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Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and repair,

secreting vesicles to the extracellular environment. Isolated exosomes were

shown to affect angiogenesis, immunomodulation and tissue regeneration.

Numerous efforts have been dedicated to describe the mechanism of action of

these extracellular vesicles (EVs) andguarantee their safety, since the final aim is their

therapeutic application in the clinic. The major advantage of applying MSC-derived

EVs is their lowor inexistent immunogenicity, prompting their use as drugdelivery or

therapeutic agents, as well as wound healing, different cancer types, and

inflammatory processes in the neurological and cardiovascular systems. MSC-

derived EVs display no vascular obstruction effects or apparent adverse effects.

Their nano-size ensures their passage through the blood–brain barrier,

demonstrating no cytotoxic or immunogenic effects. Several in vitro tests have

been conducted with EVs obtained from different sources to understand their

biology, molecular content, signaling pathways, and mechanisms of action.

Application of EVs to human therapies has recently become a reality, with

clinical trials being conducted to treat Alzheimer’s disease, retina degeneration,

andCOVID-19 patients. Herein, we describe and compare the different extracellular

vesicles isolation methods and therapeutic applications regarding the tissue repair

and regeneration process, presenting the latest clinical trial reports.
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Background

Regenerative medicine has faced great challenges in the search

for alternatives to ensure an effective treatment to accelerate the

tissue regeneration process without altering its phases, especially for

wound healing, in clinical, morphophysiological, and molecular

environments (Lin et al., 2011; Choi et al., 2012; Waycaster et al.,

2016). Instead of whole organ/tissue transplantation, a novel

approach is cell therapy characterized by the use of cells with

immunomodulatory properties as treatment. In order to do that,

Mesenchymal/stromal stem cells have been used as an important

resource for cell therapy being widely described for several

applications, such as the treatment of wounds and ulcers of

Diabetes mellitus (Cao et al., 2017; Di et al., 2017) and

regeneration of several tissue types (Brett et al., 2017;

Thangarajah et al., 2017), as an alternative for cancer treatment,

and in studies of cancer biology (Gomes et al., 2017; Yao et al., 2017).

Despite the accumulated knowledge about stem cell therapeutic

applications, several mechanisms involved in the regenerative

process have been unclear for a long time. Currently, some light

has been shed on this problem, bringing attention to the extracellular

components released by these cells. The discovery of extracellular

vesicles (EVs) raised the question of whether these components

would be the actual effectors responsible for MSC-mediated cell

therapy (Akyurekli et al., 2015).

This recent finding drew the attention of the scientific

community with several questions emerging: 1) what are

these vesicles released by MSCs?; 2) what are the mechanisms

of release of these vesicles?; 3) what are the characteristics of

these vesicles and the molecular components of their

content; and 4) what are the possible mechanisms of

action of these secreted molecules and their therapeutic

potential, among several other questions regarding EVs

(Pankajakshan and Agrawal, 2014; Marote et al., 2016;

Derkus et al., 2017).

EVs were first described in the 1980s as vesicles of endosomal

origin, which were observed to be released during the maturation

of reticulocytes, as a consequence of multi-vesicular endosome

fusion to the plasma membrane (Johnstone et al., 1987). Recent

studies report EVs as active participants in biological,

regenerative, inflammatory, and pathological processes (De

Toro et al., 2015; Wang B et al., 2019). Their molecular

content has been the subject of investigation seeking to

uncover the basis for their efficacy in several therapies. It is

suggested that EVs play a fundamental role in intercellular

communication, acting as bioindicators (An et al., 2015) or

therapeutic agents, in addition to promoting a better

understanding of pre-existent cell therapy (Phinney and

Pittenger, 2017). Therefore, this review aims to highlight the

most recent studies on EVs derived from different types of MSCs,
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discussing the different methodological approaches for their

isolation and use in tissue regeneration processes.

Mesenchymal/stromal cells

Mesenchymal/stromal stem cells (MSCs) are multipotent

non-hematopoietic stem cells, which are natural residents of

adult tissues (Figure 1) and are involved in tissue homeostasis

and recovery from injuries (Dominici et al., 2006; Katsuda and

Ochiya, 2015). These cells can be obtained from many sources,

such as the umbilical cord, peripheral blood, dental tissue, and

liver. However, the most common and best characterized have

been bone marrow and adipose tissue (Wang et al., 2020).

According to Dominici et al. (2006) and the International

Society for Stem Cell Therapy (ISSCR), MSCs are

characterized by three main criteria: a) plastic adherence; b)

expression of CD105, CD73, and CD90 and non-expression of

CD45, CD34, CD14, CD19, and HLA class II; and c)

differentiation into osteoblasts, chondroblasts, and adipocytes.

