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Constructing physical models of living cells and tissues is an extremely

challenging task because of the high complexities of both intra- and

intercellular processes. In addition, the force that a single cell generates

vanishes in total due to the law of action and reaction. The typical

mechanics of cell crawling involve periodic changes in the cell shape and in

the adhesion characteristics of the cell to the substrate. However, the basic

physical mechanisms by which a single cell coordinates these processes

cooperatively to achieve autonomous migration are not yet well understood.

To obtain a clearer grasp of how the intracellular force is converted to

directional motion, we develop a basic mechanochemical model of a

crawling cell based on subcellular elements with the focus on the

dependence of the protrusion and contraction as well as the adhesion and

de-adhesion processes on intracellular biochemical signals. By introducing

reaction-diffusion equations that reproduce traveling waves of local

chemical concentrations, we clarify that the chemical dependence of the

cell-substrate adhesion dynamics determines the crawling direction and

distance with one chemical wave. Finally, we also perform multipole analysis

of the traction force to compare it with the experimental results. Our present

work sheds light on how intracellular chemical reactions are converted to a

directional cell migration under the force-free condition. Although the detailed

mechanisms of actual cells are farmore complicated than our simplemodel, we

believe that this mechanochemical model is a good prototype for more realistic

models.

KEYWORDS

cell motility, substrate adhesion, force-free, torque-free, traction force, mechano-
chemical model, reaction-diffusion model, subcellular-element model

1 Introduction

Autonomous migration is a fundamental function of biological cells, and it is of

essential importance in many biological processes during development and homeostasis.

A number of studies have been conducted to reveal how intracellular biochemical

reactions break the symmetry of a cell so that it migrates directionally Swaney et al.

(2010); Beta and Kruse (2017); Devreotes et al. (2017). In order to bridge the gap between

intracellular chemical signals and spatial migration of cells, we have to consider how the
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force that a cell produces by itself is controlled by the intracellular

chemical reactions and how it drives the cell.

From the viewpoint of mechanics, in general, objects that

exhibit spontaneous motion are called active matter Lauga and

Powers (2009); Ramaswamy (2010); Vicsek and Zafeiris (2012);

Cates (2012); Marchetti et al. (2013); Bechinger et al. (2016). In

contrast to objects passively driven by external forcing, active

matter, including living cells, generates force in itself, which is

characterized by a vanishing force monopole, i.e., vanishing

simple sum of the force. This is because of the action-reaction

law, which requires the existence of the counter force of internal

force acting on another part of the active object with the same

magnitude but in the opposite direction. Note that the internal

force is generated inside the active object. Under this force-free

condition, it is necessary to break symmetry to achieve

spontaneous motion, such as directional motion. The same

applies to the torque that active matter generates. That is,

spontaneous rotation requires torque-free condition. For

microorganisms that swim in a fluidic environment, the

scallop theorem Purcell (1977) describes the importance of

breaking reciprocality to achieve a net migration via internal

cyclic motions. In particular, studies on a simple model of

Purcell’s three-bead swimmer revealed that the phase shift

between the two periodically stretching bonds can break time

reversal symmetry to realize a net migration instead of

reciprocating motion Najafi and Golestanian (2004); Günther

and Kruse (2008).

In contrast to the locomotion of microswimmers that stir

surrounding fluid to propel, adhesion to the substrate such as the

extracellular matrix and other cells plays an important role in the

locomotion of cells crawling on the substrates, on which the cells

exert traction force. Typical mechanism of such cell crawling

includes the following four processes, 1) protrusion, 2) adhesion

to the substrate, 3) de-adhesion from the substrate, and 4)

contraction, as sketched in Figure 1. This simple mechanism

of crawling cycle is currently accepted in the biology community

Ananthakrishnan and Ehrlicher, (2007). In this case, the force-

free condition requires the existence of the counter force of the

extensile and contractile force of cytoskeleton during the

protrusion and contraction, that act on another part of the

cell. See also the sketch in Figure 1. Note that the protrusion

and contraction are induced by the dynamics of intracellular

cytoskeleton Ananthakrishnan and Ehrlicher, (2007); Blanchoin

et al. (2014); Tarama and Shibata (2022). In our previous study

Tarama and Yamamoto (2018), we clarified the role of substrate

adhesion by using a simple mechanical model in which a cell is

described by two subcellular elements, that can switch their

substrate friction periodically between the adhered stick state

and the de-adhered slip state, and that are connected by a

viscoelastic bond including an actuator that elongates and

shrinks cyclically. By tuning the phase shifts between the

actuator elongation and the substrate friction change of each

subcellular element, we demonstrated that coupling between the

cyclic intracellular force and the dynamic asymmetry of the

substrate friction, has a great impact on the crawling distance

and efficiency, as well as the crawling direction. By analogy to the

Purcell’s three-bead swimmer model, this model cell can achieve

a net crawling motion by adjusting the phase shift among the

periodic stretching of cell body and the adhesion/de-adhesion

dynamics at the front and rear of the cell. Several similar studies

FIGURE 1
Sketch of the crawling cycle of a cell on substrate, consisting
of the four processes:① protrusion,② adhesion,③ de-adhesion,
and ④ contraction. The cell depicted in cyan enclosed by
membrane (black line) is crawling on the substrate (gray). The
two magenta circles schematically represent the front and rear
parts of the cell, and the orange bars symbolize the interaction
with the substrate underneath. Protrusion is led by the extensile
force fe on the leading edge generated by intracellular
cytoskeleton, and thus, its counter force − fe acts on another part
(i.e., the rear in the sketch) of the cell because of the law of action
and reaction. In the same way, the contraction process is caused
by the contractile force fc at the trailing edge due to the force
generation of intracellular cytoskeleton, and its counter force − fc

act on the front of the cell. The local interaction of the cell with the
substrate underneath (orange bars) can change its characteristics
between the adhered state and the de-adhered state. The
processes② and③ in the box on the right represent the recovery
of the substrate adhesion to close the crawling cycle.
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of simple inchwarm-style model have also shown that the

regulation of substrate adhesion plays an important role in

directional motion of cells on a substrate Kumar et al. (2008);

Lopez et al. (2014); Mai and Camley (2020). We also note that

many elaborate models have been introduced to explain various

aspects of the cell crawling dynamics, including the cellular Potts

model Nishimura et al. (2009); Niculescu et al. (2015), the

continuous model Marchetti et al. (2013); Nier et al. (2016),

the phase field model Ziebert and Aranson (2016); Shao et al.

(2010); Taniguchi et al. (2013); Shi et al. (2013); Ziebert et al.

(2012); Tjhung et al. (2015), and the particle-based model

Newman (2007); Sandersius and Newman (2008); Basan et al.

(2011); Zimmermann et al. (2016); Smeets et al. (2016).

