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Neurodegenerative diseases (NDDs) are disorders in which neurons are lost

owing to various factors, resulting in a series of dysfunctions. Their rising

prevalence and irreversibility have brought physical pain to patients and

economic pressure to both individuals and society. However, the

pathogenesis of NDDs has not yet been fully elucidated, hampering the use

of precisemedication. Induced pluripotent stem cell (IPSC)modeling provides a

new method for drug discovery, and exploring the early pathological

mechanisms including mitochondrial dysfunction, which is not only an early

but a prominent pathological feature of NDDs. In this review, we summarize the

iPSC modeling approach of Alzheimer’s disease, Parkinson’s disease, and

Amyotrophic lateral sclerosis, as well as outline typical mitochondrial

dysfunction and recapitulate corresponding therapeutic strategies.

KEYWORDS

neurodegenerative diseases, mitochondrial dysfunction, therapeutic strategy, IPSCs
(induced pluripotent stem cells), mitochondrial dynamic, mitochondrial transport,
mitochondrial energy metabolism

1 Introduction

With the aging of the population, neurodegenerative diseases (NDDs) are affecting an

increasing number of people. By 2030, seventy-eight million individuals would have been

affected by dementia (predominantly Alzheimer’s disease), with up to 55 million cases by

2021 (WHO, 2021). NDDs are characterized by the progressive loss of motor, sensory,

and/or cognitive functions as a result of neuronal cell death (Pasteuning-Vuhman et al.,

2021). Several common NDDs, including Alzheimer’s disease (AD), Parkinson’s disease

(PD), and amyotrophic lateral sclerosis (ALS), have a remarkably complex pathogenesis.

Due to its high etiologic heterogeneity, interplayed with diverse genetic backgrounds, and

environmental factors, there are few target strategies despite decades of research
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(Giacomelli et al., 2022). Diving into the pathogenesis of NDDs

remains a prioritized step toward their understanding and

treatment.

Although several models have been developed to aid

mechanistic research, much remains elusive (Ke et al., 2021;

Okano and Morimoto, 2022). The autopsy sample serves as an

ideal model for investigation; however, it is featured as the late

stage of NDDs, which is unfit for early pathophysiological

studies. Animal models have been utilized in numerous

studies, but the translational clinic applications remain a long

way off (Okano and Morimoto, 2022). With such a predicament,

it is essential to develop accurate models that reflect the early

stages of the pathological processes in NDDs (Israel and

Goldstein, 2011; Grekhnev et al., 2022).

Induced pluripotent stem cells (iPSCs) are pluripotent, which

indicates their capacity to differentiate into almost all human cell

types with identical genetic background of the donor patient (Li

and Fraenkel, 2021). This process provides developmental cues to

areas of interest. Moreover, patient-specific iPSCs combined with

gene editing technology can also be used for the development of

therapeutic targets and clinical drug screening (Okano and

Yamanaka, 2014; Park et al., 2014). NDDs affect specific types

of neurons; therefore, the in vitro modeling of patient-specific

iPSCs to thoroughly understand the pathological processes of

NDDs has significantly furthered the exploration of their

mechanism.

Mitochondria are organelles that continuously undergo

fusion and fission in eukaryotic cells and play a crucial role

in bioenergetic and biosynthetic pathways, calcium

homeostasis management, and the regulation of programmed

cell death (Friedman and Nunnari, 2014). Mitochondrial

dysfunction has emerged as one of the major participants in

NDDs (Magrané et al., 2012; Shaltouki et al., 2015; Fang et al.,

2019). For instance, mitochondrial transport disturbances were

found in ALS SOD1G93AMN (Magrané et al., 2012). Fang and

his team observed the accumulation of damaged mitochondria

in the hippocampus of AD patients due to defective mitophagy

(Fang et al., 2019). This evidence indicates that different types

of mitochondrial dysfunction occur in NDDs. Although it is

still unknown whether mitochondrial dysfunction is the cause

or functional outcome of NDDs, reversing mitochondrial

dysfunction can be an effective means of treating the disease

(Burtscher et al., 2022). IPSC modeling shows great potential in

figuring out the occurrence of mitochondrial dysfunction in

NDDs. In this review, we summarize several differentiation

methods that induce iPSCs into characteristic neurons for

modeling NDDs such as AD, PD, and ALS. We also

recapitulated the mitochondrial abnormalities in

differentiated neurons including mitochondrial dynamics

and transport, mitochondrial reactive oxygen species (ROS)

and mitophagy, mitochondrial energy metabolism dysfunction,

and treatment approaches targeting mitochondrial

abnormalities.

2 IPSC differentiation protocols in
neurodegenerative diseases

AD, a common neurodegenerative disease, is the major cause

of dementia (Ayodele et al., 2021). The neuropathology of AD is

characterized by the progressive accumulation of parenchymal

amyloid-β (Aβ) and by the hyperphosphorylation and

aggregation of tau protein into neurofibrillary tangles

(Venkatramani and Panda, 2019; Pardo-Moreno et al., 2022).

Thus, researchers have differentiated hiPSCs into specific

neurons, including neural stem cells, cortical neurons, and

astrocytes, to explore the pathological changes in AD (Emdad

et al., 2011; Krencik and Zhang, 2011; Roybon et al., 2013; Tcw et

al., 2017). Dual SMAD signaling was inhibited by SB431542 (SB,

an inhibitor of activin-nodal signaling) and LDN193189 (LDN,

an inhibitor of BMP signaling) at the first neural induction step

(Chambers et al., 2009), following which several small-molecule

compounds were used to obtain cortical tissue. For instance,

Neurobasal and B27 supplements replaced NPC culture medium

at day 10 and were supplemented with 20 ng/ml brain-derived

neurotrophic factor (BDNF) to induce final neural maturation at

day 30 (Martín-Maestro et al., 2017). For astrocyte

differentiation, after the NPCs were obtained, the cells were

cultured in suspension with an astrocyte differentiation

medium supplemented with basic fibroblast growth factor

(bFGF or FGF2) and epidermal growth factor (EGF). The

spheres were maintained in suspension for 5–7 months, after

which they were associated and plated on Matrigel-coated dishes

using ciliary neurotrophic factor (CNTF) and bone

morphogenetic protein 4 (BMP4) for maturation (Oksanen

et al., 2017). Because the differentiation process of astrocytes

can take months, some innovative techniques have been created.

Li et al. found that CRISPR‒Cas9-mediated expression of the

transcription factors nuclear factor I A (NFIA) or NFIA plus

SRY-box transcription factor 9 (SOX9) enables the rapid

acquisition of astrocytes from hPSCs within 4–7 weeks, which

undoubtedly speeds up the iPSC-derived astrocyte modeling of

diseases (Li X. et al., 2018).

