggesting that circRNAs have unique

biological functions that differ from linear RNAs despite having

the same sequence. In pancreatic cancer, many pathogenic

circRNAs have been reported to function as miRNA decoys,

leading to cell proliferation, inhibition of apoptosis, metastasis,

chemotherapy resistance, and metabolic reprogramming. For

example, circBFAR was identified as an upregulated circRNA

in pancreatic cancer, and its overexpression was shown to be

correlated with poor prognosis (Guo X. et al., 2020).

Mechanistically, circBFAR binds to miR-34b-5p and decreases

MET expression, thereby activating the MET/PI3K/Akt signaling

pathway and promoting the progression of pancreatic cancer

cells. In another example, circSLIT2 was shown to upregulate

c-Myc expression by binding to miR-510-5p and to facilitate

aerobic glycolysis in pancreatic cancer cells (Guan et al., 2021). In

addition, many other circRNAs have been reported to contribute

to pancreatic cancer progression in a cell-autonomous manner

by disrupting miRNA function.

The circRNAs that are dysregulated in cancer cells not only

increase their malignant potential in a cell-autonomous manner

but also contribute to the progression of pancreatic cancer in a

non-cell-autonomous manner by altering the tumor

microenvironment (Figure 2). circNFIB1 was shown to be

downregulated and to be negatively associated with lymph

node metastasis in pancreatic cancer patients (Guan et al.,

2021). circNFIB1 functions as a decoy for miR-486-5p and

antagonizes the miR-486-5p-mediated suppression of

PIK3R1 expression. As PIK3R1 acts as an inhibitor of the

PI3K/Akt signaling pathway, circNFIB1 inhibits the PI3K/Akt

pathway and downregulates its downstream target, VEGF-C,

resulting in suppression of lymphangiogenesis and lymph node

metastasis.

Cancer-associated fibroblasts (CAFs) are the predominant

cell type in the stroma of pancreatic cancer and play an important

role in chemotherapy resistance. circFARP was identified as a

circRNA specifically upregulated in gemcitabine-resistant CAFs,

and high circFARP expression was shown to be correlated with

poor progression-free survival (Guan et al., 2021). When

pancreatic cancer cells were cultured in conditioned medium

derived from circFARP-overexpressing CAFs, they acquired

gemcitabine resistance. Mechanistically, circFARP enhances

leukemia inhibitory factor (LIF) expression by decoying miR-

660-3p, and LIF secreted from CAFs induces gemcitabine

resistance in pancreatic cancer cells by activating the LIF/

STAT3 pathway. Interestingly, circFARP inhibits

CAV1 degradation by interacting directly with CAV1, which

FIGURE 1
Roles of pathogenic circRNAs in pancreatic
cancerPathogenic circRNAs in pancreatic cancer function as
miRNA decoys and interact with proteins to stabilize mRNA, inhibit
post-translational modifications (PTMs), and provide
scaffolds for protein complex formation.
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TABLE 1 Pathogenic circRNAs in pancreatic cancer.

circRNA Mechanism Target Biological function Reference

circRNA_100782 miRNA decoy miR-124/IL6R Promotes proliferation Chen et al. (2017)

circIARS miRNA decoy miR-122/RhoA Increases endothelial permeability Li et al. (2018a)

circPDE8A miRNA decoy miR-338/MACC1 Promotes invasion Li et al. (2018b)

circZMYM2 miRNA decoy miR-335-5p/JMJD2C Promotes proliferation and invasion; inhibits
apoptosis