In contrast to such mechanistic tuning of the phase shift, in

real cells, these extension and contraction, as well as the

adhesion/de-adhesion processes, are controlled by

intracellular chemical reactions. Therefore, in this paper, we

address the question how intracellular chemical reactions can

drive the spatial migration of a crawling cell by controling

periodic extension and contraction of cytoskeleton under the

force- and torque-free conditions as well as the substrate

adhesion dynamics. To this end, we develop a basic particle-

based mechanical model for cell crawling based on the typical

mechanism of cell crawling sketched in Figure 1, which is

coupled to intracellular chemical reactions. By considering a

cell crawling on a flat substrate, we describe a cell by a set of

many subcellular elements connected by viscoelastic bonds

Newman (2007) as a simple extension of our previous

mechanical model to two dimensions Tarama and

Yamamoto (2018). In addition, intracellular chemical

reactions are represented by simple reaction-diffusion (RD)

equations Murray (2002, 2003); Kuramoto (1984); Epstein and

Pojman (1998); Pismen (2006), which trigger mechanical

activities. We then couple the RD equations and mechanical

models to achieve efficient migration. In particular, we focus on

the time delay between the intracellular chemical reactions and

cell mechanics, which corresponds to the ordering of the basic

crawling processes.

2 Materials and methods

First, we introduce our mechanical model of a crawling

cell and the RD equations representing intracellular

chemical reactions. As for RD equations, we employ a

previously introduced model for an intracellular

chemical reaction observed experimentally. We then

couple the mechanical model and the RD equations,

which regulate the intracellular mechanical activities. In

particular, we confine ourselves to studying possible

couplings between the intracellular chemical and

mechanical models.

2.1 Subcellular-element model

We describe a single cell by a set of subcellular elements

Newman (2007) connected by Kelvin-Voigt type viscoelastic

bonds, as schematically depicted in Figure 2. The elastic

spring and damper of the Kelvin-Voigt bonds represent

intracellular elasticity and dissipation. In addition, a linear

actuator is included to the Kelvin-Voigt bond, which models

expansion and contraction due to intracellular force generation

by cytoskeleton. Each subcellular element interacts with the

substrate underneath via the substrate friction proportional to

the local velocity, where the substrate friction coefficient can

change its characteristics between adhered stick state and de-

adhered slip state. Since the typical size of a cell is on the order of

10 μm, the effect of inertia is negligible. Then, the force balance

equation of element i is given by

ζ i t( )vi + ∑
j∈Ωi

ξℓij vi − vj( )
� ∑

j∈Ωi

κ

ℓij
r̂ij rij − ℓij + ℓ

act
ij t( )( ){ } + f areai ,

(1)

where vi is the velocity of the element i located at the position ri.
Here, the abbreviations r = |r| and r̂ � r/r are used for the relative
position rij = rj − ri. The summation is over the set of the elements

Ωi connected directly to the element i by the viscoelastic bonds.

Note that in this paper we consider the case that the connection

of the bonds between subcellular elements are permanent

without breakup nor reconnection nor creation of new bonds

for simplicity.

The first term on the left-hand side of Eq. 1 represents the

substrate friction with coefficient ζi(t), which changes over time

due to intracellular activity. The second term represents

intracellular dissipation with the rate ξ. The first term on the

right-hand side represents intracellular elasticity with the elastic

modulus κ and free length ℓij. Intracellular activity is also

FIGURE 2
Sketch of the subcellular element model of a cell crawling on
a substrate. (A) The cell is described by a set of subcellular
elements (magenta circles) connected by viscoelastic bonds (blue
lines). The shape of a cell at rest is assumed to be a perfect
hexagonal lattice. The element indicated by the star is the activator
element. (B) Details of the subcellular elements and the
connecting viscoelastic bond. Each element possesses the
chemical concentrations ci. The actuator length ℓ

act
ij (t) and the

substrate friction coefficient ζi(t) change over time.
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included in the actuator, which tends to elongate the connecting

bond by changing the free length over time as ℓij + ℓ
act
ij (t). Here,

ℓ
act
ij (t) represents the actuator elongation, from which the force

generated by the actuator is calculated as

f actij (t) � −κℓactij (t)r̂ij/ℓij. We emphasize that the model Eq. 1

satisfies the force-free condition since the intracellular force acts

symmetrically on the pair of subcellular elements. Namely, the

sum of the intracellular force in Eq. 1 vanishes as

∑
i

f inti � 0. (2)

where

f inti � − ∑
j∈Ωi

ξℓij vi − vj( )
+ ∑

j∈Ωi

κ

ℓij
r̂ij rij − ℓij + ℓ

act
ij t( )( ){ } + f areai

(3)

is the intracellular force acting on the element i.

The last term on the right-hand side of Eq. 1 prevents

the collapse of the subcellular element network. It is given

by f areai � −zUarea/zri, where Uarea � ∑〈i,j,k〉σ/S
2
ijk with σ =

10–6. This potential Uarea penalizes shrinking of the area of

each triangle 〈i, j, k〉 formed by connected subcellular

elements i, j, and k, which is defined by Sijk � (rij × rik) ·
êz/2 with êz as the unit vector perpendicular to the 2D

substrate.

We scale the system by L0 = 10 μm for length and T0 =

1 min for time, which are physiologically relevant values for

typical living cells Maeda et al. (2008); Tanimoto and Sano

(2014). In addition, the scale of the force is set to F0 = 10 nN,

which is on the order of the traction force that cells exert on

the substrate. The typical values of the mechanical

parameters of the model Eq. 1 are summarized in Table 1.

We note that the dimensionless parameter constructed by the

typical time scale, cell elasticity, and dissipation rate, that is

related to the fluid-solid transition of cellular mechanics, is

consistent with the typical value for a living cell summarized

in Table 2.

2.2 Intracellular chemical reaction

In the model Eq. 1, the effects of the intracellular activities are

included in the actuator elongation ℓ
act
ij (t) and the change in the

substrate friction coefficient ζi(t). The former represents the

protrusion and contraction processes. The latter corresponds

to the adhesion and de-adhesion of the cell to the underlying

substrate. In actual cells, such cellular activities are caused by

various intracellular chemical signals. However, it is not realistic

to include all chemical components and their signaling pathways.

Therefore, we model the intracellular chemical reactions by

simple RD equations.

Taniguchi et al. gathered from their experimental

observations of Dictyostelium cells that phosphatidylinositol

(3,4,5)-trisphosphate (PIP3) promotes actin polymerization

and protrusion of the cellular membrane, and therefore, they

considered a signaling pathway around PIP3 including

phosphatidylinositol (4,5)-bisphosphate (PIP2), PI3-kinase

(PI3K), and phosphatase and tension homolog (PTEN). By

eliminating the dynamics of PI3K and PTEN, they obtained

the following set of RD equations Taniguchi et al. (2013):

zUi

zt
� DU∇

2Ui + GU Ui, Vi( ),
zVi

zt
� DV∇

2Vi + GV Ui, Vi( ),
(4)

where the reaction terms are defined as

TABLE 1 Mechanical parameters in the model and their values for the simulation of the hexagonal cell and the corresponding values in physical units.
See also Table 2. The values in parentheses are for a large cell.