PD is the second most common neurodegenerative disease. It

is predicted that by 2040, there will be 14.2 million persons with

PD, up from 6.9 million in 2015 (Dorsey and Bloem, 2018).

Patients diagnosed with PD always have movement and physical

problems, such as tremors, stiffness, slowness, and imbalance

(Armstrong and Okun, 2020). The pathological hallmark of PD is

the Lewy body consisting largely of α-synuclein protein

aggregations and loss of dopaminergic neurons in the

substantia nigra (Armstrong and Okun, 2020). The floor plate

(FP) cells are located at the ventral midline of the neural tube and

are the source of midbrain dopamine neurons (DA neurons)

(Placzek and Briscoe, 2005; Ono et al., 2007). The protocols to

obtain DA neurons are also being modified (Cooper et al., 2010;

Kriks et al., 2011; Xi et al., 2012; Wang et al., 2015; Kim et al.,

2021). Christopher A. Fasano induced hiPSC to FP cells using
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noggin with SB431542 to inhibit dual SMAD signaling and Sonic

C25II to activate sonic hedgehog (SHH) signaling; treatment

with FGF8 or Wnt1 led to a conversion of FP identity into a

caudal, midbrain-like identity (Fasano et al., 2010). Subsequently,

Kriks et al. demonstrated that the simultaneous use of LSB (LSN

+ SB)/FGF8/CHIR (GSK3 inhibitor) increases the yield of

FOXA2+/TH+ expressing DA neurons from FP cells, and the

DA neurons generated with their protocol possess the essential

physiological traits of mature substantia nigra pars compacta DA

neurons and the viability of transplantation to the animal models

(Kriks et al., 2011). Modification of CHIR concentration to a

narrow range was reported to play an important role in inducing

DA neurons from iPSC (Xi et al., 2012). They used 0.4 uM CHIR

and 500 ng/ml SHH to treat iPSC for 12 days, and then added

20 ng/ml SHH with 100 ng/ml FGF8 at day 13–28, resulting in

TH+/En1+ co-expressing DA neurons.

ALS is a fatal neurodegenerative disease that causes selective

degeneration of motor neurons (MNs) in the motor cortex,

brainstem, and spinal cord (Vandoorne et al., 2019). ALS

patients always suffer from progressive muscle weakness and

respiratory failure and ultimately die within 3–5 years (Brown

and Al-Chalabi, 2017). Since MNs were used to study the

pathology of ALS in recent years, the differentiation protocol

of IPSCs to MNs is constantly being refined (Hu and Zhang,

2009; Egawa et al., 2012; Qu et al., 2014; Du et al., 2015; Dafinca et

al., 2020). In 2006, Hu and Zhang published a protocol that can

generate more than 50% of HB9-expressing motor neurons

within 5 weeks. They induced iPSCs into neuroepithelial (NE)

with a neural differentiation medium including instantly added

cAMP, ascorbic acid, BDNF, glial-derived neurotrophic factor

(GDNF), and insulin-like growth factor-1 (IGF1). The authors

used 100 nM retinoic acid (RA) on day 10 and 1 µM

purmorphamine (targeting smoothened of the SHH signaling

pathway, pur) at day 15 to pattern NE cells to ventral spinal

progenitor fate, which expresses Olig2. After plating spheres on

substrates, several neurotrophic factors and cAMP are added to

support the survival and process outgrowth of motor neurons

expressing HB9 (Hu and Zhang, 2009). Although later reports

added dual inhibition of SMAD signaling and smoothened

agonist (SAG) or compound C (AMPK inhibitor) on the basis

of a previous protocol (Amoroso et al., 2013; Qu et al., 2014),

significantly shortening the differentiation time, the purity of

motor neurons still requires improvement. Surprisingly, Du and

his colleagues (Du et al., 2015) used a small-molecule cocktail

including SB, DMH1 (SMAD inhibitor), CHIR, RA, and pur to

obtain a near-pure population of OLIG2+ MNPs in 12 days.

Then, they added compound E (a NOTCH inhibitor) during MN

maturation to improve the purity of motor neurons, resulting in

the generation of highly pure (>90%) motor neurons expressing

CHAT in 16 days. Because of the shorter time for differentiation

into highly pure motor neurons, the protocol has been widely

applied in the disease modeling research (Ding et al., 2022; Liu

et al., 2022).

AD, PD, and ALS involve corresponding neurons, thereby

accurate differentiation of iPSC is significant for research. For

instance, mature dopamine neuron subtypes co-expressing TH,

NR4A2, and FOXA2 have different gene expression profiles and

have differential responses to oxidative stress (Fernandes et al.,

2020), emphasizing that there remains a need for referring to the

protocol established by other laboratories using small chemical

molecules to generate more mature and specific neurons. Table 1

summarizes the mainstream protocols of astrocytes, DA neurons,

andMNs differentiation. The most widely applied protocols were

featured as less time-consuming and with high purity. The cost of

small molecule compounds applied in the protocol also needs to

be considered.

3 IPSC modeling in
neurodegenerative diseases

AD is divided into familial AD (FAD) and sporadic AD

(sAD), and FAD constitutes less than 3% of all AD subtypes. The

APP gene and the proteolytic enzymes that produce peptide A,

presenilin 1 and 2, are the two primary genes that are mutated in

FAD (García-Morales et al., 2021). IPSC modeling demonstrates

that there are some common pathological features in FAD and

sAD (Bélanger et al., 2011; Piers et al., 2020). Jones et al. induced

astrocytes derived from AD iPSC have been reported to display

cellular atrophy and to have aberrant expression and localization

of S100B, EAAT1 and GS, which are cell-autonomous instead of

compromised neuronal intermediates, supporting the conjecture

that astrocyte dysfunction is an early hallmark of AD (Jones et al.,

2017). Moreover, iPSC modeling provides a comprehensive

phenotype study of AD. PSEN1 iPSC-derived astrocytes

displayed robust accumulation of full-length presenilin-1,

increased secretion and compromised uptake of Aβ1–42,
disturbed Ca2+ signaling, and altered metabolism (Oksanen

et al., 2017). In addition, astrocytes derived from AD iPSC co-

cultured with healthy astrocytes provide an opportunity to

observe the pathological microenvironment, including the

effects of AD astrocytes and autonomic response of healthy

astrocytes.