Their principal mechanism of action is through

immunomodulation of innate and adaptative immune

response interacting with T cells, B cells, natural killer (NK)

cells, macrophages, and dendritic cells and by paracrine activity

via secretome (Song N et al., 2021). Also, immune suppression of

MSCs is influenced by the balance of their own secretion with the

systemic and local environment inflammatory cytokines

(Ankrum et al., 2014). Due to their immune tolerance,

application of allogeneic or autologous MSCs has been

widespread in clinical trials (Samsonraj et al., 2017). Together

with the ability of MSCs to differentiate into other cell types ex

vivo, much evidence is available on their therapeutic potential

(Toh et al., 2016).

The ability to secrete soluble factors exerting paracrine

activity in the microenvironment exemplifies the beneficial

effects of MSCs in tissue repair and regeneration (Abreu et al.,

2016). Among the mediators released by their secretome are

cytokines, microRNAs (miRNA), growth factors, and EVs

(Raposo and Stoorvogel, 2013).

MSCs have already been used in different lung diseases,

cardiovascular repair, cancer treatment, immunological

disease, spinal cord injury, and bone and cartilage

replacement. Recent clinical trial application of these cells can

be found in Table 3.

FIGURE 1
Mesenchymal stem cells (MSCs) could be isolated from adipose tissue, bone marrow, and different joints (especially to obtain chondrocytes).
After the isolationmethod, they should be able to differentiate into adipocytes, osteoblasts, and chondrocytes. Several characteristics draw attention
to studies with MSCs, but themost attractive is their self-renewal potential, as well as other types of stem cells, and the presence of a secretome with
different molecules such as cytokines, growth factors, and extracellular vesicles. Image created on BioRender.
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TABLE 1 Different sources used to isolate EVs, methods of isolation, and effectiveness of each project.

Source of EVs Application/purpose Method of EVs
isolation

Quantity of EVs
used/obtained*

Effectiveness/results References

Human plasma Develop a single-step
protocol to isolate EVs from

plasma aiming at less
contamination by proteins

and high-density
lipoproteins (HDL)

Size-exclusion
chromatography (SEC) with
Sepharose CL-2B column

1.5 ml of platelet-free
plasma was collected in
26 fractions of 0.5 ml.

Fractions 9–12 presented
the highest concentrations
of particles (46%) and 4 μg
EV protein (Western blot)

With this method, there is
no risk of protein complex
formation, being fast and
inexpensive, with the

recovery of vesicles with
Sepharose CL-2B SEC being
43%, compared to 2%–80%

by ultracentrifugation.
Display good vesicle
recovery with almost
complete removal of

contaminants

Böing et al.
(2014)

Visceral adipose tissue Evaluate how a high-fat diet
influences colitis through
exosomes derived from

visceral adipose tissue. This
work also isolated exosomes

from the liver, skeletal
muscle, and subcutaneous

adipose tissue

Ultracentrifugation and
ExoQuick Kit

Tissues with less than 1 cm3

cultured for 24 h in a
serum-free medium.
Recovery not specified

A high-fat diet changed
miRNA-exosome profile
switching from an anti-
inflammatory to a pro-
inflammatory phenotype,

increasing intestinal
inflammation via
M1 macrophage

Wei M et al.
(2020)

Human and rat plasma Compare the efficiency of
SEC and ultracentrifugation
to isolate exosomes with
minimum content of

albumin as contaminant

size exclusion
chromatography (SEC)

versus
ultracentrifugation (UC)

UC: 7 ml twofold diluted
plasma SEC: 0.5 ml of

filtered platelet-free plasma
was diluted and loaded with

10 ml of bed volume
(results presented by

Western blot)

SEC is more suitable than
UC for the exos isolation

from blood without
significant albumin

contamination, but the
efficiency needs to be

improved

Baranyai et al.
(2015)

Conditioned medium
(CM) from mouse
neuroblastoma and

myoblast cells (N2a and
C2C12 lines)

Evaluated a novel liquid
chromatography technique
for EV purification: using
core bead chromatography

Bind-elute (BE) size-
exclusion

chromatography (SEC)

20 ml of filtered
conditioned medium

supernatant recovery about
80% with values equal to
(N2a) 1.17 × 1010 P/ml and
(C2C12) 1.32 × 1010 P/ml

BE-SEC columns can purify
EVs in a reliable and scalable
fashion with yields ranging
from 70% to 80%, purity

comparable to UC, and it is a
fast procedure (85–150 min)

Corso et al.
(2017)

CM of breast cancer
MCF7 and MDA-MB-

231 line

Use ultrafiltration/
diafiltration for the

purification of exosomes
from the CM cell lysate with
3 kDa or 100 kDa Amicon®
Pro device Purification

+ TEI

Ultrafiltration-based
method

— Higher protein
concentration and higher

relative absorbance units for
lipids in the 3-kDa or 10-
kDa membrane indicated
that this device was a better
choice for exosome sample

preparation

Gutierrez et al.
(2013)