An et al. (2018)

circADAM9 miRNA decoy miR-217/PRSS3 Promotes proliferation and invasion Xing et al. (2019)

circASH2L miRNA decoy miR-34a/Notch1 Promotes proliferation, invasion, and angiogenesis Chen et al. (2019)

circLDLRAD3 miRNA decoy miR-137-3p/PTN Promotes proliferation, invasion, and migration Yao et al. (2019)

hsa_circRNA_0007334 miRNA decoy miR-144-3p and miR-577/MMP7 and
COL1A1

Promotes migration Yang et al. (2019)

circ_0000977 miRNA decoy miR-153/HIF1A Helps HIF1A-mediated immune escape Ou et al. (2019)

ciRS-7 (CDR1as) miRNA decoy miR-7 Promotes proliferation and invasion Liu et al. (2019)

circ_0030235 miRNA decoy miR-1253 and miR-1294 Promotes proliferation and invasion; inhibits
apoptosis

Xu et al. (2019)

circRHOT1 miRNA decoy miR-26b, miR-125a, miR-330 and
miR-382

Promotes proliferation, invasion, and migration Qu et al. (2019)

circ_0007534 miRNA decoy miR-625 and miR-892b Promotes proliferation, invasion, and migration Hao et al. (2019)

circRNA_000864 miRNA decoy miR-361-3p/BTG2 Suppresses migration and invasion Huang et al.
(2020)

circ_0075829 miRNA decoy miR-1287-5p/LAMTOR3 Promotes proliferation, invasion, and migration Zhang et al.
(2020b)

chr7:154954255-
154998784+

miRNA decoy miR-4459/KIAA0513 Promotes proliferation Shao et al. (2020)

circ_0013912 miRNA decoy miR-7-5p Promotes proliferation and metastasis Guo et al. (2020a)

hsa_circRNA_001587 miRNA decoy miR-223/SLC4A4 Inhibits migration, invasion, and angiogenesis Zhang et al.
(2020a)

circRHOT1 miRNA decoy miR-125a-3p/E2F3 Promotes proliferation and invasion, inhibit
apoptosis

Ling et al. (2020)

circBFAR miRNA decoy miR-34b-5p/MET/Akt Promotes proliferation and migration Guo et al. (2020b)

circNFIB1 miRNA decoy miR-486-5p/PIK3R1/VEGF-C Inhibits lymphangiogenesis and lymphatic
metastasis

Kong et al. (2020)

circFOXK2 miRNA decoy and
protein interaction

miR-942/ANK1, GDNF, PAX6 and
scaffold for YBX1 and hnRNPK

Promotes proliferation, invasion, and migration Wong et al. (2020)

hsa-circ-001653 miRNA decoy miR-377/HOXC6 Promotes cell-cycle
progression, in vitro angiogenesis, and invasion

Shi et al. (2020)

circHIPK3 miRNA decoy miR-330-5p/RASSF1 Promotes gemcitabine resistance Liu et al. (2020)

circSEC24A miRNA decoy miR-606/TGFBR2 Promotes proliferation, invasion, and migration Chen et al. (2021)

circRNF13 miRNA decoy miR-139-5p/IGF1R Promotes proliferation, invasion, and migration Liu et al. (2021c)

circ_0092367 miRNA decoy miR-1206/ESRP1 Inhibits EMT and gemcitabine resistance Yu et al. (2021)

circ_0013587 miRNA decoy miR-1227/E-Cadherin Inhibits resistance to erlotinib Xu et al. (2021a)

hsa_circ_0006117 miRNA decoy miR-96-5p/KRAS/MAPK Promotes proliferation, invasion, and migration Liu et al. (2021a)

circPTPN22 Protein interaction Inhibit STAT3-SIRT1 interaction Attenuates immune microenvironment He et al. (2021)

circEYA3 miRNA decoy miR-1294/c-Myc Increases energy production via ATP synthesis Rong et al. (2021a)

circRHOBTB3 miRNA decoy miR-600/NACC1/Akt/mTOR Promotes autophagy and proliferation Yang et al. (2021)

circ_0099999 miRNA decoy miR-330-5p/FSCN1 Promotes proliferation, invasion,, migration, and
glycolysis