Likewise, SNCA (α-synuclein), PARK2 (parkin), PARK7

(DJ-1), PINK1 and LRRK2 are the mutated genes of

parkinsonism, among which mutations in both PARK2

(parkin) and LRRK2 are the most common genetic causes

(Healy et al., 2008). However, the cause of PD remains

unclear at the molecular level. IPSC modeling of mutant

genes, including PARK2 and LRRK2, helps to investigate PD

occurrence and development, and can target a pathway to delay

disease progression (Cooper et al., 2012; Wasner et al., 2022). In

PD iPSC-derived DA neurons, Jian Feng found higher protein

level of tyrosine hydroxylase (TH) and high ROS levels.

Moreover, there is no significant alterations in DA levels,

which might be due to homeostatic regulation (Ren et al.,
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2022). However, decreased TH mRNA level and DA release were

reported in postmortem brain tissues and cerebrospinal fluid of

PD patients respectively (Goldstein et al., 2012; Zhang et al.,

2022). The inconsistent phenotype between iPSC modeling and

postmortem tissues may precisely account for the transition from

early to late stage of diseases. Young-onset PD iPSC-derived DA

neurons displayed increased accumulation of soluble α-synuclein
protein and phosphorylated protein kinase Cα, as well as

dysregulated of lysosomal biogenesis and function,

establishing a highly predictive phenotype of young-onset PD

(Laperle et al., 2020).

ALS familial ALS (fALS) and sporadic ALS (sALS). In fALS,

mutations in the “superoxide dismutase 1” (SOD1) gene are the

most popular genetic factor, and the remaining common

mutation genes are “fused in sarcoma” (FUS), “TAR DNA

binding protein” (TARDBP), or a hexanucleotide repeat

expansion in the “chromosome nine open reading frame 72”

(C9ORF72) (Taylor et al., 2016). ALS-related iPSC modeling is

TABLE 1 Protocols of Astrocytes, DA neurons and MNs differentiation.

Cell type EGF FGF2 CNTF Days Purity reference

Astrocytes D21-D90
10 ng/ml

D21-D90 10 ng/ml D84-D90 10 ng/ml 90–120 >90% S100β/GFAP+ Krencik and Zhang,
(2011)

Day6-12
20 ng/ml

Day6-9 10 ng/
ml; (FGF)

Day9-35 20 ng/ml 35 78% GFAP+ Emdad et al. (2011)

Day9-15 20 ng/ml

Day28–35 Day28–35 -; Day90-97
50 ng/ml

Day15-31 100 ~100% S100β+ Roybon et al. (2013)

—

— Day15-45 20 ng/ml — 45 90% S100β+ Tcw et al. (2017)

82% GFAP+

CHIR SHH FGF8 Days purity References

DA
neurons

- Day12-42 100 ng/ml Day12-42 100 ng/ml 49 <1% TH+/β-tubulin/FOXA2+ Cooper et al. (2010)

Day3-13 3uM Day1-7 100 ng/ml Day 1–7 100 ng/ml 50 70%-80%TH+ Kriks et al. (2011)

50% Nurr1+

Day1-11
0.4 uM

Day1-11 500 ng/ml Day12-28 100 ng/ml 35 43.6 ± 6.2% cells TH+, which co-expressed Nurr1
(95.3 ± 2.4%), En1 (96.2 ± 1.1%)

Xi et al. (2012)

Day12-28 20 ng/ml

Day1-6 1 uM Day7-18 100 ng/ml Day7-18 100 ng/ml 32 10.5% TH+/GIRK2+ Wang et al. (2015)

Day0-4 0.7 uM Day0-7 500 ng/ml - 30 - Kim et al. (2021)

Day4-10
7.5 uM

Day10-
11 3 uM

CHIR Compound C SHH Days purity References

MNs — — Day15-28 100 ng/ml 35 ~50% HB9 + Hu and Zhang,
(2009)Day28-35 50 ng/ml

— Day0-12 2 μM Day12-22
100–500 ng/ml

35 — Egawa et al. (2012)

— Day0-6 1 μM Day6-20 100 ng/ml 24 69.5% HB9+ Qu et al. (2014)

Day0-6 3 μM — (purmophamine) 28 90% HB9+ Du et al. (2015)

Day6-12 1 μM Day6-12 0.5 μM 95% ISL1+

Day12-18 0.1 μM 91% CHAT+

Day0-6 3 μM Day0-6 1 μM Day2-19 500 ng/ml 30 90% Tuji1+ Dafinca et al. (2020)

90% CHAT+

FGF, epidermal growth factor; FGF2/8, Fibroblast growth factor2/8; CNTF, ciliary neurotrophic factor; CHIR, GSK3 inhibitor; SHH, sonic hedgehog agonist; Compound C, AMPK,

inhibitor.
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able to reveal the sequence of its occurrence and development

and provide a platform to explore the molecular mechanism of its

pathology (Chen et al., 2014; Kiskinis et al., 2014; Lopez-

Gonzalez et al., 2016; Dafinca et al., 2020; Altman et al.,

2021). Chen et al. generated MNs and non-MNs derived from

ALS SOD1 iPSC to reveal that neurofilament aggregation is an

early event in ALS pathogenesis, resulting from the dysregulation

of NF subunit proportion caused by SOD1 mutant binding NF-L

mRNA in MNs (Chen et al., 2014). Likewise, iPSC modeling

undoubtedly provides a good research tool for studying of

sporadic ALS (Burkhardt et al., 2013; Fujimori et al., 2018a;

Fujimori et al., 2018b; Coyne et al., 2021). Moreover, it has been

found that intranuclear TDP-43 aggregation in iPSC-derived

MNs reprogrammed from three sALS patients and firstly

validated it in postmortem tissue from one of the previous

sALS patients, which highlights the importance of iPSC

modeling in sALS (Burkhardt et al., 2013).

4 Advantages and disadvantages of
iPSC modeling

IPSC modeling of different phenotypes using mature protocols

showcased stability and scalability, which together with its high yield

facilitates high-throughput screening of clinical drugs (Pasteuning-

Vuhman et al., 2021). In addition, iPSC modeling overcame the

problem of clinical drug screening caused by heterogeneity of NDDs

patients. Okano et al. used two types of MNs carrying FUS and

TDP43 to screen 1,232 drugs. They ultimately selected ropinirole as

the candidate, which is ineffective on the phenotypes of SOD1-

mutant iPSC-derived MNs (Fujimori et al., 2018a). Thus, IPSC-

derived neurons carrying patients’ specific genetic background help

to identify drug responders, contributing to patient stratification in

clinical studies (Haston and Finkbeiner, 2016).

