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Acute lymphoblastic leukemia (ALL) is a type of hematological malignancy and

has a poor prognosis. In our study, we aimed to construct a prognosticmodel of

ALL by identifying important genes closely related to ALL prognosis. We

obtained transcriptome data (RNA-seq) of ALL samples from the GDC

TARGET database and identified differentially expressed genes (DEGs) using

the “DESeq” package of R software. We used univariate and multivariate cox

regression analyses to screen out the prognostic genes of ALL. In our results, the

risk score can be used as an independent prognostic factor to predict the

prognosis of ALL patients [hazard ratio (HR) = 2.782, 95% CI = 1.903–4.068, p <
0.001]. Risk score in clinical parameters has high diagnostic sensitivity and

specificity for predicting overall survival of ALL patients, and the area under

curve (AUC) is 0.864 in the receiver operating characteristic (ROC) analysis

results. Our study evaluated a potential prognostic signature with six genes and

constructed a risk model significantly related to the prognosis of ALL patients.

The results of this study can help clinicians to adjust the treatment plan and

distinguish patients with good and poor prognosis for targeted treatment.
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Introduction

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and has a

high incidence of mortality and low 5-year overall survival (OS) in patients who develop

infection (Abdelmabood et al., 2020). Significant advances have been made in the

treatment of childhood and adolescent ALL patients over the past few decades. More

than 80% of patients diagnosed between the ages of 1 and 18 are expected to be long-term,

event-free survivors. However, it is clear that further progress is required, as the survival

rate of relapsed patients is not optimistic (Vrooman and Silverman, 2016).

Targeted tyrosine kinase inhibitors, tyrosine kinase inhibitors (TKI) targeting BCR-ABL1

tyrosine kinase, bispecific antibody blinatumomab and the antibody-drug conjugate

inotuzumab ozogamicin, and chimeric antigen receptor (CAR)-T therapy are breakthrough

approaches to treating ALL (Rafei et al., 2019; Gavralidis and Brunner, 2020). Great progress
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has been made in recent genome-wide study on leukemia cell DNA

profiles. For instance, some researchers have found that methylation

of p21 and p57 is associated with poor outcomes of ALL (Roman-

Gomez et al., 2002; Shen et al., 2003). The co-inheritance of IKZF1,

ARID5B,CEBPE, andCDKN2Awas found to be a contributing factor

to ALL in children (Yang et al., 2009; Sherborne et al., 2010). At

present, treatment programs targeting different biological

characteristics of ALL have achieved good curative effects, and the

5-year overall survival rate for children with ALL is approximately

90% (Hunger and Mullighan, 2015; Paul et al., 2016; Hefazi and

Litzow, 2018; Horowitz et al., 2018; Cook and Litzow, 2020). Despite

this, approximately 50% of adult patients and 20% of pediatric cases

relapse after a period of treatment, showing that most adults with

ALL still do not become long-term survivors (Fielding et al., 2007;

Bhojwani and Pui, 2013; Locatelli et al., 2013). Therefore, it is crucial

to obtain ALL prognosis-related genes to construct ALL prognostic

gene signatures and build prognostic models to better predict

treatment outcomes (Schultz et al., 2007; Mullighan et al., 2009;

Kang et al., 2010; Cruz-Rodriguez et al., 2017). The present study was

designed to build a prognostic model to predict the survival

probability of ALL patients after receiving treatment, and provide

a reference for clinicians to target ALL patients with different risk

groups for treatment. We obtained RNA-seq data and compared the

expression profiles between 89 bone marrow samples with ALL and

37 normal bone marrow samples. The dataset of ALL patients was

downloaded from the GDC TARGET database in USCS Xena

(https://doi.org/10.1038/s41587-020-0546-8) (Goldman and Craft,

2020). We identified 551 down-regulated genes and 461 up-

regulated genes. We enriched the gene function using Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway and Gene