Porcine milk Evaluated whether porcine
milk-derived exosomes
could attenuate PLS-
induced intestinal epithelial
inflammation by
downregulating
inflammatory and apoptosis
pathways via miRNAs

Ultracentrifugation ~50 ml fresh porcine milk Porcine milk-derived
exosomes appear to protect
the intestine from LPS-
induced injury by decreasing
inflammation and apoptosis
through the inhibition of the
NF-ĸβ and p53 pathways

Xie et al. (2019)

Exosome recovery was not
specified

Urine EVs Propose a nanowire-based
methodology for collecting
urine EV-encapsulated
miRNAs that unveils
massive numbers of urinary
miRNAs of different
sequences that potentially
serve as biomarkers for
cancer not only for urologic
but also for non-urologic
malignancies

Nanowires anchored into a
microfluidic substrate

1 ml urine The device could achieve
higher efficiency for in situ
extraction of urine EV-
encapsulated miRNAs
compared to the most
popular conventional
method of ultra-
centrifugation. Could
extract a much larger variety
of species of miRNAs
despite the smaller volume
and could find cancer-
related miRNAs from urine
samples of just 1 ml for not
only urologic malignancies
but also non-urologic ones

Yasui et al.
(2017)

Collection efficiency (small
RNA yield)

0.194 ± 0.028 ng/ml

Extraction species of
urinary miRNAs being

identified

749, 822, 1,111 (n = 3)

(Continued on following page)
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TABLE 1 (Continued) Different sources used to isolate EVs, methods of isolation, and effectiveness of each project.

Source of EVs Application/purpose Method of EVs
isolation

Quantity of EVs
used/obtained*

Effectiveness/results References

Human blood serum Evaluation of six different
kit isolation methods

ExoQuick, ExoEasy,
Exospin, ME kit, ExoQuick

Plus, ExoFlow

The serum volume follows
the manufacturer’s

instructions but varies from
250 μL to 4,000 μl. The
exosome concentration,

also, varies: 44 × 1013 P/L;
18 × 1013 P/L; 64 × 1013 P/L;
0,13 × 1013 P/L; 59 × 1013 P/
L; 10 × 1013 P/L (values
ordered as in column of

Methods)

Regarding particle counts,
Exo-spin, exoEasy, and

ExoQuick isolated similar
values, on the contrary,

exoEasy and ExoQuick Plus
presented the highest purity

levels. An important
observation raised was that
depending on the KIT

chosen, the molecules and
their respective

concentration could vary

Macías et al.
(2019)

Human-breast milk Analyze the potential
protective effect of human-
breast milk exosomes from
oxidative stress in intestinal

epithelial cells

Ultracentrifugation Initial volume not specified.
Recovery of 3–9 × 108

particles/ml

Breast milk exosomes seem
to protect against cell

toxicity induced by H2O2

with their own cargo. Also,
humanmilk exosomes could
be used in neonates with

intestine injury

Martin et al.
(2018)

M2-macrophage Investigate the roles of M2-
macrophage-derived
exosomes in vascular

smooth muscle cell (VSMC)
differentiation, including
the mechanisms after stent

implantation

Ultracentrifugation Not specified M2-macrophage-derived
exosomes promote re-

endothelization and VSMC
differentiation via the
MAPK (AP-1) pathway

Yan et al. (2020)

Wistar rats’ blood
plasma

Investigate the effectiveness
of UC and SEC methods of
exosome isolation

Ultracentrifugation (UC)
and Size Exclusion
Chromatography (SEC)
with Sepharose CL-4B,
Sepharose 2B, and Sephacryl
S-400

Ultracentrifugation SEC is more suitable than
UC, especially due their low
albumin contamination.
However, SEC efficiency
should be improved

Baranyai et al.
(2015)

7 ml of plasma

Recovery not specified

Size exclusion
chromatography (SEC)

0.5 ml of filtered plasma

Recovery not specified

Human blood plasma
and cell culture medium

Characterize and compare
extracellular vesicles
isolated from plasma and
cell culture medium using
SEC, polyethylene glycol
(PEG), and protein organic
solvent precipitation
(PROSPR)

SEC PEG PROSPR Size exclusion
chromatography (SEC)

Comparing all three
methods, the SEC protocol
was the most efficient and
most capable of removing
most protein contamination
and maintaining the
vesicular structure and
conformation of
extracellular vesicles

Gámez-Valero
et al. (2016)

2 ml of filtered plasma

Recovery not specified

Polyethylene glycol (PEG)

2 ml of plasma in 50%
PEG6000 (final

concentration: 10%)

Recovery not specified

Protein organic solvent
precipitation (PROSPR)

2 ml of plasma

Recovery not specified
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TABLE 2 Different kinds of MSCs used to isolate sEVs with different applications with details of the sEV isolation method and results of each work.