Model parameters Simulation values Typical values

Diameter of cell at rest, Lcell 1 (1.4) 10 (14) μm

Number of subcellular elements, N 91 (169)

Number of bonds, Nbond 240 (462)

Bond length at rest, ℓij Lcell/
��
N

√
≈1.05 (1.08) μm

Total bond length at rest, Lbond ∑〈i,j〉ℓij � NbondLcell/
��
N

√

Mean bond length, ℓ0 Lbond/Nbond � Lcell/
��
N

√
≈1.05 (1.08) μm

Substrate friction coefficient

in the slip state, ζslip L2cell/N ≈0.01 (0.006) nN (μm)−1min

in the stick state, ζstick 10ζslip ≈0.1 (0.06) nN (μm)−1min

Elastic modulus of each bond, κ 10 ≈10 nN

Intracellular dissipation rate, ξ L2cell/Lbond ≈0.01 (0.008) nN (μm)−1min

Dimensionless parameter, ωξcell/kcell 2πξcell/kcellT0 � 0.2πL3cell
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GU U,V( ) � − αUV2

KK + 〈V2〉 +
βUV

KP + 〈U〉 + S − γU,

GV U,V( ) � + αUV2

KK + 〈V2〉 −
βUV

KP + 〈U〉 − μV.
(5)

The global couplings are given by

〈U〉 � 1
N

∑
i

Ui, 〈V2〉 � 1
N

∑
i

V2
i , (6)

where the summation is over all subcellular elements. Here,Ui and

Vi represent the PIP2 and PIP3 concentrations for subcellular

element i, respectively. The first and second terms in GU represent

the phosphorylation of PIP2 and the dephosphorylation of PIP3,

respectively. The counterparts appear in the first two terms in GV.

The third and fourth terms in GU are constant production and

degradation of PIP2. The last term of GV represents a constant

degradation of PIP3 Taniguchi et al. (2013). The global coupling

terms originate from the conservation of the PI3K and PTEN

concentrations.

To integrate Eq. 4, we calculate the Laplacian by using the

moving particle semi-implicit (MPS) method Koshizuka et al.

(1998). That is, for the chemical component ci = {Ui, Vi}, the

diffusion term is modeled by

Dc∇
2ci � 4Dc

λ
∑
j≠i

1
nij

cj − ci( )w rij( ), (7)

where nij = (ni + nj)/2, and ni = ∑j≠iw (rij) is the number of

neighboring elements around element i. The weight function that

we employed is defined by

w r( ) �
re
r
− 1 for 0≤ r< re

0 for re ≤ r

⎧⎪⎨⎪⎩ (8)

where re is the cutoff length, which is set to 4ℓ0. The

normalization factor λ is given by r2e /6. By using this method,

TABLE 2 Mechanical parameter values for typical living cells and corresponding model parameters.

Mechanical parameters Model Living cells References

Migration speed ≈ 10 μm(min)−1 Maeda et al. (2008)

Traction stress ≈ 100 Pa Tanimoto and Sano (2014)

Traction force 10 nN (estimated)

Cell-substrate friction coefficient ζcell = ζslipN 1 nN (μm)−1min (estimated)

Elastic modulus κcell � κ/L2cell 10–100 Pa Bausch et al. (1999); Micoulet et al. (2005)

Elastic constant kcell = κ/Lcell 0.1–1 nN (μm)−1 (estimated)

Dissipation rate ξcell = ξLbond

Fluid/solid transition time ξcell/kcell tens of sec Kasza et al. (2007)

TABLE 3 The parameter values of the RD equations in the simulation.

Model parameters Values
used in simulations

DU 0.48

DV 0.48

α 240

β 90

KK 5

KP 5

S 30

γ 6

μ 30

FIGURE 3
The nullcline and the flow field in the U-V space of Eqs 4, 5
under the assumption of uniform U(r) = U and V(r) = V. The orange
solid line and the red dashed line correspond to the nullclines of
GU(U, V) = 0 andGV(U, V) = 0, respectively, which correspond
to dU/dV = 0 and dV/dt = 0. The gray lines show example
trajectories starting from various (U, V), whereas the arrow heads
and their color show the direction and magnitude of the flow
(GV(U, V), GU(U, V)) at each phase point. The black dot represents
the stable fixed point located at (V, U) = (0, S/γ).
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we checked whether the traveling and spiral waves are formed in

the absence of the mechanical changes. To generate the wave, we

add the stimulus (δU, δV) = (−Iexcite, + Iexcite) to Eq. 4 on the

activator element, assuming that the phosphorylation of PIP2 to

PIP3 is enhanced for this element.

The parameters of Eq. 4 that we used in this paper are

summarized in Table 3. Here, the diffusion coefficient DU = 0.48

corresponds to 0.8 μm2 (sec)−1, which is within the range of the

experimentally-observed diffusion coefficient of proteins inside a

cell near the membrane Golebiewska et al. (2008). We note that

the choice of the other parameters is arbitrary, but what is of

more importance than their absolute values is the nature of the

RD equations, namely, the excitability, which is apparent from

the nullclines and the flow field in the U–V space, as plotted in

Figure 3.

The important property of the RD equations, Eq. 4, is that

they are of the Grey-Scott type Gray and Scott (1983, 1984). One

of the advantages of the Grey-Scott model is that it can show

either an excitable or a bistable nature depending on the

parameters. Series of studies showed that the signaling

pathway around PIP2-PIP3 reactions is excitable Nishikawa

et al. (2014); Xiong et al. (2010); Huang et al. (2013);

Devreotes et al. (2017); Gerisch et al. (2011, 2012); Gerhardt

et al. (2014), which is also claimed in Taniguchi et al. (2013).

Interestingly, similar RD equations were studied by Shao et al.

Shao et al. (2010) in the context of cell crawling, where they

assumed a bistable regime to reproduce the steady migration of

keratocyte cells.

2.3 Mechanochemical coupling

To combine the cell mechanics, Eq. 1, and the RD equations,

Eq. 4, we consider the coupling of the chemical concentrations to

the actuator elongation ℓ
act
ij (t) and the substrate friction

coefficient ζi(t) individually.

2.3.1 Actuator elongation
First, we introduce the coupling between the RD equations

and the actuator elongation. Higher concentration of

PIP3 enhances actin intensity Taniguchi et al. (2013), which

we assume leads to actuator elongation. Then, we introduce the

dependence of the actuator elongation on the

PIP3 concentration, such that it elongates with

PIP3 concentration as

ℓ
act
ij t( ) � ℓV tanh aVij t( )[ ], (9)

whereVij(t) = (Vi(t) +Vj(t))/2 is the mean PIP3 concentration for

the bond connecting the elements i and j. Although Vi(t) is a

positive quantity, its maximal value depends on the strength of

the initial fluctuation because of the excitable nature of Eq. 4.

Therefore, tanh is introduced on the right hand side of Eq. 9 to

prevent an extremely large elongation. a is a constant denoting

sensitivity, and ℓV is the magnitude of the elongation. Here, we

set a = π and ℓV = ℓij.

2.3.2 Substrate adhesion
Next, we consider the adhesion to the substrate underneath

and the de-adhesion from it. We model the adhesion/de-

adhesion processes by the transition of the substrate friction

coefficient between the adhered stick state and the de-adhered

slip state. Here, we consider the dependence of the substrate

friction coefficient on both mechanical and chemical signals (see

Figure 4A):

τζ
dζ i
dt

� hζ ζ i( ) − Avhv vi( ) − 1 − Av( )hV Vi( ), (10)

where τζ is the time delay. Av takes a value between 0 and 1,

representing the ratio of the mechanical and chemical

dependence of the stick-slip transition of the substrate friction.