Ontology (GO) enrichment analyses. We employed univariate cox

proportional hazard regression analysis to identify six prognostic

related genes (BAALC,HGF,CPXM1,CCL4, ZBTB10, and B3GNT2)

from the GDC TARGET ALL dataset, and constructed a risk score

model by establishing the prognostic features of these genes. Next, we

risk stratified patients according to their risk scores, performed

survival analysis based on patients in the high-risk and low-risk

groups, and performed ROC analysis for risk score, an independent

prognostic factor. The results showed that patients in the high-risk

group were strongly associated with poor prognosis, and the AUC

value of the risk score was higher than other clinical parameters. To

compare the differences in gene function between these two groups of

patients, we performed Gene Set Enrichment Analysis (GSEA)

analysis. Finally, to validate our constructed prognostic model, we

downloaded RNA-seq data from 121 ALL patients from the

International Cancer Genome Consortium (ICGC) database.

In this study, we evaluated the prediction results of risk score

on the survival time of ALL patients by constructing a prognostic

model. The results showed that risk score had a higher predictive

value than other clinical parameters, such as age and gender. To

the best of our knowledge, the AUC of risk score up to 0.864 in

ROC analysis indicates that it has high specificity and sensitivity in

predicting the survival time of ALL patients.

Materials and methods

The workflow for building the prognostic
model

The workflow is shown in Figure 1.

Sample of the study

The RNA-seq data and clinical information of 89 ALL patients

and 37 bone marrow normal samples for control were downloaded

from the UCSC Xena (cohort: GDC TARGET-ALL-P3) and The

Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.

gov), respectively. GDC TARGET-ALL-P3 cohort contains

135 samples. We removed the sample ID ending with “B”, so

there are 89 samples left. The purpose of downloading the

independent TARGET ALL datasets (ALL-US Acute

Lymphoblastic Leukemia—TARGET, US) from the ICGC

database (https://dcc.icgc.org) was to validate our prognostic model.

FIGURE 1
The workflow of the model construction process.
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Functional annotation and GSEA

DEGs were identified using the packages of “tidyverse” and

“DESeq” in R (version 4.1.2) with criteria of |log2fold-change

(log2FC)| > 1 and adjusted p-value < 0.05. GO and KEGG analyses

were performed using the packages of “tidyverse”, “BiocManager”,

“org.Hs.eg.db”, and “clusterProfiler” in R (Wu et al., 2021). KEGG

and GO including three categories of biological process (BP),

molecular function (MF), and cellular component (CC) enables

efficient clustering of functional genes (Chen et al., 2017; Kanehisa

et al., 2017). GSEA (Subramanian et al., 2005) was performed by

using the packages of “tidyverse”, “ReactomePA”, “data.table”,

“org.Hs.eg.db”, “clusterProfiler”, “biomaRt”, and “enrichplot” in R.

Construction of the six prognostic genes
signature

Univariate cox analysis was performed by using the “tidyverse”,

“survival” and “forestplot” packages in R. Then LASSO logistic

regression analysis (R package, glmnet, v4.1-4) was used to further

screen genes associatedwith the prognosis ofALL. Six prognostic genes

were identified based on p < 0.05. Kaplan-Meier survival analysis and

log-rank test were performed by the packages of “tidyverse”, “survival”

and “survminer” in R to verify whether these six genes were associated

with ALL prognosis (George et al., 2014). Next, a genetic prognostic

signaturewas constructed based onmultivariate cox regression analysis

by using the “tidyverse” and “survival” packages in R (Cioci et al.,

2021). The risk score model was performed using the packages of

“tidyverse”, “survival”, and “ggrisk” in R.

ROC analysis

ROC analysis (Obuchowski, 2005; Hoo et al., 2017) and the

calculation of the area under the curve (AUC) were analyzed by

the “tidyverse”, “ROCR”, and “rms” packages of R software. The

risk score and other clinical factors correlated with survival were

used in Multi-index ROC analysis. A p-value < 0.05 was

considered as statistical significance.