In addition, iPSC-based disease modeling in vitro is different

from animal models, including the neuronal physiological

morphology and function and the molecular characteristics of

pathological states. In AD, human protoplasmic astrocytes are

bigger and more complex than their rodent counterparts, and the

calcium wave in mouse astrocytes transmitted much more slowly

than in human astrocytes (Oberheim et al., 2009). Chen et al.

reported that there was no SOD1 aggregation or mitochondrial

swelling in human ALS MNs but these appeared in

SOD1 transgenic mice (Chen et al., 2014). Most importantly,

mouse models fail to mimic sporadic neurodegenerative diseases,

which account for most NDDs (Hawrot et al., 2020). However,

mouse models are advantageous because they exhibit complex

interactions between cells and the microenvironment, as well as

provide behavioral assessment and pharmacokinetics features

(Ke et al., 2021). Therefore, a promising way with the

combination of advantages in both iPSC modeling and mouse

models would contribute to a complementary and

comprehensive view of NDD researches.

There are still some limitations for iPSC remodeling NDDs,

such as the lack of aging-signature. Lorenz Studer and his lab

overexpressed progeria with the treatment of modified-RNAs in

PD iPSC-derived DA neurons, and found a significant reduction

in dendrite length and downregulation of AKT signaling (Miller

et al., 2013). Moreover, chemical pretreatment also accelerates

the maturation of neurons (Fujimori et al., 2018a). Thus,

progerin-induction or chemical pretreatment combing with

iPSC-modeling overcomes the problem of iPSCs taking a long

time to naturally develop into the degenerative disease stage,

which mainly includes the expression of aging signatures.

Another modeling method is direct neuronal conversion to

induced neurons (iNs), which maintains the aging signature

and epigenetic status of neurons (Vierbuchen et al., 2010;

Mertens et al., 2015). However, the high cost and low cell

output limit its application; future improvements should

address these issues.

5 Normal mitochondrial function

IPSC modeling has undoubtedly greatly contributed to the

knowledge of degenerative diseases, including mitochondrial

dysfunction. Healthy mitochondria can maintain their own

homeostasis through mitochondrial dynamics and autophagy

even in the face of external stimuli, thereby exerting stable

functions (Figure 1).

5.1 Mitochondrial dynamics and transport

Mitochondria continuously undergo fusion and fission, which

are known as mitochondrial dynamics, to exchange metabolites

(Schrepfer and Scorrano, 2016). MFN1 (membrane protein

mitofusin 1) and MFN2 (membrane protein mitofusin 2) are

fusion-related proteins, while DRP1 (dynamin-related protein 1)

and Fis1 (mitochondrial fission one protein) are responsible for

mitochondrial fission. Mitochondrial transport between Soma and

distal axonal was mediated by motor proteins kinesin and dynein,

which correspond to anterograde and retrograde transport

respectively (Lin and Sheng, 2015). Moreover, miro and Milton

serve as motor adaptors involved in mitochondrial transport (Lin

and Sheng, 2015). It is reported that defective mitochondrial

transport has been associated with NDDs (Cozzolino et al., 2013;

Cai and Tammineni, 2017; Prots et al., 2018).

5.2 Mitochondrial ROS and mitophagy

Reactive oxygen species (ROS) include free radicals such

as superoxide anion (O2−), hydroxyl radical (HO−), and non-

radical hydrogen peroxide (H2O2), which are the endogenous

sources of a mitochondrial respiratory chain under the high
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demand of neurons for oxygen and ATP (Chen et al., 2012).

There is a hypothesis that mutant SOD1 has the ability to

generate HO− from H2O2, thus creating an oxidative

environment and toxic aggregates in MNs (Julien, 2001).

As for PINK1/parkin-mediated mitophagy, When the

mitochondrial membrane potential decreases,

PINK1 accumulates in mitochondria and gets

autophosphorylation, which subsequently triggers ubiquitin

phosphorylation, and recruits parkin to damaged

mitochondria. Subsequently, Parkin ubiquitinates

mitochondrial outer membrane proteins and Optineurin

interacts with these proteins tagged by ubiquitin and

targets the isolation membrane to damaged mitochondria,

which are eventually sent to lysosomes for degradation (Wei

et al., 2015; Rasool et al., 2018; Goiran et al., 2022;

Pradeepkiran et al., 2022).

5.3 Mitochondrial energy metabolism

Neurons in the brain need energy expenditure to maintain

various functional activities, including synaptic transmission

processes (Faria-Pereira and Morais, 2022). The major

metabolic precursors for biosynthesis and energy

generation come from the TCA cycle and glycolysis (Zheng

et al., 2016). The pyruvate molecules produced in cytosolic

glycolysis can be imported into the mitochondria and generate

acetyl-CoA molecules, which will enter the tricarboxylic acid

(TCA) cycle. Finally, OXPHOS complexes use NADH and

FADH2 to generate ATP from this cycle (Faria-Pereira and

Morais, 2022). Neurons tend to rely on mitochondrial

OXPHOS to meet their energy demands, thereby

dysfunction of this process would cause NDDs (Breuer

et al., 2013; Koopman et al., 2013).

FIGURE 1
Physiological progress of mitochondrial dynamics, transport, PINK1/parkin-mediated mitophagy and energy metabolism (created with
BioRender.com). 1) Dynamic: DRP1 is recruited to mitochondrial membrane along with Fis1 to regulate mitochondrial fission; MFN1/2 mediates
fusion of mitochondrial outer membrane and OPA1 mediates fusion of inter membrane. 2) Transport: Anterograde transport is mediated by kinesin
motor andMiro/Milton adaptors, and retrograde transport is mediated by dynein/dynactin andMiro/Milton adaptors. 3) PINK1/parkin-mediated
Mitophagy: Once mitophagy starts, PINK1 accumulates in mitochondria, and in turn results in PINK1 autophosphorylation, which subsequently
triggers ubiquitin phosphorylation, and recruits parkin to damaged mitochondria; Parkin ubiquitinates mitochondrial outer membrane proteins, and
Optineurin interacts with these proteins tagged by ubiquitin and targets the isolationmembrane to damagedmitochondria, which are eventually sent
to lysosomes for degradation. 4) Energy Metabolism: Glycolysis occurs in cytoplasm, and produce ATP, NADH as by-product; The pyruvate
molecules derived from glycolysis are imported to mitochondria and generate acetyl-CoA molecules, which will enter the tricarboxylic acid (TCA)
cycle. Finally, OXPHOS complexes located in mitochondrial inter membrane uses NADH and FADH2 to generate ATP.
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6 Mitochondrial dysfunction and
therapeutic strategies in iPSC
modeling

It is widely recognized that neurodegenerative diseases are

closely related to mitochondrial dysfunction (Wang et al., 2009;

Queliconi et al., 2021; Mehta et al., 2022). Just as the same disease

may manifest in different ways, so the same disease modeling will

also have different representations of mitochondrial dysfunction.