The function hζ(ζ) is defined by

hζ ζ( ) � −1
2
tanh

ζ − ζ stick
ϵζ

( ) − 1
2
tanh

ζ − ζ slip
ϵζ

( ). (11)

Here, we assume a rapid transition between the adhered stick

state ζstick and de-adhered slip state ζslip, where the transition

FIGURE 4
(A) Functional forms of hζ(ζ), hv(v), and hV(V), which determine
the substrate friction. Example trajectory of ζ that changes in time
depending (B) only on the velocity v (Av = 1) and (C) only on the
PIP3 concentration V (Av = 0). The parameters are set to the
values given in Table 1.
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sharpness is given by ϵζ. Here, we set as ϵζ = ζslip/2. Note that the

friction coefficient is smaller at the slip state than at the stick

state, ζslip < ζstick.

If we consider an artificial vesicle or droplet sitting on a

substrate, its adhesion strength changes depending on the force

acting on it Schwarz and Safran (2013). The term hv(v) in Eq. 10

represents this dependence of the cell adhesion to the substrate.

Here, instead of the force acting on each subcellular element, we

presume that the local velocity changes the adhesion strength

through

hv v( ) � v/v*( )2
1 + v/v*( )2 −

1
2
, (12)

where v* is the threshold value. The subcellular element tends to

adhere to the substrate (ζ = ζstick) if the speed is smaller than the

threshold value, i.e., v < v*, while the element slips on the

substrate (ζ = ζslip) if v > v*. We set the threshold value to v* = 1.

The formula of the stick-slip transition of the cell-substrate

friction depending on the local velocity, i.e., Eq. 10 with Av = 1,

was introduced in Ref. Barnhart et al. (2015). As a result of the

balance of the two functions, hζ(ζ) and hv(v), the substrate friction

switches between the stick and slip states with a sharp transition.

In addition to the mechanical dependence, the adhesion

strength of a cell can change depending on its internal

chemical conditions Schwarz and Safran (2013). Since the

molecular details of cell adhesion are complicated, we assume

here that it changes depending on the PIP3 concentration as the

actuator elongation:

hV V( ) � 1
2
tanh σV V − V*( )( ). (13)

In Eq. 13, σV stands for the sensitivity, and V* is the threshold

concentration. Due to this term, a large value of V prevents

strong adhesion if σV > 0, while large V enhances the adhesion if

σV < 0. However, we are not sure whether PIP3 enhances or

diminishes adhesion. Therefore, in the next section, we

numerically solve the time-evolution equations for both cases

and see what will happen.

In Figures 4B,C, we show two example trajectories of ζ that

changes depending only on the local velocity v (Figure 4B for

Av = 1) and on the PIP3 concentration V (Figure 4C for Av = 0).

Since both hv(v) and hV(V) take values between [ − 0.5, 0.5] and

since 0 ≤Av ≤ 1, −0.5 ≤Avhv(v) + (1 −Av)hV(V) ≤ 0.5. Then, from

Eq. 10, ζ takes a value between [ζslip, ζstick].

We note that the mechanical dependence of the stick-slip

transition of the substrate friction is consistent with that of usual

materials such as adhesive plastic tapes, which tends to de-adhere

under strong mechanical force or velocity. In contrast, the

chemical cue seems rather characteristic to biological cells,

although to our knowledge the signaling pathway that

regulates the substrate adhesion mediated by the focal

adhesion is yet to be clarified.

2.4 Numerical analysis

To integrate the time-evolution Equations 1, 4 with Eqs

9, 10 numerically, we employ the Euler method with time

increment δt = 10–5. We add the stimulus (δU, δV) =

(−Iexcite, + Iexcite) to Eq. 4 on one of the subcellular

elements, which we call the activator element. We set the

activator element to the rightmost element denoted by the

star in Figure 2A, except in the case of random motion, for

which an activator element is chosen randomly every time

t = 0.15. Since the traveling wave is generated by the stimuli

on the activator element, we excite the activator element

every t = 1.5 so that the wave travels to the other edge of the

cell within that period, and all the subcellular elements

relax back to the resting state when the next wave is

generated. The intensity of the initial stimulus is set to

Iexcite = 0.75.

We note that most of the analyses in the following sections

are performed by using a hexagonal cell shape, depicted in

Figure 2. This is because it enables us to prepare a regular

lattice of subcellular elements and, thus, is free from the

complexity that the inhomogeneity of the position and

connection of the subcellular elements may raise. In order

to see the impact of this choice, we compare the results with

the case of a circular cell shape in Sect. 3.5, which looks more

relevant to realistic cells.

3 Results

3.1 Inhomogeneity of substrate adhesion

We start with considering the role of the inhomogeneity of

the substrate adhesion on cell crawling. From Eq. 1, the centre-

of-mass velocity is calculated as

Vcm � 1
N

∑
i

vi � 1
N

∑
i

1
ζ i t( )f

int
i , (14)

where f inti is defined by Eq. 3. If the substrate adhesion is

homogeneous, ζi(t) = ζ0(t) ≠ 0, Eq. 14 becomes

Vcm � 1
Nζ0 t( ) ∑i f inti � 0. (15)

Here, the force-free condition, Eq. 2, is used at the second

equality. Note that the time dependence of the homogeneous

substrate adhesion does not lead to a finite centre-of-mass

velocity. Note also that the summation in Eq. 15 can be

replaced by the integral over the cell in the continuum

limit without loosing generality. This demonstrates that

spatial translational motion is not achieved without

symmetry breaking of substrate adhesion under the force-

free condition.
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3.2 Sinusoidal traveling chemical wave

The analysis of the two-element case, i.e., dumbbell model in

our previous paper Tarama and Yamamoto (2018) showed that

the coupling between the asymmetric substrate friction and the

actuator elongation affects the crawling efficiency. In fact, there

exists a reciprocating motion where a cell propels in one direction

and moves in the opposite direction for the same distance for the

rest of the period, resulting in no net migration. In this section,

we test if this coupling also changes the crawling motion of a cell

composed of many subcellular elements.

As a simple realization of inhomogeneous substrate

adhesion, we consider a traveling harmonic wave of a single

intracellular chemical component c(t):

ci t( ) � c0 1 − cos ϕi t( )( ), (16)
where the phase changes as

ϕi t( ) � ωt − qw xi − x*( ). (17)

Here c0 is the maximum concentration, which is set to c0 = 0.5 so

that 0 ≤ ci(t) ≤ 1. ω and qw are the frequency and the wavenumber

of the traveling wave, and x* is the x position of the activator

element, from which the traveling wave occurs. The dependence

of the actuator elongation on the intracellular chemical signal Eq.

9 is replaced by

ℓ
act
ij t( ) � ℓc

ci t( ) + cj t( )
2

, (18)

where ℓc represents the magnitude of the elongation. The

dynamics of the substrate friction coefficient ζi(t) is also

replaced by a simple two-state function that switches between

the adhered stick state and the de-adhered slip state:

ζ i t( ) � ζ slip if 2miπ <ϕi t( ) − ψζ ≤ 2mi + 1( )π
ζ stick if 2mi + 1( )π < ϕi t( ) − ψζ ≤ 2 mi + 1( )π{ (19)

wheremi is an integer that satisfies 2miπ < ϕi(t) − ψζ ≤ 2 (mi + 1)π.