All statistical analyses in this study were performed by R

(version 4.1.2). p < 0.05 was considered of statistical significance.

Results

Clinical information for ALL patients

Of the 89 patient samples we obtained from the GDC TARGET

database, 69 patients had clinical information. The clinical information

of the patients are listed in Table 1, including white blood cell (WBC)

count at diagnosis (×109/L), vital status, and initial therapy. Among

them, 28 (40.6%) were female and 41 (59.4%) patients were male. The

age at initial diagnosis ranged from 0.1 to 17.9 years. In initial therapy,

TABLE 1 Characteristic of ALL patients.

Characteristic Number of cases Percentages (%)

Patients 69 100

Age at diagnosis (year)

Median 8.1 —

Range 0.1–17.9 —

Sex

Female 28 40.6

Male 41 59.4

WBC count at diagnosis (×109/L)

≥50 30 43.5

<50 33 47.8

NA 6 8.7

Vital status

Alive 42 60.9

Dead 27 39.1

Initial therapy

ALL 26 37.7

AML 27 39.1

Hybrid 7 10.1

Interfant06 1 1.4

Unknown 8 11.6
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FIGURE 2
Identification of differentially expressed genes. (A)Heatmap of differentially expressed gene expression levels in the GDC TARGET-ALL dataset.
(B) Volcano plot for differentially expressed gene expression levels in GDC TARGET-ALL dataset.
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26 (37.7%) patients were ALL, 27 (39.1%) patients were acute myeloid

leukemia (AML), and 7 (10.1%) patients were hybrid.

Identification of differentially expressed
genes

We obtained 551 down-regulated genes and 461 up-

regulated genes among the 1012 DEGs we obtained. These

results are presented as a heat map by the “tidyverse” and

“pheatmap” packages of R software (Figure 2A) and a volcano

plot using the packages of “tidyverse”, “ggpubr” and “ggthemes”

in R (Figure 2B). We screened the top 10 up-regulated and down-

regulated genes according to |log2FC|, as shown in Tables 2, 3.

GO enrichment and KEGG pathway
analysis

We performed GO and KEGG analyses on the 1012 DEGs

and select enriched results with a significance level at

adjusted p-value < 0.05. In GO enrichment analysis of the

up-regulated genes, the mainly enriched terms were B cell

activation, protein localization to nucleus, intrinsic apoptotic

signaling pathway, and nuclear speck (Figure 3A). The down-

regulated genes were enriched in T cell activation, regulation

of cell-cell adhesion, secretory granule membrane, and

immune receptor activity (Figure 3B). The top pathways

enriched for up-regulated genes and down-regulated

genes in KEGG analysis were PI3K-Akt signaling pathway

and chemokine signaling pathway, respectively

(Figures 3C,D).

The affection of the six prognostic genes
on survival in ALL patients

To identify which genes are associated with ALL, we

performed univariate cox and LASSO logistic regression

analyses and then obtained a most stable gene set with six

genes (Figure 5A). The genes that have been identified are

BAALC, HGF, CPXM1, CCL4, ZBTB10, and B3GNT2. To

TABLE 2 The top 10 up-regulated genes.

Gene BaseMean Log2FoldChange IfcSE Stat p-value P-adjust

MYO18B 4403.147 7.732 0.462 16.733 7.586E-63 7.368E-61

S100A16 508.046 7.083 0.529 13.378 8.159E-41 1.829E-39

CCNA1 850.673 5.503 0.382 14.425 3.625E-47 1.184E-45

SUCNR1 1868.296 3.996 0.420 9.504 2.019E-21 1.216E-20

BAALC 1743.437 3.913 0.362 10.794 3.668E-27 3.518E-26

PROM1 3187.455 3.641 0.334 10.898 1.172E-27 1.175E-26

FLT3 9389.460 3.620 0.218 16.584 9.095E-62 8.012E-60

RFX8 754.736 3.582 0.314 11.400 4.169E-30 4.919E-29

SOX4 10003.947 3.406 0.200 17.022 5.676E-65 6.936E-63

SPRY1 1579.886 3.393 0.286 11.877 1.557E-32 2.136E-31

TABLE 3 The top 10 down-regulated genes.