Tables 2–4 summarizes the iPSC-based modeling of AD, PD, ALS,

and the associated characterization ofmitochondrial dysfunction. As

for neurons derived from AD or PD iPSC, they mostly exhibit

impaired mitophagy and dysregulated mitochondrial dynamics

including increased mitochondrial fragments, while aberrant

mitochondrial transport and reduced MMP are more common

in ALS iPSC derived MNs (Dafinca et al., 2016; Zanon et al., 2017;

TABLE 2 Mitochondrial dysfunction in iPSC-derived neurons and astrocytes modeling of AD.

Type Neuron Mutated
gene

Mitochondrial dysfunction References

fAD Astrocytes PSEN1 Increased cellular ROS level Oksanen et al. (2017)

fAD Cortical
neuron

PSEN1 Impaired axonal transport of mitochondria and the balance of mitochondrial fusion and fission Li et al. (2020)

fAD Cortical
neuron

PSEN1 Impaired mitochondria fission and fusion protein levels Li et al. (2018a)

sAD Microglia TREM2 Impaired mitochondrial respiration, enhanced mitochondrial superoxide levels Piers et al. (2020)

fAD Neural stem
cell

PSEN1 Impaired mitophagy, Impaired balance of mitochondrial fission and fusion Martín-Maestro et al.
(2019)

fAD,
sAD

Cortical
neuron

APOE4 Defective mitophagy, compromised mitochondrial homeostasis, increased mitochondrial
fragmentation, low ATP levels

Fang et al. (2019)

APP

fAD Astrocytes PSEN1 Increased basal respiration, decreased basal glycolysis and lactate Bélanger et al. (2011)

fAD Astrocytes PSEN1 Decreased basal glycolysis and impaired fatty acid oxidation Konttinen et al. (2019)

fAD Astrocytes APOE Increased mitochondrial respiration and ATP production, elevated glycolytic activity Ryu et al. (2021)

TABLE 3 Mitochondrial dysfunction in iPSC-derived DA neuron modeling of PD.

Type Mutated
gene

Mitochondrial dysfunction References

fPD PINK1 Reduced levels of basal respiration, disrupted mitochondrial movement Cooper et al. (2012)

LRRK2

fPD PARK2 Reduction of complex I activity, fragmented mitochondria Zanon et al. (2017)

fPD PINK1 Impaired mitophagy Oh et al. (2017)

fPD SNCA Delayed mitophagy Shaltouki et al. (2018)

fPD PARK14 Increased ROS level, decreased MMP, dominant mitochondrial fragmentation Ke et al. (2020)

fPD PARK2 Increased cellular ROS, Abnormal mitochondrial morphology and impaired mitochondrial turnover, aberrant
degradation of damaged mitochondria

Imaizumi et al. (2012)

fPD PARK2 Abnormal mitochondrial morphology, Increased mitochondrial ROS Chung et al. (2016)

PINK1

fPD PARK2 Decreased mitochondrial abundance, abnormal mitochondrial morphology Shaltouki et al. (2015)

fPD SNCA Abnormal mitochondrial morphology, reduced MMP, decreased basal respiration and ATP production, and decreased
lactate production

Zambon et al. (2019)

fPD PARK2 Decreased protein level of cytochrome c oxidase (COX) IV and mitochondrial dynamics protein MEF1 Bogetofte et al. (2019)

fPD PARK2 Reduced MMP, disrupt mitochondrial ultrastructure, and impaired mitochondrial respiration Okarmus et al. (2021)

fPD PARK2 reduced mtDNA levels of subunits of the electron transport chain (ETC) Wasner et al. (2022)

fPD LRRK2 Delayed axon mitophagy, reduced mitochondrial motility Hsieh et al. (2016)

fPD LRRK2 Decreased MMP, increased ROS, mitochondrial fragmentation Su and Qi, (2013)

fPD PINK1 Reduced levels of ATP production Vos et al. (2017)
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Naumann et al., 2018; Martín-Maestro et al., 2019; Li et al., 2020).

Also, PD iPSC modeling has shown abnormal mitochondrial

morphology and increased ROS level (Imaizumi et al., 2012;

Shaltouki et al., 2015; Chung et al., 2016). Furthermore, neurons

from iPSC of NDDs manifest abnormal energy metabolism,

showing decreased basal glycolysis and ATP level in AD iPSC

modeling (Bélanger et al., 2011; Konttinen et al., 2019), reduced

of complex I activity and decreased basal respiration in PD iPSC

modeling (Zanon et al., 2017; Zambon et al., 2019), as well as

impaired basal respiration and increased glycolysis in ALS iPSC

modeling (Hor et al., 2021; Mehta et al., 2021). Sometimes neurons

carrying the same mutant gene displayed different even

contradictory energy metabolism, which may be attributed to the

culture state and sensible to testing environment. Moreover, these

pathological mechanisms are interconnected. Many studies have

confirmed that the mitochondrial fission and fusion machinery is

coupled with mitochondrial transport and mitophagy (Misko et al.,

2010; Wu et al., 2016; Gao et al., 2017). Mitophagy regulates the

mitochondrial energetic status in neurons (Han et al., 2021), thus

damage to any link may lead to the occurrence and development of

NDDs. Next, we describe mitochondrial dysfunctions of

mitochondrial dynamic, transport, mitophagy, and energy

metabolism abnormalities in AD, PD, ALS, and their

corresponding treatment strategies.

6.1 Alzheimer’s disease

In AD, a study reported that the balance of mitochondrial

fusion and fission was disrupted in PSEN1-E120K iPSC-derived

cortical neurons, with an increase in DRP1 and a decrease in

MFN1 (Li L. et al., 2018). After 2 years, this team found the

same phenomenon in PSEN1-S170F iPSC-derived cortical

neurons (Li et al., 2020). Aβ and phosphorylated tau interact

with DRP1, which activates DRP1 by different pathways,

causing impairments in mitochondrial dynamics (Manczak

et al., 2011; Kandimalla et al., 2016). Since Aβ is produced

by the sequential cleavage of APP via ß-site APP cleaving

enzyme 1 (BACE1), so γ-secretase, an inhibitor of BACE1

(BSI and 5 μmol/L LY2884721), significantly reduced the

levels of Aβ and p-Tau (Li et al., 2020). However, Fang

explained that defective mitophagy induces AMPK activation

(p-AMPK), which leads to excessive mitochondrial

fragmentation. They used two mitophagy detection

nematode lines to screen the enhancer for mitophagy, which

ameliorated neuronal pathology and mitochondrial fragments

in AD iPSC-derived cortical neurons (Fang et al., 2019).