ψζ is a phase shift between the asymmetric substrate friction and

the actuator elongation. Since these internal motions, i.e., the

actuator elongation and the stick-slip transition of substrate

friction, are perfectly cyclic, this phase shift controls the

coupling between the asymmetric substrate friction and the

actuator elongation.

We carried out numerical simulations of Eq. 1 together with

Eqs 16–19 with the time increment δt = 10–4. In the simulation,

we choose the element indicated by the star in Figure 2A as the

activator element, and we set qw > 0 so that the wave travels from

FIGURE 5
Cell crawling driven by a prescribed simple wave of intracellular chemical concentration, that is given in the form of a harmonic wave with the
frequency ω = 2π and the wavelength Lw that travels from the rightmost subcellular elements to the left. (A)Migration distance for different values of
thewavelength Lw and the phase shift ψζ. The displacement in one cycle ismeasured after several cycles of relaxation. The sign ofΔR distinguishes the
direction of motion. The positive and negative signs of ΔR correspond to the rightward and leftward motion, respectively. The frequency of the
traveling wave is set to ω= 2π. [(B)–(D)] Time series of crawling cells for qw = π. (B) Rightward motion for ψζ = 5π/9, (C) leftwardmotion for ψζ= 14π/9,
and (D) reciprocatingmotion for ψζ= 4π/90. In panels (B)–(D), the numbers show the time, and the color indicates the distribution of the intracellular
chemical component c(t). The size of the subcellular elements represents the substrate friction; large and small elements correspond to the adhered
stick state and the de-adhered slip state, respectively.
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right to left with the frequency ω = 2π. We let the actuator

elongate twice as long as its equivalent length: ℓc = ℓij. For these

parameters, we vary the wavenumber qw and the phase shift ψζ

and measure the migration distance for one cycle.

Figure 5A shows that the migration distance for one cycle ΔR
alters depending on the phase shift ψζ. The sign of ΔR
distinguishes the migration direction. Positive ΔR represents

rightward motion, whereas negative ΔR corresponds to

leftward motion. Since the wave of the intracellular chemical

concentration ci travels from rightmost subcellular element

toward the left of the cell, the direction of the rightward cell

migration is opposite to that of the traveling wave, as depicted in

Figure 5B. Note that the cell shape at time t = 3T/4 looks like a

flipped version of the cell at t = 0 in Figure 5B. This is because the

phase of the intracellular chemical concentration in Eq. 17 is

defined as a function of the distance with respect to the rightmost

subcellular element and the length of the bonds connecting

subcellular elements changes due to the actuator elongation.

On the other hand, in the case of the leftward migration, the

cell migrates in the same direction as that of the intracellular

traveling wave of ci as shown in Figure 5C. At the phase shift ψζ

where the migration direction switches from the rightward

migration to the leftward motion, reciprocating motion

appears, as depicted in Figure 5D. In reciprocating motion,

the cell migrates in one direction (to the left in the case of

Figure 5D) during some time of the period, and migrates in the

other direction (to the right in Figure 5D) for the same distance

during the rest of the period. Therefore, the reciprocating motion

results in no net migration, and thus, ΔR = 0. Note that the

asymmetry of substrate friction exists even in the cell undergoing

the reciprocating motion. The migration distance ΔR also

depends on the wavenumber qw. There is an optimal qw
around qw = 4π/5 for which the cell can achieve the largest

migration distance.

These results highlight that in addition to the substrate

friction asymmetry, the spatial motion of a cell changes

depending on the phase shift between the force generation

and the formation of asymmetric adhesion, which corresponds

to the time delay in Eq. 10 where the intracellular chemical

reaction is controlled by reaction-diffusion equations.

3.3 Crawling by direct and retrograde
waves

Nowwe consider the situation where the cell mechanics Eq. 1

is driven by intracellular chemical reaction Eq. 4. First, we study

the effect of the sign of σV, by numerically integrating Eqs 1, 4

FIGURE 6
Cell crawling obtained from Eqs 1, 4 with Eqs 9, 10 for different signs of σV: (A) σV = 2π and (B) σV = −2π. The cell for positive σV crawls in the
opposite direction against the traveling chemical wave as shown in panel (A), whereas, for negative σV, it moves in the same direction as the wave as
displayed in panel (B). The other parameters are set to Av = 0 and τζ = 0.01. In both panels, the first column depicts two-dimensional snapshots, and
the second column shows the corresponding values of Vi (by dots with color that also represents the value of Vi, connected by black line) and ζi
(in gray) along the cross-section at y = 0. The position of each subcellular element is plotted by a circle whose size and color indicate the value of ζi
and Vi, respectively. The color of the connecting bonds corresponds to Vij. The number in the bottom left corner of each subplot represents the time.
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with Eqs 9, 10 for both positive and negative σV. Figure 6 depicts a

time series of snapshots of a crawling cell for σV = 2π in Figure 6A

and σV = −2π in Figure 6B, respectively. In both Figures 6A,B, the

first column depicts two-dimensional snapshots, and the second

column shows the corresponding values of Vi (by dots with color

that also represents the value of Vi, connected by black line) and

ζi (in gray) along the cross-section at y = 0. We set the threshold

in Eq. 13 to V* = 0.5 throughout this paper.

If σV is positive, the cell moves in the opposite direction to the

PIP3 traveling wave, as shown in Figure 6A. Interestingly,

however, if the sign of σV is negative, a qualitatively different

result appears: namely, the cell starts to move in the same

direction as the traveling wave, as displayed in Figure 6B.

This difference in the direction of migration can be

understood from the time-series of the values of Vi and ζi
along the cross-section at y = 0 in Figure 6. In the case of

positive σV, the subcellular elements tend to be at the de-adhered

slip state ζslip for high values of Vi, when the actuator tries to

elongate. This leads to the protrusion of cell edge around the

origin of the traveling PIP3 wave, i.e., on the right side of the cell

at the earlier time period (0 ≲ t ≲ 0.24), which is then adhered

strongly to the substrate for the later time period (0.36 ≲ t ≲ 0.6)

when Vi in this region has already returned close to the resting

state (Vi ~ 0). Therefore, in this case, protrusion around the

origin of the wave leads to the cell migration in the opposite

direction to the traveling wave. On the other hand, for negative

σV, the subcellular elements tend to adhere strongly to the

substrate for higher Vi. This makes the actuator elongation at

the earlier time t ~ 0.12 result in an almost symmetric

deformation of the cell along the x axis at y = 0. At the later

time 0.36 ≲ t ≲ 0.48, however the recovery of the

PIP3 concentration Vi to the resting state makes the

subcellular elements de-adhere from the substrate around the

back of the PIP3 wave, which causes the actuator contraction to

bring the right half of the cell towards the PIP3 wave traveling at

the left half of the cell where the subcellular elements adheres

strongly to the substrate. This effective contraction drives the cell

in the same direction as the traveling wave in the case of negative

σV. Note that the actuator elongates for high values of the

PIP3 concentration Vi.