MSCs source
of EVs

Application/purpose Method of EVs
isolation

Quantity of EVs
obtained/applied

Effectiveness/results References

Human Umbilical Cord
MSCs (hucMSCs-exos)

The study explored the
functional roles of uMSC

exosomal microRNAs (miR-
21/miR-23a/miR-125b/miR-
145) in the process of skin
wound healing, especially
regarding myofibroblast

formation

Ultracentrifugation Yield obtained Exosomal miRNAs studied
seem to play roles in

suppressing myofibroblast
formation, which is closely
involved with excessive
scarring, by inhibiting

a-smooth muscle actin and
collagen deposition. Both

processes are associated with
the activation of the

transforming growth factor-β/
SMAD2 signaling

Fang et al.
(2016)

Not specified

Treatment

100 μg/ml uMSC-exo +
10 mg/ml hydrogel (ratio

1:1)

3D-exosomes derived
from human umbilical

cord MSCs

Evaluated 3D culture system
aiming to produce MSCs

continuously and efficiently
and to compare the efficacy of

3D MSCs-exos with
conventional 2D culture in a
murine model of cisplatin-

induced acute kidney
injury (AKI)

Ultracentrifugation +
filtration

Yield obtained (protein) Exosome production in 3D
systems improved the
efficiency of exosome

collection. Also, 3D-exos show
stronger renoprotection

attenuating AKI conditions

Cao et al.
(2020)

2D—0.42 mg

3D—8.15 mg

Treatment

2 × 105 incubated with
15 μg of exosomes (2D

or 3D)

Human umbilical cord
MSCs (hucMSCs-exos)

Comprehend the role of
hucMSCs -exos in wound
healing using deep second-
degree burn injury evaluating
especially β-catenin signaling

Sucrose gradient +
ultracentrifugation

Yield obtained not
specified

Increase in wound closure by
delivering Wnt4 to activate
Wnt/b-catenin in skin cells
and inhibition of acute heat
stress-induced skin cell

apoptosis via activation of
AKT pathways increased the

survival of skin cells

Zhang et al.
(2015a)

Treatment

200 µg (160 μg/ml)

Human umbilical cord
blood-MSC

(HUCB-MSC)

Observe the expression and
role of DMT1 in acute

myocardial infarction (AMI)
model exploring if HUCD-
MSC exosomes inhibited
ferroptosis via miR23a-3p/
DMP1 axis to attenuate

myocardial injury

Total exosome
isolation (TEI)

Yield obtained not
specified

Initially, it was shown that
DMT1 was upregulated at

24 h after the establishment of
an in vivo AMI model

increasing cell ferroptosis.
Also, HUCB-MSC exos

suppress the ferroptosis of
cardiomyocyte mediating
myocardial repair in AMI
mice via delivering miR-

23a-3p

Song Y et al.
(2021)

Treatment

5 μg in 20 μl of PBS

Human placenta
(38 weeks) MSCs (Pla-

MSC-exos)

Evaluate angiogenesis
promotion by Exosomes

in vitro and in vivo

Ultracentrifugation Yield obtained 5.8 ×
1011–7.6 × 1011 particles/

106 cells

Enhanced angiogenesis
in vitro and in amurine auricle
ischemia model, suggesting
that exosomes play a role in
the pro-angiogenic activity of

Pla-MSCs

Komaki et al.
(2017)

Treatment

50 μl day

Human exfoliated
deciduous teeth MSCs

(SHED-exos)

Explore the potential of stem
cells from human SHED-exos

for the management of
traumatic brain injury (TBI)

in rats

ExoQuick Yield obtained not
specified

Improvement in rat motor
functional recovery and

reduction of
neuroinflammation after TBI
by shifting microglia M1/

M2 polarization

Li Y et al.
(2017)

Treatment

50, 100, 200, and
400 μg/ml

Human adipose MSCs
(ADSCs-exos)

Elucidate whether A-MSC-
exos might induce

neovascularization and
protect skin flaps during
ischemia/reperfusion (I/R)

injury

ExoQuick-TC Yield obtained (protein) Significantly increased flap
survival and capillary density,

ADSC-exos increased
angiogenesis and enhanced

recovery from I/R injury in the
long thoracic artery pattern of
skin flaps in mice via IL-6

secretion

Pu et al. (2017)

2.1 mg/ml (from 1 ×
106 cells)

Treatment

100 μg/ml

(Continued on following page)
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TABLE 2 (Continued) Different kinds of MSCs used to isolate sEVs with different applications with details of the sEV isolationmethod and results of each work.