Mitophagy plays an important role in maintaining cell

homeostasis, including the removal of damaged mitochondria

and resistance to oxidative stress (Scheibye-Knudsen et al.,

2015). Martín-Maestro et al. demonstrated dysregulation of

mitophagy because of deficient lysosomal function in iPSC-

derived cortical neurons from FAD1 patients harboring

PSEN1 A246E mutation (Martín-Maestro et al., 2017).

After 2 years, they found the same problem in

PSEN1 M146L iPSC-derived NSCs, along with the

downregulation of oxidative phosphorylation (OXPHOS)-

related proteins, suggesting an impaired mitochondrial

respiratory chain (Martín-Maestro et al., 2019). Deficiency

in autophagy induction and lysosomal acidification was

confirmed as the main reason for mitophagy failure, and

that was corrected by using bexarotene, an FDA-approved

retinoid X receptor (RXR) agonist, whose therapeutic efficacy

stems from increased mitophagy flux (Martín-Maestro et al.,

2019). Another study reported that the abnormal

accumulation of Aβ and p-Tau decreases the levels of

TABLE 4 Mitochondrial dysfunction in iPSC-derived MNs modeling of ALS.

Type Mutated gene Mitochondrial dysfunction References

fALS C9ORF72 Increased ROS level Lopez-Gonzalez et al. (2016)

fALS FUS Stalled and short mitochondrion, lost membrane potential on distal axon Naumann et al. (2018)

sALS C9orf72 Reduced MMP, abnormal mitochondrial morphology Dafinca et al. (2016)

fALS FUS Reduced number of moving mitochondria Guo et al. (2017)

fALS A4V More vacuolar mitochondria, reduced number of moving mitochondria Kiskinis et al. (2014)

fALS C9ORF72 TARDBP Impaired mitochondrial Ca2+ buffering Dafinca et al. (2020)

fALS TARDBP Reduced number of moving mitochondria Fazal et al. (2021)

fALS TARDBP Reduced mitochondrial protein synthesis Altman et al. (2021)

fALS SOD1 Reduced MMP, increased mean length of mitochondria, Reduced ATP Levels Günther et al. (2022)

fALS TARDBP Mitochondrial fragmentation Choi et al. (2020)

fALS C9orf72 Impaired basal respiration Mehta et al. (2021)

fALS SOD1 TARDBP C9ORF72; sALS1 Reduced basal respiration and ATP production, increased glycolysis and lactate Hor et al. (2021)

sALS sALS2

sALS3
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activated mitophagy proteins in AD iPSC-derived cortical

neurons, leading to the accumulation of damaged

mitochondria and the elevation of ROS levels (Fang et al.,

2019). The authors screened two mitophagy inducers

(urolithin A and actinonin) to restore mitophagy, further

improving mitochondrial function by reducing

mitochondrial ROS and ameliorating AD’s pathology. As

mentioned above, treatments targeting impaired mitophagy

display a significant role in rescuing neuronal apoptosis

(Shaltouki et al., 2018; Fang et al., 2019). In addition,

Kshirsagar et al. found that several mitophagy enhancers,

especially UA were able to rescue mitochondrial

dysfunction and increase cell survival in AD HT22 cell

models, indicating that mitophagy enhancers could

developed as drugs to delay neurodegenerative pathology in

clinical patients (Kshirsagar et al., 2021, 2022).

With regard to energy metabolism, Minna Oksanen et al.

reported increased basal respiration and decreased basal

glycolysis in PSEN1 iPSC-derived astrocytes, as typical

astrocytes rely more on glycolysis (Bélanger et al., 2011).

Additionally, the authors detected more cellular ROS and less

lactate secretion in these astrocytes, suggesting that the energy

metabolism activity of the PSEN1 mutation made a switch from

glycolysis to OXPHOS (Oksanen et al., 2017). Given that neurons

may sustain themselves with lactate generated by glycolysis, this

alteration may not be advantageous to astrocytes (Figley, 2011).

Similarly, another study conducted by the same laboratory

reported impaired fatty acid oxidation (FAO) except for the

same changes in basal respiration and basal glycolysis in

PSEN1 iPSC-derived astrocytes, and using a PPARβ/δ-agonist
is beneficial for impaired FAO and memory deficits in APP/

PSEN1 mice (Konttinen et al., 2019). Ryu et al. published a more

specific metabolism study of AD astrocytes and NPC. Their

results showed increased mitochondrial respiration, energy

(ATP) output, and elevated glycolytic activity, which are

partly different from the results of previous studies.

Considering the reduced ability to absorb glucose, as well as

the deficiencies in the generation and transfer of reducing agents

throughout the glycolytic process and the mitochondrial

respiratory chain, upregulating OXPHOS and glycolysis is the

way for AD astrocytes and NPCs overcompensate. Moreover, the

levels of NAD+ and NADH are significantly decreased in AD

astrocytes in NPC, despite the general biochemical reducing

power in LOAD not being compromised, which reflects

aberrant energy metabolic activity in AD astrocytes and

NPC(Ryu et al., 2021).

6.2 Parkinson’s disease

Regarding PD, its main mutated genes, PARK2 and

PINK1, are involved in mitochondrial functions, and there

is no doubt that mitochondrial dysfunction is one of the

pathological features of Zanon reported that DA neurons

derived from the PARK2 mutation carrier iPS-B125 showed

fragmented mitochondria, which was compensated by SLP-2

overexpression (Zanon et al., 2017). Parkin and SLP-2 are

able to interact functionally to maintain mitochondrial

function (Zanon et al., 2017). Ke et al. detected

upregulation of the fission proteins DRP1 and Fis1 and

downregulation of the fusion protein MFN1 in

PLA2G6 mutant DA neurons (Ke et al., 2020). The

PLA2G6 mutant induced ER stress, which facilitated the

unfolded protein response (UPR), resulting in decreased

signaling of CREB and final mitochondrial fragments.

Thus, they used azoramide (a small-molecule modulator)

to enhance the CERB signaling, and rescue mitochondrial

function, thereby preventing the apoptosis of DA neurons

(Ke et al., 2020). Given that the PD-associated LRRK2 mutant

interacts with DRP1 to recruit and phosphorylate

mitochondrial DRP1 (Wang et al., 2012), it is not

surprising that Su and Qi found increased mitochondrial

fragmentation in LRRK2 G2019S-derived DA neurons, and

used P110 to inhibit the hyperactivation of DRP1 to reduce

mitochondrial fragments (Su and Qi, 2013).