Gene BaseMean Log2FoldChange IfcSE Stat p-value P-adjust

IL2RB 2067.055 −5.632 0.219 −25.739 4.258E-146 1.612E-142

FCRL6 382.885 −5.151 0.256 −20.089 9.288E-90 1.173E-86

GNLY 3373.315 −4.754 0.277 −17.148 6.483E-66 8.468E-64

GZMH 526.780 −4.641 0.277 −16.782 3.290E-63 3.280E-61

FGFBP2 533.131 −4.630 0.255 −18.176 7.990E-74 1.892E-71

GZMB 773.903 −4.527 0.274 −16.512 2.992E-61 2.519E-59

HBM 1754.903 −4.114 0.395 −10.406 2.339E-25 1.926E-24

CA1 7487.588 −4.019 0.345 −11.654 2.183E-31 2.747E-30

KCNH2 1079.042 −3.970 0.351 −11.321 1.037E-29 1.205E-28

AHSP 2477.869 −3.779 0.388 −9.750 1.837E-22 1.196E-21
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FIGURE 3
Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. (A) The GO analysis of 461 up-
regulated genes. (B) The GO analysis of 551 down-regulated genes. (C) KEGG analysis of 461 up-regulated genes. (D) KEGG analysis of 551 down-
regulated genes.
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FIGURE 4
Survival analysis of ALL prognostic genes. (A) BAALC. (B) HGF. (C) CPXM1. (D) CCL4. (E) ZBTB10. (F) B3GNT2.
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validate the potential values of the six genes

predicting prognosis, we performed survival analysis by

the “tidyverse”, “survival” and “survminer” packages of R

software. The results showed that the six prognostic

genes significantly impact the overall survival by using a

log-rank test (p < 0.05). Highly expressed BAALC, CPXM1,

CCL4, ZBTB10, and B3GNT2 are associated with poor

prognosis. The low expression of HGF indicates that it is a

protective gene in ALL patients (Figures 4A–F).

Establishment of the prognostic risk
model

We constructed the risk score model through the

calculation formula (Qu et al., 2020): risk score =

(0.01233195 × expression level of BAALC) +

(−0.03008332 × expression level of HGF) + (0.00458174 ×

expression level of CPXM1) + (0.01487359 × expression level

of CCL4) + (0.00933869 × expression level of ZBTB10) +

(0.01274584 × expression level of B3GNT2). The coefficients

of the six prognostic genes are shown in Table 4. The number

of deaths in the high-risk group was significantly higher than

that in the low-risk group (Figures 5B,C). The expression of

these six prognostic genes in these two distinct populations is

shown in Figure 5D.

The genetic risk score model is an
independent prognostic factor

We performed univariate and multivariate cox analyses to

evaluate the prognostic value of risk score and other clinical

parameters. Univariate cox regression analysis showed that

the risk score was significantly correlated with overall survival

(OS) (HR = 2.718, 95% CI = 1.908–3.872, p < 0.001)

(Figure 6A). Multivariate cox regression analysis proved the

risk score could be an independent factor predicting the

prognosis of ALL patients (HR = 2.782, 95% CI =

1.903–4.068, p < 0.001) (Figure 6B). OS rate was

significantly lower in high-risk patients compared with low-

risk patients (Figure 6C). Multi-ROC result revealed that the

AUC of risk score was 0.864 which was the highest one than

the AUCs of age (0.575) and gender (0.438) (Figure 6D).