MSCs source
of EVs

Application/purpose Method of EVs
isolation

Quantity of EVs
obtained/applied

Effectiveness/results References

Adipose tissue-derived
MSCs

Evaluate whether MSC-
derived exosomes could act as
carriers of miR-199a-3p to
enhance hepatocellular
carcinoma (HCC)
chemosensitivity

MagCapture exosome
isolation kit (WAKO)

Yield obtained not
specified

Apparently, miR-199a-3p-
modified AMSC-exos can
effectively increase the

sensitivity of HCC cells to
chemotherapeutic agents

Lou et al.
(2020)

Treatment

50 μg total protein in
200 μl of PBS

Human synovial MSCs
(SMSCs-exos)

Generate SMSCs-exos with
miR-140-5p and evaluate
their effectiveness in

osteoarthritis (OA) therapy
and prevention in the rat

model

Ultrafiltration + sucrose
gradient +

ultracentrifugation

Yield obtained not
specified

SMSC-140-exos were able to
promote chondrocyte

proliferation and migration
with less influence on the
secretion of extracellular

matrix (ECM) and
successfully prevented OA in a

rat model

Tao et al.
(2017b)

Treatment (in vitro)

0, 1, 5, or 10 × 1011

particles/ml (in vivo)
100 μl (1011 particles/ml)

Human induced
pluripotent stem cell-
MSCs (hiPSC-MSCs-
exos)

To evaluate the therapeutic
effects of hiPSC-MSCs-exos
on hepatic ischemia-
reperfusion (I/R) injury
in vitro and in a murine
model

Differential centrifugation +
ExoQuick

Yield obtained not
specified

hiPSC-MSCs-exos have
hepatoprotective effects on
hepatic I/R injury via
activation of sphingosine
kinase and sphingosine-1-
phosphate pathway in
hepatocytes, promoting cell
proliferation

Du et al.
(2017)

Treatment (in vitro)
200 μg/ml (in vivo) 2.5 ×

1012 particles in
500 μl PBS

Rabbit bone marrow
HIF-1α modified MSCs
(BMSC-ExoMU)

Report the role of exosomes
secreted by mutant HIF-1α-
modified BMSCs in the
recovery of the early Steroid-
Induced Avascular Necrosis
of Femoral Head (SANFH)

Total exosome isolation
kit (TEI)

Yield obtained not
specified

BMSC-ExosMU facilitates the
repair of SANFH by
enhancing osteogenesis and
angiogenesis in a rabbit model

Li Y et al.
(2017)

Treatment (in vitro)
10 μg/ml (in vivo) 20,

40 and 80 μg/ml protein
in 0.5 ml PBS

MiR-223-3p transfected
rat bone marrow MSC-

derived exosomes

Investigate exosomal miR-
223–3p effect in cerebral
inflammation through the
modulation of CysLTR-
mediated microglia

polarization

Serial differential
centrifugation + filtration

Yield obtained not
specified

Exosomal miR-223–3p seems
to be a candidate to attenuate
cerebral inflammation during
brain damage. This protective
effect is highly associated with

polarization of microglia
phenotype

Zhao et al.
(2020)

Treatment (in vitro)

5 μg/ml (low)

10 μg/ml (medium)

20 μg/ml (high)

Bone marrow MSCs
educated with neonatal
and adult mice serum-

derived exosomes

Investigate and compare the
effect of educated exosomes
from neonatal and adult mice

serum regarding their
biological and therapeutic
effect on cutaneous wound

repair

Ultracentrifugation Yield obtained 25 μl
from 1 ml of serum

Exosomes from educated
MSCs could promote

angiogenesis by regulating
biological properties of MSCs,
such as their potential to
differentiate and proliferate

Qiu et al.
(2020)

Treatment

100 μg of exosomes in
100 μl of PBS

Atorvastatin (ATV)
pretreated human bone

marrow MSCs

Evaluate the potential of
exosomes extracted from

MSC pretreated with ATV to
enhance biological properties
of endothelial cells facilitating
angiogenesis potential in
cutaneous diabetic wounds
and investigate the role of
miRNAs in this context

Ultracentrifugation Yield obtained Not
specified

ATV treatment seems to
enhance exosome function by
promoting angiogenesis via
upregulation of AKT/eNOS
pathways through miR-221-
3p, demonstrating pro-

angiogenic effect

Yu et al. (2020)

Treatment

50 μg/ml combined with
high glucose (HG)
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Extracellular vesicles

EVs include a broad spectrum of vesicles secreted by various cell

types, originating from different body fluids (Table 1). This name is

also used as a general term which includes: exosomes, ectosomes,

oncosomes, release vesicles, apoptotic bodies, and microvesicles

(Figure 2) (Choi and Lee, 2016; Elahi et al., 2019). To date, the

International Society of Extracellular Vesicles (ISEV) recommends

the application of EVs as an operational term and suggests

classifications according to size (small, medium, or large EVs),

biochemical composition (CD63+ EVs/CD81+ EVs) or conditions,

and cell origin (apoptotic bodies and hypoxic EVs) (Théry et al.,

2018).

Since it was noticed that extracellular nanoparticles have

clinical potential due to their cargoes, several discoveries

occurred in this field. Recently, in addition to the classical

EVs, two other nanovesicle groups lacking a lipid bilayer

membrane have been reported: exomeres and supermeres.