With respect to the migration direction, the traveling wave in

the same direction is called the direct wave, while the one in the

opposite direction is referred to as the retrograde wave. In this sense,

the above crawling motion for positive σV in Figure 6A corresponds

to the motion with the retrograde wave, and the one for σV < 0 in

Figure 6B corresponds to the motion with the direct wave. We note

that the crawling by the direct and retrograde waves are also

reported in the model for adhesive locomotion of gastropods

Iwamoto et al. (2014). Since the experiments in Ref. Taniguchi

et al. (2013) show that cells move in the direction in which

PIP3 concentration is increased and thus actin polymerization is

enhanced, we set σV = 2π for the rest of this paper.

3.4 Mechanical vs chemical control of
adhesion

Now, we study the effect of the mechanical and chemical

dependence of substrate friction coefficient on cell crawling.

In particular, we focus on the following two factors. One is the

time delay τζ controlling the phase shift of the change in the

substrate friction characteristics with respect to the

intracellular chemical wave and, thus, to the intracellular

force generation due to the actuator elongation, which is also

induced by the chemical wave. The other is the parameter Av,

which gives the dependence ratio of the substrate friction ζ on

the local velocity and on the intracellular chemical signal. Av

is varied between Av = 0, corresponding to the case where the

substrate friction is fully controlled by the intracellular

chemical signals, and Av = 1, where the characteristics of

the substrate adhesion changes depending only on the

mechanical load. To characterize the cell migration, we

measure the migration distance ΔR of the cell in one cycle,

i.e., with one traveling wave.

In Figure 7A, we show the dependence on the time delay

for different values of Av as indicated in the legend. In all cases

of Av, the dependence on the time delay appears strongest for

large τζ. In this case, the response of the adhesion

characteristics to the mechanical and chemical signals is so

slow that the actuator elongation induced by the intracellular

chemical wave of V is not well converted to a spatial migration

of the cell. For a small τζ, the impact of the time delay becomes

small. However, in the case of purely mechanically controlled

substrate friction Av = 1, the migration distance decreases for

small τζ, and the migration is most efficient for the

intermediate time delay around τζ = 0.2. In addition, the

migration distance ΔR is always much worse in the case of

AV = 1 than in the case of Av = 0. When Av = 1, the substrate

friction characteristics changes depending only on the local

speed and tends to be at the de-adhered slip state for high

speed. Since this dependence does not distinguish the

expanding and contracting processes, the substrate friction

becomes the de-adhered slip state in both processes.

Therefore, although the actuator elongation drives the cell

front forward, the following actuator contraction moves it

backward, resulting in a worse migration of the cell.

Interestingly, the mixing of the mechanical and chemical

dependences of the substrate friction may result in larger values

of ΔR than purely mechanical or chemical control. In order to

highlight this point, we plot ΔR against Av for τζ = 0.01 and 0.1 in

Figure 7D. The plot in Figure 7D clearly shows the maximum ΔR
at the intermediate Av ~ 0.6. In Figures 7A,D, ΔR/Lcell reaches
approximately 0.36 for Av = 0.6 and τζ = 0.01. This value is

comparable to the measurement of a crawling Dictyostelium cell,

which moves its body length in approximately two cycles

Tanimoto and Sano (2014).
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3.5 Impact of cellular shape

Thus far, we have assumed a hexagonal cell shape, where the

structure of the subcellular elements is given by a perfect

hexagonal lattice when the cell is at rest. However, this

structure does not describe real cells, which are instead

circular or often of more complicated shapes. To elucidate the

impact of the cell shape on the crawling motion, we prepare a cell

of circular shape, where the subcellular elements are connected as

depicted in Figure 8A. The length of the cell was set to Lcell = 1,

and the total number of subcellular elements was set to N = 100.

The total number of bonds connecting the subcellular elements

was then Nbond = 267. We set ℓij of each bond of the circular cell

to the initial element distance, as shown in Figure 8A. Then, the

mean bond length was calculated to be ℓ0 = 0.105724. The other

parameters were kept the same as for hexagonal cells. Figure 8B

shows an example of a time series of circular cell crawling

obtained numerically from Eqs 1, 4 with Eqs 9, 10. Here, the

activator element is set as the one denoted by the star in

Figure 8A, which is then stimulated by (δU, δV) = (−Iexcite, +

Iexcite) with Iexcite = 0.75 every t = 1.5. We then measure the

migration distance for different values of Av and τζ. The results

are plotted in Figures 7B,E, which are qualitatively the same as

those of the hexagonal cell in Figures 7A,D. This means that the

rest shape of the model cell has less impact on the crawling

dynamics.

FIGURE 7
Normalized migration distance ΔR/Lcell (A–C) against the time delay τζ and (D–F) against Av for (A,D) a hexagonal cell (Lcell = 1), (B,E) a circular
cell (Lcell = 1), and (C,F) a large hexagonal cell (Lcell = 1.4). In the panels (A–C), the results for several values of Av are plotted by different lines, whereas
the dependence on Av is shown for τζ = 0.01 and 0.1 in the panels (D–F).

FIGURE 8
Cell with a circular shape. (A)Circular cell at rest. Subcellular elements plotted asmagenta circles are connected by viscoelastic bonds indicated
by blue lines. The details of the bond are the same as in Figure 2B. (B) Time series of crawling circular cells for Av=0.6, v* = 1, V* = 0.5, and τζ= 0.01. In
each subplot in panel (B), the number in the bottom left corner shows the time, and the color indicates the value of V(t). The size of each subcellular
element represents the value of the substrate friction coefficient.
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3.6 Impact of cell size

Now, we study the impact of the size of the cell. We prepare

a hexagonal cell of size Lcell = 1.4, which is approximately twice

the area of the previous hexagonal cells. We again measure the

migration distance ΔR, which is normalized by the cell length

Lcell to facilitate comparison with the previous results for

Lcell = 1.

The results are summarized in Figures 7C,F. Qualitatively,

the tendency is the same as that of the results in Figures 7A,D for

Lcell = 1. Namely, the migration distance can be larger if the

substrate friction depends both on the mechanical and chemical

signals than if it depends on only either one of them.

3.7 Random excitation

In reality, cells change their migration direction over time. In

our model, we can reproduce such motion by introducing

intracellular stochasticity, which may originate from, e.g., the

complexity of intracellular chemical reaction processes. Here, we

randomly choose one element in every t = 0.15 and add to that

element the stimulus (δU, δV) = (−Iexcite, + Iexcite) with intensity

Iexcite = 0.75.

The results are summarized in Figure 9. In Figures 9A,B, the

parameter values are kept the same as in Figure 6A. Due to the

stochasticity, however, the cell changes its migration direction

frequently, as shown in the trajectory of the center-of-mass

position in Figure 9A. From the snapshots of the cell in

Figure 9B, we see that the migration direction depends on the

position at which the chemical wave occurs. Because of the

excitable nature of the RD equations, a stimulus on the

element that has relaxed back to the resting state is more

likely to be the origin of the next wave. Therefore, in

principle, a new wave tends to originate from the elements

that are near the origin of the previous wave.