GSEA of the prognostic signature in the
low-risk and high-risk groups

We used the GSEA to identify potential signaling

pathways in the low-risk and high-risk groups (Figures

7A–D). Among the top 10 pathways of KEGG in the low-

risk and high-risk groups, there were three significantly

different pathways, namely lysosome, natural killer cell

mediated cytotoxicity, and Rap1 signaling pathway.

External verification of the prognostic
gene signature

We validated our prognostic model with an independent

ALL dataset downloaded from the ICGC database. The

distribution of risk score, survival status, and gene expression

patterns of patients are shown in Figures 8A–C. The high-risk

patients had a significantly poorer OS than patients in the low-

risk group (Figure 8D). In multi-ROC analysis, the AUC of risk

score was 0.712, indicating high diagnostic sensitivity and

specificity for patients OS (Figure 8E).

Discussion

In this study, we obtained 89 bone marrow samples with ALL

and 37 normal bone marrow samples from the GDC TARGET

TABLE 4 Genes included in prognostic ALL genes signature.

Gene Coef HR Z p-value Lower Upper

BAALC 0.012332 1.012408 2.634728 0.008420 1.003163 1.021739

HGF −0.030083 0.970365 −2.122150 0.033825 0.943775 0.997704

CPXM1 0.004582 1.004592 1.529872 0.126048 0.998713 1.010506

CCL4 0.014874 1.014985 3.278652 0.001043 1.006000 1.024050

ZBTB10 0.009339 1.009382 0.515572 0.606154 0.974177 1.045861

B3GNT2 0.012746 1.012827 1.797893 0.072194 0.998852 1.026999
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FIGURE 5
Regression analysis and characteristics of prognostic gene signatures. (A) Forest map of six prognostic genes by univariate cox regression. (B)
Distributions of risk scores in all samples. (C) Distribution of follow-up times in the training samples. (D) Heat map of gene expression in the
prognostic signature of ALL.
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database.We analyzed the RNA expression profiles of these samples

and identified 1012 DEGs. By GO and KEGG analyses, we found

that up-regulated genes were mainly enriched in B cell activation

and PI3K-Akt signaling pathway. Interestingly, previous studies

demonstrated that B-cell malignancies result from abnormal

dysregulation of B-cell–activating factor (BAFF) (Li et al., 2021)

and the PI3K-Akt signaling pathway in B-lineage ALL is activated

through the interaction of PI3K-p85 and CD9 (Shi et al., 2021). The

AUC of the risk score was greater than 0.7, indicating that the risk

score has a good prognosis predictive value for more than 70% of

ALL patients (Huang et al., 2020). GSEA analysis in high-risk group

showed neutrophil extracellular trap formation and Rap1 signaling

pathway were highly associated with ALL. Previous researches have

shown that median neutrophil elastase activity and neutrophil

extracellular traps (NETs) formation are higher in ALL versus

acute myeloid leukemia (Berger-Achituv and Elhasid, 2018) and

Notch-dependent T-ALL results from dysregulated constitutive

Rap1 activation (Wang et al., 2008).

In this study, we identified six genes (BAALC, HGF, CPXM1,

CCL4, ZBTB10, and B3GNT2) associated with ALL prognosis. In

Multi-index ROC analysis of the training set, the AUC of risk score

was 0.864, which was the highest one than that of other clinical

parameters. This indicates that the prognostic model we constructed

has high predictive value. However, our study also has limitations.

First, we were unable to collect sufficient ALL cases. Second, the

mechanism of ALL prognostic genes requires further study.