Wang et al. (2021)

circZNF91 miRNA decoy miR-23b-3p/SIRT1 Exosomal transmission to induce chemoresistance Zeng et al. (2021)

circCCT3 miRNA decoy miR-613/VEGFA/VEGFR2 Promotes proliferation and invasion, inhibit
apoptosis

Hou et al. (2021)

circ-0005105 miRNA decoy miR-20a-3p/COL11A1 Promotes EMT Ma et al. (2021)

circSLIT2 miRNA decoy miR-510-5p/c-Myc/LDHA Promotes glycolysis and proliferation Guan et al. (2021)

circ_0066147 miRNA decoy miR-326/E2F2 Promotes proliferation and invasion, inhibit
apoptosis

Zhang and Zhang,
(2021)

(Continued on following page)
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promotes caveola-mediated exocytosis of LIF. Thus, circFARP

functions as both a miRNA decoy and protein decoy.

Recent studies have shown that circRNAs are enriched in

exosomes and may mediate intercellular communication

between cancer cells and the tumor microenvironment to

promote cancer progression (Seimiya et al., 2020). For

example, circPDE8A was identified as a circRNA enriched in

exosomes secreted from liver metastatic pancreatic cancer cells

(Li Z. et al., 2018). circPDE8A functions as a decoy for miR-338

to upregulate MACC1 and stimulates invasive growth via the

MACC/MET/ERK or AKT pathway. Exosomes derived from

circPDE8A-overexpressing cancer cells activate the MACC/

MET/ERK or AKT pathway and promote

epithelial–mesenchymal transition. In clinical practice,

circPDE8A was also detected in exosomes from the plasma of

pancreatic cancer patients, and high exosomal circPDE8A

expression was shown to be correlated with TNM stage and

poor prognosis. circIARS was also enriched in exosomes from

liver metastatic pancreatic cancer cells (Li J. et al., 2018).

Exosomal circIARS decoyed miR-122 to increase RhoA

expression, which in turn increased the permeability of

human umbilical vein endothelial cells and facilitated invasion

of pancreatic cancer cells. Another study showed that hypoxia-

induced exosomal circZNF91 promoted chemoresistance in

TABLE 1 (Continued) Pathogenic circRNAs in pancreatic cancer.

circRNA Mechanism Target Biological function Reference

circ_0001666 miRNA decoy miR-1251/SOX4 Promotes EMT and invasion Zhang et al.
(2021a)

circPCDH10 miRNA decoy miR-338-3p/hTERT Promotes proliferation and invasion Zhang et al.
(2021b)

circ_0030167 miRNA decoy miR-338-5p/Wif1/Wnt8/β-catenin Exosomal transmission to inhibit proliferation,
invasion, and migration

Yao et al. (2021)

circ_03955 miRNA decoy miR-3662/HIF-1α Inhibits apoptosis and promotes Warburg effect Liu and Xu, (2021)

circ_0092314 miRNA decoy miR-671/S100P Promotes EMT Shen et al. (2021b)

circ-MBOAT2 miRNA decoy miR-433-3p/GOT1 Promotes proliferation and invasion; inhibits
apoptosis

Zhou et al. (2021)

circNEIL3 miRNA decoy miR-432-5p/ADAR1 Promotes EMT Shen et al. (2021a)

CDR1as miRNA decoy miR-432-5p/E2F3 Promotes proliferation and invasion Xiong et al. (2021)

circRNA_000684 miRNA decoy miR-145/KLF5 Promotes proliferation and invasion, andmigration Liu et al. (2021b)

hsa_circ_0071036 miRNA decoy miR-489 Promotes proliferation and invasion; inhibits
apoptosis

Han et al. (2021)

circRNA_102049 miRNA decoy miR-455-3p/CD80 Promotes proliferation and invasion; inhibits
apoptosis

Zhu et al. (2021)

circEIF6 miRNA decoy miR-557/SLC7A11/PI3K/AKT Promotes proliferation and invasion; inhibits
apoptosis