To quantify the persistence of the migration direction, we

measure the mean-square displacement (MSD), which is defined

by 〈(X cm(t0 + t) −X cm(t0))2〉, where X cm is the center-of-

mass position of the cell and 〈x (t0)〉 represents the time

average of x (t0), i.e., the average of x (t0) over time t0. The

results are displayed in Figure 9E. It shows a crossover from

ballistic (∝ t2) to diffusive regimes (∝ t1) at around t ~ 1. In fact,

the velocity autocorrelation function (VAC) defined by

〈 ~Vcm(t0 + t) · ~Vcm(t0)〉 for the direction of the center-of-mass

velocity ~Vcm� Vcm/|Vcm|, almost vanishes at this time scale, as

shown in Figure 9F. If we compare this result with the

experimental measurement in Ref. Li et al. (2008), which

FIGURE 9
Cell crawling with randomly-chosen activator element for (A,B) KK = 5 and (C,D) KK= 5.5. (E)Mean-square displacement (MSD) and (F) velocity-
autocorrelation function (VAC) for KK = 5 and 5.5. In panels (A) and (C), the trajectory of the center-of-mass position is plotted, where the gray circles
indicate the initial position at t = 0, and the red triangles represent the position at every time interval of 10. The orange squares are the final position at
time 40. (B,D) Time series of snapshots, (B) where the crawling direction of the cell changes and (D) where the cell undergoes a spinning
motion. The numbers at the left bottom corners of the subplots in panels (B) and (D) show the time. The other parameters are the same as in Table 3.
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reported a persistent time of tp = 8.8 ± 0.1 min, the value that our

model reproduced is slightly smaller. We think this originates

from the fact that our model cell lacks explicit polarity that

memorizes the direction of migration.

If the parameter KK in the reaction term of Eq. 5 is slightly

increased from 5 to 5.5, the cell changes its migration direction

more frequently, as depicted in Figure 9C. Depending on the

random stimuli, the cell switches from directional motion to

spinning motion as a spiral wave appears, as shown in Figure 9D.

The spinning motion is rather stable, but the cell can also switch

back to directional motion in response to a stimulus. Note that

the RD equations maintain their excitable nature at this

parameter value. In this case, the MSD shows a subdiffusive

feature, where the MSD increases with the slop slightly smaller

than t1 for long time intervals, as shown in Figure 9E. This is

probably because of the existence of the spinning motion that

occurs from time to time. The spinning motion also leads to an

oscillatory damping behaviour of the VAC, as plotted in

Figure 9E.

3.8 Traction force multipoles

In many experiments, traction force that crawling cells

exert on the substrate is measured Style et al. (2014) because

of its fundamental importance for cell motility. The traction

force results from the interaction between the cell and the

substrate: f tractioni � ζ i(t)vi. Since we are interested in cellular

scale dynamics, we calculate the traction force multipoles,

which was also measured experimentally Tanimoto and

Sano (2014).

First, the traction force monopole is defined by

M 1( )
α � ∑

i

f tractioni,α , (20)

FIGURE 10
Traction force multipole of the randomly crawling cells in Figure 9. (A,B) Times series of each component of traction force monopole (M(1)

1 and
M(1)

2 ) and the diagonal (M(2)
11 andM(2)

22 ) and off-diagonal components (M(2)
12 andM(2)

21 ) of the traction force dipole, and the two eigenvalues of the force
dipole tensor (λ(2)1 and λ(2)2 ) and the torque (T), as well as the angle of the velocity (φv) and the two eigenvectors of the traction force dipole (θ1 and θ2).
(C,D) Time evolution of traction force dipoleM(2)

11 and quadrupoleM(3)
111 . The color indicates the time. The data in panels (A,C) are for the cell in

Figure 9A, whereas those in panels (B,D) are for the cell in Figure 9B. Note that the axis of theM(2)
11 is inverted, to match the plot in Ref. Tanimoto and

Sano (2014) in panels (C,D).
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where i represents the subcellular element i and the

summation runs over the entire cell. The subscript α

indicates spatial component α = 1, 2, corresponding to x

and y coordinates. Here, to compare with the experimental

results in Ref. Tanimoto and Sano (2014), the traction force

multipoles are calculated in the comoving coordinate on the

cell, and thus, α = 1 and 2 represent the components parallel

and perpendicular to the instantaneous center-of-mass

velocity, respectively. In the numerical simulation of the

model crawling cell, the traction force monopole is equal

to 0, as shown in Figure 10, which is consistent with the

experimental result Tanimoto and Sano (2014). This is

readily understood from the force balance equation, Eq. 1,

and the force-free condition, Eq. 2. That is, the traction force

monopole vanishes because of the fact that the inertia is

negligibly small for crawling cells on top of the force-free

condition. Given that the force-free condition is a

requirement for the intracellular force generation, we can

understand that the vanishing force monopole obtained from

the analysis of the experiment Tanimoto and Sano (2014)

indicates the fact that the inertia is negligibly small for the

crawling cell.

The next lowest mode is the traction force dipole, the element

of which is defined by

M 2( )
αβ � ∑

i

ri,αf
traction
i,β . (21)

On the one hand, from Figures 10A,B, the diagonal components

of the traction force dipole are oscillating around 0. Here, note

that the positive and negative force dipoles represent the extensile

and contractile force dipoles, respectively. In the experiment

Tanimoto and Sano (2014), only the contractile traction force

dipole was observed, which our results fail to reproduce. The

reason why our model does not reproduce the contractile force

dipole is not clear yet. One possibility is that the friction

coefficient of the protrusion process may be different from

that of the contraction process, which are set to the same in

our current model.

On the other hand, the off-diagonal components M(2)
12 and

M(2)
21 take the same values, indicating that the traction force

dipole is symmetric, although such symmetry is not presumed in

its definition, Eq. 21. Such symmetric property of the traction

force dipole was also obtained in the experiment Tanimoto and

Sano (2014).

Now, we consider the meaning of the symmetric property of

the traction force dipole that is obtained in our simulation as well

as in the experiment. Actually, this symmetric property of the

traction force dipole indicates the torque-free nature of the cell.

Here, the torque is defined by

T � ∑
i

ri × f tractioni , (22)

which, in a two dimensional space, becomes

T � ∑
i

ri,1f
traction
i,2 − ri,2f

traction
i,1( ) � M 2( )

12 −M 2( )
21 (23)

by using Eq. 21. Note that, if one describes the force dipole tensor

with its invariants as in the fourth panels in Figures 10A,B, the

torque appears as the imaginary part of the eigenvalues. Here, the

trajectories of the two eigenvalues λ1 and λ2 of the traction force

dipole look identical to those of M(2)
11 and M(2)

22 , in particular in

Figure 10A. This is because the direction θ1 of the eigenvector of

M(2) is basically in the same direction as the center-of-mass

velocity (φv) as shown in the last panel of Figure 10A. Here the

eigenvalue λ1 is selected such that the direction of the

corresponding eigenvector (θ1) is closer to φv than that of the

other eigenvalue λ2. We emphasize that the torque-free property

of the traction force is satisfied even by the spinning cell, as

plotted in Figure 10B. In this case, the deviation of the angle θ1 of

the eigenvector corresponding to λ1 from the angle φv of the

center-of-mass velocity is larger as plotted in Figure 10B,

resulting in the larger deviation of the trajectories of λ1 and λ2
from those of M(2)

11 and M(2)
22 .