Mitophagy is closely related to the pathological

mechanism of PD. Aberrant elimination of mitochondria

treated with carbonyl cyanide m-chlorophenyl hydrazine

(CCCP) was reported in PARK2 iPSC-derived neurons

(Imaizumi et al., 2012). Mitophagy plays an important role

in maintaining cell homeostasis, including the removal of

damaged mitochondria and resistance to oxidative stress

(Scheibye-Knudsen et al., 2015). Yu-Chin Su and

colleagues detected increased mitochondrial fragmentation,

which resulted in a defective ETC complex and an elevated

level of mitochondrial ROS by DRP1 hyperactivation in

LRRK2 G2019S DA neurons (Su and Qi, 2013).

Subsequently, increased mitochondrial fragmentation

simulates excessive mitophagy, which causes a loss of

mitochondrial mass. This mitochondrial dysfunction was

solved by P110 treatment which inhibits

DRP1 hyperactivation (Su and Qi, 2013). Some studies

focusing on PARK2 and PINK1 iPSC-derived DA neurons

respectively reported higher mitochondrial ROS levels and

defective mitophagy (Chung et al., 2016; Oh et al., 2017),

among which the author found the PINK1(C568A) mutant

could be able to mimic PINK1 S-nitrosylated caused by

endogenous NOS, and this PINK1(C568A) mutant

prevented parkin from translocating to mitochondrial

membrane, thus resulting in impaired mitophagy and

neuronal death (Oh et al., 2017). Treatment of these cells

with L-NAME could be able to ameliorate damaged

mitophagy and neuronal death by inhibiting the

production of NOS(Oh et al., 2017). Miro, a protein that

anchors mitochondria to microtubule motors, should be

removed first, then mitochondria stop trafficking and
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mitophagy starts (Glater et al., 2006; Wang et al., 2011).

Shaltouki and Hsieh found that accumulation of

miro1 delayed the initiation of mitophagy in both

LRRK2 G2019S and SCNA A53T iPSC-derived DA

neurons, and decreased the level of miro1 protein by RNAi

promoted mitophagy, and further rescued neurodegeneration

(Hsieh et al., 2016; Shaltouki et al., 2018).

In PD SNCA iPSC-derived DA neurons, Zambon et al.

found a decrease in basal respiration, spare capacity, ATP and

lactate production, and no significant differences in glycolytic

activity, suggesting deficits in mitochondrial energy

metabolism (Zambon et al., 2019). This suggests that the

association between α Syn and TOM20 leads to

mitochondrial metabolic dysfunction (Di Maio et al., 2016;

Zambon et al., 2019). PINK1 mutant iPSC-derived DA

neurons were found to have reduced levels of ATP

production, which was improved by treatment with

cerulenin to rescue PINK1 deficiency (Vos et al., 2017).

Fernandes5 reported downregulation of OXPHOS-related

gene expression and upregulation of glycolysis-related gene

expression under oxidative stress conditions in one type of

SNCA DA neurons (Fernandes et al., 2020). PARK2 knockout

DA neurons were reported to have reduced basal respiration

and ATP production under only lactate respiration, along

with decreased glycolysis and accumulation of lactate, which

was confirmed by proteomic and metabolomic analysis of

dysregulated key factors and enzymes in mitochondrial energy

metabolism (Bogetofte et al., 2019; Okarmus et al., 2021).

6.3 Amyotrophic lateral sclerosis

Impaired mitochondrial dynamics can also be observed in

ALS-related MN. It was reported that activation of

PP1 dephosphorylates DRP1 S616, resulting in increased

mitochondrial fission in TDP43-derived MNs.

PP1 suppression by treatment with I-2 or okadaic acid (OA)

significantly inhibited excessive mitochondrial fission (Choi

et al., 2020). Interestingly, although there are numerous

reports of impaired mitochondrial dynamics in ALS patients

and animals, this has been less reported in ALS-iPSC modeling

(Wang et al., 2013; Méndez-López et al., 2021). Deficits in

mitochondrial transport along the axon are more common in

ALS iPSC-derived MNs, and mitochondrial transport plays an

important role in maintaining normal functioning of MNs.

Whether it is mitochondrial dynamics or axonal transport, its

damage has an important impact on neuron survival and disease

progression. Thus, therapeutic strategies targeting both can

effectively alleviate disease progression. A study by Guo and

colleagues reported that there were fewer moving mitochondria

than stationary mitochondria, while the total number of

mitochondria remained unaltered in mutant FUS MNs (Guo

et al., 2017). The same phenomenon was found in mutant

TDP43 MNs (Fazal et al., 2021). However, it remains unclear

why mitochondrial transport is impaired in mutated gene-

derived MNs. One inference is that cytosolic aggregation or

aberrant TDP-43 causes a reduction in mitochondria-

associated ER membranes (MAM), and the mitochondrial

FIGURE 2
Mitochondrial dysfunction in AD iPSC-derived neurons (carrying APP, APOE, and PSEN1 mutant) and therapeutic strategies (created with
BioRender.com). Abnormal accumulation of Aβ and p-Tau disrupted the balance of mitochondrial fusion and fission and increased mitochondrial
fission in cortical neuron carrying PSEN1 mutant, and BACE1 inhibited the abnormal accumulation of Aβ and p-Tau to ameliorate mitochondrial
fission. Abnormal accumulation of Aβ and p-Tau decreased the levels of activatedmitophagy proteins, leading to the abnormalmitophagy in AD
iPSC-derived cortical neurons; actinonin, urolithin A and bexarotene are able to restore abnormal mitophagy through their own mechanism. AD
iPSC-derived astrocytes showed abnormal energy metabolism including increased mitochondrial respiration and elevated glycolytic activity.
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movement-related protein miro1 preferentially localizes inMAM

sites; thus, mitochondrial transport will decrease (Macaskill et al.,

2009; Stoica et al., 2014). Interestingly, both different MNs’

mitochondrial transport defects can be solved by HDAC

inhibitors, possibly because a rise in the acetylation of α-
tubulin increases the number of motor proteins binding to the

microtubules, which leads to an increase in mitochondrial

transport (Guo et al., 2017).