Special attention was given to the supermeres because they

appear to be enriched in proteins and other molecules (Zhang

et al., 2021).

Small extracellular vesicles (sEVs), which includes the well-

known exosomes, are the most studied vesicle group, may be

found in body fluids and cell-derived conditioned media, vary

between 40 and 150 nm, and arise from the fusion of endosomal

multi-vesicular bodies with the plasma membrane released by

exocytosis by several cell types (Raposo and Stoorvogel, 2013;

Ramirez et al., 2018). The internal composition of sEVs includes

lipids; nucleic acids, such as messenger RNAs (mRNA), miRNA,

and non-coding RNAs (ncRNA); and proteins (CD9, CD63, and

CD81) (Théry et al., 2006; Colombo et al., 2014).

sEVs may be obtained from MSC conditioned culture media

or body fluids (Table 1) for studies of their biogenesis,

composition, and mechanisms of action. Ultracentrifugation is

generally used for sEV concentration in a sucrose density

gradient, whereas polymer precipitation is widely used to

produce large quantities of EVs (Table 2). Assays that lead to

co-precipitation of these vesicles with soluble proteins and

supplemental chemical methods are also used to isolate EVs

from conditioned media. Immunoaffinity methods and sEV

extraction kits have also been employed to enable the

isolation of these EVs in a shorter period of time (Raposo and

Stoorvogel, 2013; Schageman et al., 2013; Rocco et al., 2016;

Sarvar et al., 2016; Silva et al., 2016). Each method presents

different advantages that should be evaluated according to

application, prioritizing processing time, purity, cost, ease of

FIGURE 2
Extracellular vesicles are a generic name for many kinds of vesicles released by cells; their origin and size are determinants in their classification.
Exosomes present size between 30 and 120 nm, and an endosome being initially formed in cell cytosol from the early endosomes until late
endosome release by the influence of specific proteins such as ESCRT and Rab family and could be excreted by any type of cells, including MSCs,
tumor cells, and, even, immune cells. Microvesicles could present size within the range of 100–1,000 nm and could be released by any cells,
whereas apoptotic bodies are the biggest group, excreted only for apoptotic cells. Image created on BioRender.
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handling process, or scalability. However, their structure and

content should be preserved.

Numerous techniques have been used to describe the

morphology and evaluate the molecular content of sEVs. The

focus has been to gather the largest amount of information about

their biogenesis and mechanism of action. In addittion, protocols

need to be standardized to illustrate their interaction with the

target cells and their activity in vitro and in vivo. Among the most

widely used techniques are transmission electron microscopy

(TEM), proteomics, lipidomics, genomics, metabolomics, RNA

sequencing, nanoparticle tracking analysis (NTA),

immunological labeling, and classification by flow cytometry

(Feng et al., 2010; Vallabhaneni et al., 2014; Anderson et al.,

2016; Greening et al., 2016; Silva et al., 2016).

TABLE 3 Active clinical trials undertaken with mesenchymal stem cell-derived Extracellular vesicles in different disease treatments.

ID (clinical
trials)

EVs (cells) Purpose Treatment Phase status

NCT04798716 Mesenchymal stem cells (tissue
not specified)

Treatment of novel coronavirus
pneumonia and acute respiratory
distress syndrome

Intravenously every other day on
escalating dosage (2 × 109 – 4 × 109 –
8 × 109)

Not yet
recruiting—Phase 1

NCT05216562 Mesenchymal stem cells (tissue
not specified)

Reduce hyper-inflammation in
moderate COVID-19 patients

Intravenous injection on day 1 and day 7 of
a 14-day study

Phase 2—Recruiting

Obs: exosomes dissolved in 0.9% NaCl
solution

NCT03437759 Umbilical cord mesenchymal
stem cells

Promote healing of large and
refractory macular holes

After surgery, applying 50 μg or 20 μg of
exosomes in 10 μl PBS dripped, directly,
into the vitreous cavity

Active, not
recruiting—Early Phase 1

NCT04356300 Umbilical cord mesenchymal
stem cells

Treatment of multiple organ
dysfunction syndrome after surgical
repair for acute type aortic
dissection

150 mg of exosomes will be injected
intravenously once a day 14 times

Not yet recruiting

NCT04276987 Allogenic adipose mesenchymal
stem cells

Severe Novel Coronavirus
Pneumonia

2 × 108 exosomes in 3 ml aerosol
inhalation for 5 days consecutively

Completed

NCT05261360 Synovial fluid-derived
mesenchymal stem cells

Evaluate the efficacy of exosomes in
degenerative meniscal injury

Intra-articular administration—1 million
cells/kg of exosomes

Recruiting—Phase 2

NCT05060107 Allogenic mesenchymal stem cells Osteoarthritis (knee) Intra-articular knee injection of 3–5 ×
1011 particles/dose (single dose)