Among the six ALL prognostic genes, BAALC has been

reported to be associated with ALL. Diseases associated with

BAALC include acute leukemia and leukemia. Previous study

demonstrated that high BAALC expression contributes to poor

prognosis in childhood ALL (Azizi et al., 2015). There were

significant differences in disease outcomes between BAALC-

positive and BAALC-negative groups, and the positive group

had higher recurrence and mortality rates (Hagag et al., 2018). A

previous study showed that patients with an immature,

chemoresistant leukemic phenotype have higher BAALC

expression and poorer OS (Kühnl et al., 2010). The HGF/

c-MET signaling pathway is involved in the occurrence and

progression of hematological tumors including T-cell acute

lymphoblastic leukemias (Accordi et al., 2007). HGF levels in

patients with acute leukemia are higher than those in healthy

individuals, and higher HGF expression is associated with lower

survival rates (Kim et al., 2005). A previous study showed that

CPXM1 is closely associated with leukemia stem cells and can be

used as a prognostic gene in patients with acute myeloid leukemia

(AML) and myelodysplastic syndrome (MDS) (Wang et al.,

2020). The polymorphism of CCL4 gene affects gene

expression and protein function, and has been confirmed to

predict the risk and prognosis of a variety of diseases (Kuo et al.,

2018). ZBTB10 can be down-regulated by MicroRNA-27a (miR-

27a) to promote tumor growth and metastasis (Tang et al., 2012).

Upregulation of B3GNT2, which encodes a poly-N-

FIGURE 6
Cox proportional hazard regression analysis of ALL risk factors. (A) Univariate cox regression analysis of risk score and other indicators. (B)
Multivariate cox regression analysis of risk score and other indicators. (C) Kaplan-Meier analysis of ALL patients grouped according tomedian risk. (D)
Multi-index receiver operating characteristic (ROC) curve of risk score and other indicators.
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acetyllactosamine synthase, allows human melanoma cells to

evade T cell killing in different cancer cell types, and can

reduce T cell activation and disrupt the interaction between

tumor and T cells (Joung et al., 2022). Although CPXM1,

CCL4, ZBTB10 and B3GNT2 have not been reported to be

related to the prognosis of ALL, the four genes we screened

are all closely related to cancer, and we have reason to believe that

they may also be potential genes for predicting the prognosis

of ALL.

Based on these six genes, we constructed the prognostic

model and divided ALL patients into high-risk and low-risk

groups. Different risk groups show different characteristics,

which helps clinicians to make targeted treatment. Risk-

stratified therapy has steadily improved survival while

FIGURE 7
Gene set enrichment analysis (GSEA) of the prognostic signature. GSEA shows the GO (A) and KEGG pathways (B) enriched in the high-risk
group of the ALL gene signatures. GSEA reveals the GO (C) and KEGG pathways (D) enriched in the low-risk group of the ALL gene signatures.
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reducing treatment-related toxicity and has made steady

progress in improving survival in children with ALL

(Mattano and Devidas, 2021). In addition, the cure rate of

ALL in high-income countries is high, but it does not appear

in low and middle-income countries (LMIC). 80% of the

world childhood ALL burden occurs in LMIC (Oh et al.,

2021). Risk stratification treatment can significantly reduce

the treatment burden for patients with ALL in LMIC.

In summary, we constructed a prognostic model of ALL by

identifying six genes closely related to ALL prognosis. Our

findings will provide a reference for clinicians to choose

personalized treatment options and provide potential drug

targets for the treatment of ALL.

Data availabi0lity statement

Publiclyavailable datasets were analyzed in this study. This

data can be found here: The datasets (cohort: GDC

TARGET-ALL-P3): UCSC Xena at https://xenabrowser.net/
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Genome Atlas (TCGA) database at https://portal.gdc.cancer.

FIGURE 8
External verification of the prognostic ALL gene signature. (A) Risk scores distribution. (B) Survival status of patients. (C) Heat map of gene
expression pattern. (D) Kaplan-Meier plot for overall survival (OS) of patients in different risk groups. (E) ROC curve of risk score.
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gov; independent TARGET ALL datasets (ALL-US Acute

Lymphoblastic Leukemia—TARGET, US): the International

Cancer Genome Consortium (ICGC) database at https://dcc.

icgc.org.
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