Zhang et al.
(2021c)

hsa_circ_0050102 miRNA decoy miR-1182/NPSR1 Promotes proliferation and invasion; inhibits
apoptosis

Hua et al. (2021)

circSFMBT1 miRNA decoy miR-330-5p/PAK1 Promotes proliferation and invasion Xu et al. (2021c)

circ-MTHFD1L miRNA decoy miR-615-3p/RPN6 Promotes gemcitabine resistance Chen et al.
(2022b)

circ_0047744 miRNA decoy miR-21/SOCS5 Suppresses metastasis Xie et al. (2022)

circATG7 miRNA decoy and
protein interaction

miR-766-5p/ATG7 and HuR
interaction

Promotes autophagy and proliferation He et al. (2022)

circCUL2 miRNA decoy miR-203a-5p/MyD88/NFkB/IL6 Induces inflammatory cancer-associated fibroblast Zheng et al. (2022)

circANAPC7 miRNA decoy miR-373/PHLPP2/AKT/TGFb Promotes proliferation and muscle wasting Shi et al. (2022)

circ_0072008 miRNA decoy miR-545-3p/SLC7A11 Promotes proliferation, invasion, and glycolysis Sun et al. (2022)

hsa_circ_0050102 miRNA decoy miR-218-5p/PPME1 Promotes proliferation, invasion, and angiogenesis Feng et al. (2022)

circFARP1 miRNA decoy and
protein interaction

miR-660-3p/LIF and CAV1 interaction Promotes gemcitabine resistance Hu et al. (2022)

circRTN4 miRNA decoy and
protein interaction

miR-497-5p/HOTTIP/HOXA13 and
RAB11FIP interaction

Promotes proliferation and invasion; inhibits
apoptosis

Wong et al. (2022)

circUHRF1 miRNA decoy miR-1306-5p/ARL4C Promotes proliferation, migration, and EMT,
inhibits apoptosis

Liu et al. (2022)

hsa_circ_0074298 miRNA decoy miR-519d/SMOC2 Promotes proliferation and gemcitabine resistance Hong et al.
(2022a)
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normoxic pancreatic cancer (Zeng et al., 2021). circZNF91 was

upregulated in exosomes derived from pancreatic cancer cells

under hypoxic conditions compared with normoxic conditions.

When hypoxia-induced exosomal circZNF91 was transmitted to

normoxic tumor cells, circZNF91 bound to miR-23b-3p and

upregulated SIRT1 expression. Consequently, SIRT1 stabilized

HIF-1α protein, which enhanced glycolysis and promoted

chemoresistance in recipient cells. These results suggest that

exosomal circRNAs may function as decoys for miRNAs in

recipient cells and play important roles in cancer progression

by mediating signal transmission between pancreatic cancer cells

and the tumor microenvironment.

Although there is accumulating evidence that circRNAs are

involved in the progression of pancreatic cancer, caution is

required when considering whether a given circRNA has a

measurable effect on cellular functions by acting as an miRNA

decoy. The most well-studied circRNA with miRNA decoy

function is CDR1as, which has over 70 binding sites for miR-

7 (Hansen et al., 2013). Another well-known circRNA has

16 miR-138 target sequences (Hansen et al., 2013). Compared

with these well-known circRNAs, most circRNAs have few

miRNA-binding sites and low expression levels (Guo et al.,

2014). Therefore, when investigating the potential of a

circRNA of interest to act as a miRNA decoy and contribute

to the pathogenesis of pancreatic cancer, careful consideration of

whether the expression of that circRNA and the number of

miRNA-binding sites are sufficient to achieve a measurable effect

is needed.