Not yet
recruiting—Phase 1

NCT05402748 Human placenta mesenchymal
stem cells

Treatment of complex anal fistula Weekly injections for 3 consecutive
weeks—dose not specified

Recruiting—Phase 1

NCT04388982 Allogenic adipose mesenchymal
stem cells

Evaluated the efficacy of MSC-exos
in Alzheimer’s disease patients

Nasal drip with 5, 10, and 20 μg (low, mid,
and high doses, respectively) twice a week
for 12 weeks

Recruiting—Phase 1

NCT04313647 Mesenchymal stem cells (tissue
not specified)

Evaluated the tolerance of
mesenchymal stem cell exosome
aerosol inhalation (health
volunteers)

2 × 108 | 4 × 108 | 8 × 108 | 12 × 108 | 16 ×
108 nanovesicles/3 ml

Completed

NCT03384433 Allogenic mesenchymal stem cells
(tissue not specified)

Safety and efficacy of MSC-
exosomes on patients with acute
ischemic stroke

Exosomes enriched with miR-124 via
stereotaxis/intraparenchymal 1 month
after the attack

Recruiting

NCT04173650 Allogenic mesenchymal stem
cells—product: AGLE-102

Safety and efficacy of MSC-exos in
the treatment of lesions in patients
with epidermolysis bullosa

Six administrations of MSC-exos in
3 months in a maximum of 50 cm2 of
wound

Phases 1/2

NCT03608631 Mesenchymal stem cells (tissue
not specified)

Study the best dose and side effect
of MSC-exos in pancreatic cancer
patients

Exosomes with KrasG12D
siRNA—patients received on days 1, 4,
and 10

Recruiting—Phase 1

NCT04602442 Mesenchymal stem cells (tissue
not specified)

Safety and efficiency of exosomes
inhalation in COVID-19
pneumonia

Inhalation of 3 ml of 0.5–2 × 1010/
exosomes for 10 days

Enrolling by
invitation—Phase 2
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In pairwise proteomic and lipidomic comparative studies of

EV from normal (bone marrow mesenchymal stem cells) and

transformed cells (U87-MG human glioblastoma cells,

Huh7 hepatocellular carcinoma cells) identified different

expression profile of proteins and lipids between normal and

tumor cells (Haraszti et al., 2016). Gene ontology terms related to

vesicles and membrane-associated proteins, GTPases,

translation, and glycolytic pathways were significantly

enriched features of EVs contents. Concerning the lipid

content, while sEV were rich in glycolipids and free fatty

acids, medium EV displayed larger amounts of ceramides and

sphingomyelins (Haraszti et al., 2016).

The specific set of molecules present on the surface and in

the interior of the sEV, may enable cell targeting at various

levels, mediating intercellular signaling and resulting in

regulation of embryonic tissue pattern remodeling and

homeostasis, as well as disease progression (Vyas and

Dhawan, 2017). Therefore, the molecular composition of

sEV has been widely studied, using numerous

methodological approaches due to the concrete possibility

of using them as diagnostic biomarkers for various diseases

and as drug delivery agents and therapeutic RNAs (Lv et al.,

2015; Deng and Miller, 2019). Also, studies have shown that

MSC-derived EVs display similar composition and function

compared to the cells they derive from, being able to exert

therapeutic activity, thereby opening new avenues for cell-free

therapy (Bollini et al., 2013; Zhang B et al., 2016). sEVs have

been successfully employed as a cell-free therapy due to their

small size, which facilitates their storage, with no embolus

formation concerns, in addittion to being poorly or no

immunogenic and reducing the concern of tumor formation

upon intravenous application because no cells are involved

(Rezakhani et al., 2021).

Mechanisms of action of sEV

sEV have been responsible for the exchange of information

among cells through various interaction mechanisms. Their

bilipid membrane allows greater versatility of extracellular

contact by receptor–ligand interactions (van Niel et al., 2018).

These interactions may occur through direct contact

between proteins on the surface of the exosomes and

signaling receptors on the target cell, as exemplified by the

discovery of Purushothaman et al. (2016). Fibronectin on the

surface of myosomal cell-derived exosomes facilitated the

interaction of target cells in a mechanism where heparan

sulfate proteoglycans are present in the exosomes and the

target cells, appearing to play a dual role, allowing for

fibronectin capture and reception.

A study showed that exosomes display on their surfaces

support for binding and activation of bioactive proteins, as

described in exosomes derived from human mast cells,

which present the active and the latent forms of

transforming growth factor-β1 (TGF-β1). TGF-β1 is

transferred to MSCs and retained in endosomal

compartments, being activated by the action of

proteoglycans, heparinase-II, and pH-sensitive elements,

resulting in prolonged signaling and migratory phenotype

in the receptor cells (Shelke et al., 2019).

sEVs can also fuse with the target cell membrane or be

endocytosed, allowing them to deliver all of their intra-vesicular

content to the cell, acting as paracrine effectors (Toh et al., 2016).