Surprisingly, mutant forms of proteins (such as optineurin

OPTN and TBK1) involved in mediating mitophagy are

associated with ALS (Wong and Holzbaur, 2014; Moore and

Holzbaur, 2016; Harding et al., 2021); however, there are few

articles related to iPSC-based ALSmodeling that characterized by

defects in mitophagy. Moreover, ALS animals and other cells

which transfected the mutated gene of ALS were used to report

mitophagy defects (Palomo et al., 2018; Foster et al., 2020). For

instance, the mitochondria in N2A cells transfected with

SOD1 displayed low levels of mitophagy and high levels of

ROS. This can be explained by the fact that mutated

SOD1 binds to OPTN and sequesters it in N2A cells, thereby

disrupting mitophagy, which in turn leads to increased ROS

release (Tak et al., 2020). Overexpression of OPTN reduces the

cytotoxicity of mutant SOD1, thus improving mitophagy and

decreasing ROS levels (Tak et al., 2020). In addition, there are

paths to control mitochondrial quality except for mitophagy (Lin

et al., 2017; Gautam et al., 2019). Mukesh Gautam et al. found a

unique self-destructive path for mitochondria, and the

morphology of defective mitochondria changed including

being elongated and curling themselves, then beginning to

disintegrate from the inner membrane and the cristae, and

FIGURE 3
Mitochondrial dysfunction in PD iPSC-derived DA neurons (carrying SNCA, PINK1, LRRK2, PARK2, and PLA2G6 mutant) and therapeutic
strategies (created with BioRender.com). DA neurons carrying PARK2 and LRRK2 mutants showed fragmented mitochondria, which was
compensated by SLP-2 overexpression and P110. DA neurons with PLA2G6mutation induced ER stress that facilitated the unfolded protein response
(UPR), resulting in decreased signaling of CREB and final mitochondrial fragments; treatment with azoramide alleviatedmitochondrial fission by
enhancing the CERB signaling. PINK1mutant iPSC-derived DA neurons prevented parkin from translocating tomitochondrial membrane, resulting in
impaired mitophagy; L-NAME ameliorated damaged mitophagy by inhibiting the production of endogenous NOS. Accumulation of miro1 delayed
the initiation of mitophagy in both LRRK2 and SCNA iPSC-derived DA neurons, and decreasing the level of miro1 protein by RNAi promotes
mitophagy. DA neurons carrying PINK1 mutant displayed reduced levels of ATP production, which was improved by cerulenin through rescuing
PINK1 deficiency.

FIGURE 4
Mitochondrial dysfunction in ALS iPSC-derived neurons
(carrying FUS, SOD1, and TARDBP mutant and C90ORF72
expanded GGGGCC repeats) and therapeutic strategies (created
with BioRender.com). Mitochondrial transport defects were
solved by HDAC inhibitors in MNs carrying FUS mutant. MNs with
C9orf72 mutation showed impaired basal and maximal
mitochondrial respiration, which was restored by overexpression
of PGC1α. MNs carrying SOD1, TDP43, and C9ORF72 mutants and
3sALSmutants had reductions in basal respiration, ATP production,
and spare respiratory, and treatment with C12 ameliorated the
abnormal energy metabolism.
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finally being eliminated (Gautam et al., 2019). Therefore, whether

mitophagy disorder occurs in iPSC-derived MNs carrying

mutated ALS-related genes warrants further investigation.

Mitochondrial energy metabolic dysfunction is also a pathologic

characteristic of ALS. There are diverse, specialized cell populations in

the mammalian brain, and related studies have also suggested that

bioenergetic genes and metabolic patterns in different cell types are

differentially altered in developing cells or diseases, such as astrocytes

and MNs (Qi et al., 2019). Vandoorne et al. reported an interesting

finding that when iPSC is differentiated into MNs, its metabolic

pattern shifts from glycolytic to oxidative metabolism, along with

reduced glycolytic flux and elevated TCA cycle activity (Vandoorne

et al., 2019). In addition, the ALS-related FUS mutant does not

change the energy metabolism of MNs. Another study focusing on

MNs carrying the C9orf72 mutant reported impaired basal and

maximal mitochondrial respiration; however, glycolytic function was

not affected (Mehta et al., 2021). Moreover, the transcriptomic

analysis showed decreased gene expression of the mitochondrial

ETC, which was restored by overexpression of PGC1α to stimulate

mitochondrial biogenesis and improve mitochondrial function

(Mehta et al., 2021). Günther et al. reported that SOD1 mutant

iPSC-derived MNs displayed low levels of ATP without other

mitochondrial metabolic changes (Günther et al., 2022). Hor and

colleagues used three sALS iPSC line-derived MNs and three fALS

iPSC line-derived MNs carrying SOD1, TDP43, and

C9ORF72 mutants to find reductions in basal respiration, ATP

production, and spare respiratory capacity, causing increased

glycolysis and lactate. These abnormal changes illustrate impaired

mitochondrial respiration and a compensatory response by ALS

MNs (Hor et al., 2021). Notably, treatment with C12 ameliorated the

mitochondrial energy metabolism via SIRT3 activation and

mitochondrial deacetylation. The improvement of neuronal

mitochondrial energetics through the restoration of OXPHOS and

glycolysis as well as the correction of mitochondrial dysfunctions

have become increasingly important therapeutic targets for delaying

the progression of NDDs (Cunnane et al., 2020).

7 Discussion

NDDs are one of the most widespread diseases with a low

cure rate, bringing enormous physical pain and economic

pressure to patients and a heavy burden to society. At present,

our exploration of the NDD is not thorough yet. IPSC modeling

provides a panoramic view of the pathophysiology of NDDs.

Unlike other models, this type of modeling enables the early-

phase mechanism to be uncovered. Moreover, in the era of

precise medication, it is a promising method for the

personalized identification of unique molecular features in

NDDs of either the sporadic or the familiar type.

This review showed different mitochondrial dysfunction in AD,

PD, and ALS, along with feasible treatments ameliorating these

mitochondrial defects or even inhibiting disease progress (Figures

2–4). Mitochondrial dysfunction is one of the early pathological

features of NDDs (Lin and Beal, 2006).Moreover, the impairment of

mitochondria can directly threaten neural survival and trigger

neurodegeneration, and the deteriorating microenvironment of

neurodegeneration in turn exacerbates mitochondrial dysfunction,

leading to the continued progression of NDDs (Onishi et al., 2021;

Jetto et al., 2022). Therapeutic measures are divided into two types

those that target pathways and those that target sources—for

example, targeting a molecule in the disease signaling pathway or

targeting compensation for damaged mitochondria to correct

mitochondrial dysfunction. However, extensive animal

experiments and preclinical trials are required to confirm the

safety and efficacy of drugs before these therapeutic strategies can

be translated into clinical drugs.

In conclusion, the use of iPSC-based modeling to characterize

mitochondrial dysfunction in NDDs reviewed in this paper can

provide a reference for other research studies, and these modeling

methods provide an effective platform for mechanistic research and

drug screening in NDDs. In the future, developing more effective

and affordable treatment strategies may improve the quality of life

for the majority of NDD patients.
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