2.2 Inhibiting post-translational
modifications

Some circRNAs interact directly with proteins and stabilize

them by inhibiting ubiquitin–proteasomal degradation. For

example, circFARP1, which is upregulated in CAFs, interacts

with CAV1 and blocks the interaction between CAV1 and the

E3 ubiquitin ligase ZNRF1 to inhibit CAV1 degradation (Hu et al.,

2022). As CAV1 mediates caveola-mediated exocytosis,

CAV1 stabilization enhances LIF exocytosis from CAFs and

activates the JAK–STAT signaling pathway in pancreatic cancer

cells. As another example, circRTN4 interacts with RAB11FIP,

which plays an important role in epithelial–mesenchymal

transition, and protects it from ubiquitin–proteasomal

degradation (Wong et al., 2022). Prediction of the structure of

the circRTN4–RAB11FIP1 complex revealed that

circRTN4 blocked the Lys578 ubiquitination site of RAB11FIP1.

These results suggest that circRNAs bind to proteins and enhance

their stability by inhibiting ubiquitin–proteasomal degradation.

It has been suggested that circPTPN22 inhibits

protein–protein interactions and promotes STAT3 acetylation

(He et al., 2021). circPTPN22 is upregulated in pancreatic cancer,

and it interacts directly with STAT3 to block the interaction

between STAT3 and SIRT1. In a xenograft model, knockdown of

circPTPN22 enhanced intratumoral T cell infiltration and

inhibited tumor growth. These results suggest that

circPTPN22 inhibits STAT3 deacetylation by SIRT1 and

promotes immune evasion of pancreatic cancer.

2.3 Scaffolds for protein complexes

circRNAs also serve as scaffolds for mRNA–protein complex

formation to enhance expression of the mRNA. circFOXK2 is

highly expressed in pancreatic cancer and promotes cell

proliferation, migration, and invasion (Wong et al., 2020).

Pulldown of circRNAs followed by mass spectrometry

revealed that circFOKX2 interacts with YBX1 and hnRNPK.

The YBX1–hnRNPK complex is reportedly involved in cancer

progression. To determine the direct targets of the

YBX1–hnRNPK complex, a circFOKX2 RNA pulldown assay

and RNA immunoprecipitation assay of YBX1 and hnRNPK

were performed, and NUF2 and PDXKmRNA were identified as

direct targets. Knockdown of circFOXK2 downregulated the

expression of NUF2 and PDXK mRNA and inhibited the

interactions of YBX1 and hnRNPK with NUF2 and PDXK

mRNA. These results suggest that circFOXK2 provides a

scaffold for the YBX1–hnRNPK complex to promote

expression of NUF2 and PDXK. Another study showed that

circATG7 interacted with HuR and increased the mRNA level of

ATG7 (He et al., 2022). circATG7 exists in both the cytoplasm

and nucleus; cytoplasmic circATG7 acts as a decoy for miR-766-

5p to decrease the expression of its target gene, ATG7, while

nuclear circATG7 interacts with HuR and increases the stability

of ATG7 mRNA in a HuR-dependent manner.

Taken together, these observations suggest that pathogenic

circRNAs in pancreatic cancers function as miRNA decoys and/

or interact with proteins. However, given that the exact

mechanisms of action of many circRNAs remain unknown,

that circRNAs acting as templates for protein translation have

not been identified in pancreatic cancer, and that a single

circRNA can have multiple functions, the impact of circRNAs

on the progression of pancreatic cancer may be much greater

than known at present. Further studies are needed to elucidate

the overall impact of circRNAs on the pathogenesis of pancreatic

cancer.

3 circRNAs as diagnostic biomarkers

3.1 Pancreatic cancer

Although early diagnosis is important to improve the

prognosis of pancreatic cancer, most pancreatic cancer cases

are diagnosed at an advanced stage. One reason for this is that

pancreatic cancer biomarkers are ineffective for early diagnosis.
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For example, serum pancreatic enzymes, such as amylase, are

elevated in only 20–50% of patients with pancreatic cancer, and

serum CA19-9, which is routinely used as a biomarker for

pancreatic tumors, is elevated in 70–90% of cases (Sharma

et al., 2011). However, the sensitivity of CA19-9 for detecting

pancreatic cancer lesions ≤2 cm decreases to approximately 50%

(Liu et al., 2012), which is insufficient for early diagnosis.