Finally, in Figure 10C, we plot the time evolution of the

traction force dipole M(2)
11 and the traction force quadrupole

M(3)
111, which is compared with the measurement in the

experiment Tanimoto and Sano (2014). Here the traction

force quadrupole is defined by

M 3( )
αβγ � ∑

i

ri,αri,βf
traction
i,γ . (24)

Interestingly, the trajectory in M(2)
11 -M

(3)
111 space shows a

counterclockwise rotation, which is qualitatively consistent

with the experimental results Tanimoto and Sano (2014). For

the spinning cell, this counter-clockwise rotation is not clear in

Figure 10D because it shows more rapid change in the magnitude

of the traction force multipoles. Note that in the corresponding

plot in Ref. Tanimoto and Sano (2014) the axis of the force dipole

is inverted to highlight the magnitude of contraction. We

followed this in Figures 10C,D where the axis of M(2)
11 is

inverted, to make the comparison easy.

4 Summary and discussion

To summarize, we investigate how intracellular chemical

reactions can drive the spatial migration of a crawling cell by

controling periodic extension and contraction of cytoskeleton

under the force- and torque-free conditions as well as the

substrate adhesion dynamics. To this end, we constructed a

mechanochemical model of a cell crawling on a substrate

based on the typical mechanism of cell crawling sketched in

Figure 1. The mechanical part is described by a subcellular-

element model, where we extend our previous model Tarama and

Yamamoto (2018), and the chemical part is described by RD

equations proposed by Taniguchi et al. (2013). To combine them,
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we introduce two mechanical activities. One is the actuator

elongation, which depends on the intracellular chemical

concentration. The other is the substrate friction, which shows

a sharp transition between the adhered stick state and the de-

adhered slip state depending on the intracellular chemical

concentration in addition to the local velocity. We also

introduce a time delay of the substrate friction change.

Although we assumed a simple function form of the substrate

friction dynamics and its dependence on the local velocity and

intracellular chemical concentration, we believe that this time

delay can be measured experimentally.

By using this model, we demonstrated that the substrate

adhesion dynamics affect how the intracellular force leads to

crawling motion under the force- and torque-free conditions.

Both the substrate adhesion and intracellular force generation are

controlled by the traveling wave of intracellular chemical

reactions on the cellular scale. Depending on the sign of the

sensitivity of the substrate friction coefficient to the intracellular

chemical concentration, the model cell exhibited crawling with

the retrograde flow or with the direct flow. In the former case, our

model showed that there is an optimum time delay and that the

combined effect of the mechanical and chemical signals on the

substrate friction coefficient can increase the migration distance.

We also investigated the impact of the cell shape and the cell size,

which led to qualitatively the same results. In addition, by

introducing stochasticity in the RD equations, the cell changes

its migration direction and even switches its dynamical mode

from translational motion to spinning motion. Further, we

performed multipole analysis of the substrate traction force,

which was qualitatively consistent with the experimental

results except the contractile nature of the traction force dipole.

The persistence time of the cell crawling in our current

model is slightly smaller than the experimental observation Li

et al. (2008). The origin of the persistence in our current model

is the excitable nature of the RD equations. That is, the

intracellular chemical wave is triggered by a stimulus on the

elements that is close to the resting state. Therefore, a new wave

tends to occur from the region close to the origin of the previous

wave, where the chemical signals have more chance to relax

back to the resting state than the other part of the cell. This

explains why our model cell cannot be persistent over too many

wave cycles. Real cells, however, often establish a rather stable

polarity, which allows the cells to migrate more persistently.

This polarity can be modelled by bistable chemical reactions. In

fact, recent experimental studies shed light on the coupling of

the excitable chemical signaling pathways and the bistable

chemical reactions, representing polarity Fukushima et al.

(2019); Flemming et al. (2020). Therefore, it is important to

include polarity to the model and study how it changes the

relation among the intracellular chemical reactions and the

force- and torque-free intracellular mechanics and the spatial

migration of cells to realize a persistent crawling migration. We

will come to this point in near future.

Finally, we discuss other possible extensions of our current

model.

Contraction process: In our current model, the protrusion and

contraction processes are both modeled by the actuator

elongation, ℓ
act
ij (t), of the bond connecting two subcellular

elements. The two processes are distinguished by the sign of

ℓ
act
ij (t). In this paper, however, we consider only the protrusion

process, i.e., ℓ
act
ij (t)≥ 0, which is related to the

PIP3 concentration. One reason of this is that the chemical

reactions that regulate contraction process are not well

understood yet. Therefore, in principle, we can also consider

the contraction process by introducing dependence on relevant

chemical concentrations.

Adhesion dynamics: The cell adhesion is simply modeled by

the switching of the substrate friction coefficient of each

subcellular element in our model. However, in real cells,

adhesion is mediated by adhesion molecules, which can

diffuse and form focal adhesions. To represent these processes

of adhesion molecules, we should extend our current model to

include more detailed dynamics of the concentration of adhesion

molecules and their diffusion to other subcellular elements. Then,

we can discuss realistic structures such as the footstep-like focal

adhesion observed for Dictyostelium cells Tanimoto and Sano

(2014).

Shape deformation: Our model cell shows a lateral

expansion with respect to the crawling direction, as shown

in Figure 6A. However, real cells, e.g., Dictyostelium cells,

tend to elongate in the direction of motion Maeda et al.

(2008); Bosgraaf and Van Haastert (2009). One possible

reason that our current model fails to reproduce this

elongated shape is that actuator elongation depends only

on the absolute value of Vi. Therefore, this inconsistency

may be resolved by, e.g., introducing dependence on the

gradient of Vi.In addition, the network of the subcellular

elements is permanent in our current model. However, it is

interesting to see what will happen by including the

reconnection of the subcellular elements that evolves with

the dynamics of the subcellular elements. With this

extension, we expect more complicated deformation of the

cell shape, which may look more realistic.

Three dimensions: In this paper, we modeled a cell as a two-

dimensional network of viscoelastic springs by assuming

crawling on a flat substrate. In reality, however, cells are three

dimensional object. The extension of our current model to three

dimensions is straightforward.

In conclusion, the modeling of crawling cells is still a

challenging task because of the complexity in intracellular

processes and of the variety of the cell crawling mechanism. By

focusing on the mechanism how intracellular chemical

reactions control the periodic extension and contraction of

intracellular cytoskeleton to achieve a net directional

migration under the force- and torque-free conditions

(Figure 1), we demonstrated that the symmetry breaking
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due to inhomogeneous substrate adhesion and its time delay

are of fundamental importance. In real cells, there are a huge

variety of intracellular chemical reactions, and often they are

related to each other. Nevertheless, we believe that this study

can provide a basic framework to understand the synergetic

mechanism of intracellular chemical reactions to realize

effective migration of complex real cells by controlling the

extension and contraction of cytoskeleton under the force-

and torque-free conditions.
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