Therefore, the development of novel diagnostic biomarkers is

required.

circRNAs have a half-life of 18.8–23.7 h, which is

significantly longer than that of their cognate mRNAs

(4.0–7.4 h) (Enuka et al., 2016). In addition, circRNAs exhibit

characteristic expression patterns in different types of cancer (Vo

et al., 2019). Due to their remarkable stability and specificity,

circRNAs are regarded as potential diagnostic biomarkers for

cancers. To date, five studies have reported the utility of serum

circRNAs as diagnostic biomarkers for pancreatic cancer

(Table 2). That is, circLDLRAD3, circPDAC,

hsa_circ_0013587, and circ_001569 were reported to be

aberrantly expressed in the serum of pancreatic cancer

patients (Yang et al., 2017; Xu K. et al., 2021; Shen X. et al.,

2021; Seimiya et al., 2021), and another study suggested that the

combination of hsa_circ_0006220 and hsa_circ_0001666 can

improve diagnostic performance compared with each circRNA

alone (Hong L. et al., 2022). These studies demonstrated that

circRNAs have a sensitivity of 0.45–0.76 and specificity of

0.70–0.90 for diagnosis of pancreatic cancer.

3.2 Intraductal papillary mucinous
neoplasm

It has been suggested that circRNAs may be useful for

diagnosis of not only pancreatic cancer but also intraductal

papillary mucinous neoplasm (IPMN), which is a

precancerous lesion of pancreatic cancer (Seimiya et al., 2021).

It was shown that circPDAC is highly expressed in pancreatic

cancer, and that high circPDAC expression is associated with

lymph node metastasis and cancer stage. This circRNA is

enriched in exosomes and can be detected in the blood of

patients with pancreatic cancer, suggesting that measurement

of circPDAC levels in blood may be useful for the diagnosis of

pancreatic cancer. Interestingly, circPDAC was also detected in

the blood of patients with IPMN. As there are currently no

effective biomarkers for diagnosis of IPMN, circPDACmay serve

as a novel diagnostic biomarker for this disease. Recently,

pancreatic surveillance of high-risk individuals with genetic

and familial risk factors for pancreatic cancer was shown to

lead to early diagnosis and better long-term survival (Dbouk

et al., 2022). In the same way, pancreatic surveillance in patients

with IPMNmay also reduce pancreatic cancer mortality through

early detection.

A number of issues remain to be resolved for the routine

application of circRNAs as diagnostic biomarkers for pancreatic

cancer or IPMN in real-world clinical practice. First, because of

the relatively small number of cases in the studies discussed

above, it will be necessary to evaluate the diagnostic performance

in larger cohorts including patients with early-stage pancreatic

TABLE 2 CircRNAs as diagnostic biomarkers for pancreatic cancer.

circRNA Sensitivity Specificity Mechanism/Target/Biological function Reference

circ-LDLRAD3 0.57 0.70 miRNA decoy/miR-137-3p/Promotes proliferation, invasion, and
migration

Yang et al. (2017)

circPDAC 0.45 0.90 Unknown Seimiya et al. (2021)

hsa_circ_0013587 0.76 0.76 miRNA decoy/miR-1227/Inhibits resistance to erlotinib Xu et al. (2021b)

circ_001569 0.63 0.74 Unknown Shen et al. (2021c)

hsa_circ_0006220 and
hsa_circ_0001666

0.74 0.87 Unknown Hong et al. (2022b)

FIGURE 2
Effects of circRNAs on the tumor microenvironment in
pancreatic cancercircFARP enhances LIF expression in cancer-
associated fibroblasts. circNFIB1 enhances VEGF-C expression in
pancreatic cancer cells. circZNF91 and circPDE8A are
transmitted from pancreatic cancer cells to nearby cancer cells.
circIARS is transmitted from pancreatic cancer cells to endothelial
cells.
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cancer. In addition, PCR is commonly used to measure the

expression levels of circRNAs in blood, but PCR is labor-

intensive and requires multiple steps, including RNA

extraction from blood, reverse transcription, and cDNA

amplification. Therefore, it is necessary to develop a simpler

and more sensitive measurement method. Future research will

resolve these issues and provide hope for early diagnosis of

pancreatic cancer.

4 Therapeutic applications of circular
RNAs

4.1 circRNAs as therapeutic molecules

As circRNAs have unique biological functions and

molecular characteristics, they have potential applications

as new nucleic acid therapeutic agents. One possible

application is to use circRNAs as stable molecules for

RNA interference therapeutics. For example, engineered

circRNA molecules encoding miR-34a-3p and -5p

sequences, called db34a RNA, significantly inhibited

angiogenesis of pancreatic cancer cells (Gnanamony et al.,

2021). This is the only study to date that has examined the

potential application of circRNAs as therapeutic molecules in

pancreatic cancer, but a variety of applications are being

investigated in other diseases, which have been reviewed

elsewhere (Liu and Chen, 2022). Briefly, based on the

stability and biological functions of circRNAs, various

applications of these RNAs are being investigated,

including as decoys for miRNAs and proteins, stable

antisense RNAs, boosters of innate immune responses,

inhibitors of innate immune responses, and templates for

protein translation. These various circRNA-based therapies

may also be applicable in pancreatic cancer.

4.2 Targeting pathogenic circRNAs

As the roles of circRNAs in the pathogenesis of pancreatic

cancer become clearer, new therapeutic approaches targeting

pathogenic circRNAs are also expected. For example,

circRTN4 is highly expressed in pancreatic cancer and is

correlated with liver metastasis (Wong et al., 2022).

Knockdown of circRTN4 in pancreatic cancer cell lines

inhibits their proliferation, migration, and invasion.

Furthermore, circRTN4 knockdown significantly suppressed

tumor growth and metastasis to the liver in a mouse

xenograft model. In addition, many pathogenic circRNAs have

also been reported to be potential therapeutic targets.

Although many circRNAs are expected to be therapeutic

targets, several challenges remain for clinical application of

circRNA-targeted therapies. Antisense oligonucleotides,

siRNAs, shRNAs, and CRISPR–Cas systems can be used

to target RNAs. Clinical application of CRISPR–Cas

systems is being intensively evaluated, and several

oligonucleotide drugs have been approved by the FDA

and are clinically available (Roberts et al., 2020; Modell

et al., 2022). To apply these molecules to circRNA-

targeted therapies, they should specifically recognize back-

splice junctions. However, because circRNAs have identical

sequences to those of their cognate linear mRNAs, in cases

where the back-splice junction has a similar nucleotide

sequence to that of a canonical splicing junction, it may

not be possible to engineer therapeutic molecules that

specifically recognize circRNAs. Even with proper design,

care is required regarding off-target effects, especially those

on cognate linear mRNAs. A number of processes are

involved in the regulation of circRNA expression,

including transcription, splicing, nuclear export, and

degradation (Chen, 2020). Elucidating these molecular

mechanisms may provide new therapeutic targets for

regulating circRNA expression levels.

5 Concluding remarks

With the development of RNA sequencing methods for

circRNAs, a great deal of progress in the research of these

molecules has been made over the past decade. Accordingly,

some circRNAs have been shown to play important roles in a

variety of pathological conditions, including pancreatic cancer

(Rong et al., 2021b; Chen Q. et al., 2022). However, the functional

significance of many circRNAs is largely unknown. They may be

meaningless byproducts generated during the splicing process,

but they may have important biological functions that remain to

be elucidated. It is hoped that the currently unknown

pathological roles of circRNAs will be further elucidated, and

new therapeutic strategies for pancreatic cancer using circRNAs

will be developed in the future.
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