Upon endocytosis, sEVs are internalized by the target cells and then

fused to endosomes, which can then undergo transcytosis, moving

the sEV through the fused endosomes, where they may mature into

lysosomes to be degraded (Mulcahy et al., 2014; Zhang et al., 2015).

This mechanism was exemplified by Kita et al. (2019), with sEV

from MSCs that migrate into ischemic areas and fuse themselves

with neurons, thereby promoting neurogenesis and angiogenesis

after stroke damage, resulting in relieving inflammation and lesions.

Another example was reported by Feng et al. (2010) in which sEV

from K562 human erythroleukemia cells and MT4 human

T-lymphotropic virus type-1 (HTLV) transformed leukemia

T cells could interact with different cells in two distinct manners:

efficient internalization by phagocytic cells and by non-phagocytic

cells. However, most sEVs remained anchored to the cell membrane,

and the few intracellular sEVs were involved by cell extensions and

large phagosomes and also co-localized with phagolysosome

markers, indicating that they would be drawn into phagolysosomes.

MSC sEV can load and transfer their charge to parenchyma

cells facilitating cerebral plasticity and functional recovery from

stroke, acting as the main paracrine effectors, targeting specific

modifications in miRNAs, aiming to modulation of therapeutic

responses (Xin et al., 2014).

After administration, MSC-derived sEV from induced

human pluripotent cells were able to fuse with target

hepatocytes and increase the activity of the sphingosine kinase

signaling pathway and the levels of sphingosine-1-phosphate,

which is directly related to the protective and proliferative effects

of these sEV. This mechanism may contribute to hepatic

regeneration in a murine model of liver ischemia and

reperfusion injury (Du et al., 2017).

Another widely used treatment approach is the application

of platelet-rich plasma (PRP), which has been considered

effective due to the presence of numerous growth factors

and other bioactive molecules responsible for promoting

tissue repair (Hara et al., 2016) in processes such as chronic

wounds (Ostvar et al., 2015; Spanò et al., 2016) and burns

(Marck et al., 2016). However, this technique is not officially

standardized, and little is known about the mechanism(s)

underlying PRP application (Pavlovic et al., 2016). In this

sense, the discovery of platelet-derived sEV that can easily be

obtained from the blood has raised great interest because they

play key roles in angiogenic and proliferative processes in

tissue regeneration, becoming good candidates to replace PRP
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or even being the “next-generation PRP” (Tao et al., 2017b)

with low immunogenic potential. Platelet-derived EVs have

also been chosen because they constitute most of the vesicles

present in the bloodstream, allowing studies exploring their

role in hemostasis, pro-coagulant activity, and their

participation as biomarkers in pathologies associated with

thromboembolic events, such as atherosclerosis (Goetzl

et al., 2017; Tripisciano et al., 2017).

MSC-derived sEV: Potential and
efficacy for tissue regeneration

Several stimuli need to accompany tissue regeneration that is

subdivided into three phases: inflammation, repair, and

remodeling (Stroncek and Reichert, 2008). All these steps

involve four molecular processes: a) attenuation of apoptosis,

helping to prevent extensive cell loss; b) inflammation controlled

by modulation of the immune system; c) migration of endothelial

cells to promote angiogenesis; and d) repopulation of lost cell

types through cell proliferation and differentiation. Generally,

the injury process activates tissue cells, including epithelial,

stromal, and resident immune cells, which induce the

recruitment of other circulating immune cells, stimulating

cytokine and growth factor secretion and initiating the

inflammatory response. Then, phagocytosis and the removal

of foreign and pathogenic bodies from the site of injury will

occur. After the cleansing of dead and infected cells, the

proliferative phase is reached. This phase is characterized by

cell proliferation and migration to the lesion site, new deposition

of the extracellular matrix, angiogenesis, formation of granular

tissue, and re-epithelization. Subsequently, the remodeling phase

starts, being characterized by extracellular matrix remodelling

and scar maturation. The effectiveness of MSC-derived EVs has

been reported at each one of these phases (Clark et al., 2007;

Gurtner et al., 2008; Choi et al., 2012; Silva et al., 2016; Sorg

et al., 2017; Wu et al., 2018). Also, utilization of the mesenchymal

stem-cell secretome can positively influence the injured tissue by

modulating the local microenvironment, providing

cytoprotective, anti-inflammatory, and angiogenic effects

during the acute regenerative phase, either by attenuating or

by inducing the action of pro-inflammatory cytokines (Zhang

et al., 2014), boosting resident progenitors/stem cells in place to

achieve a more tissue-specific programmed repair and

instructing the stimulation of resident endogenous progenitors

(Bollini et al., 2013). In addition, cleansing enzymes are

biochemically active in the proteome of MSC sEV associated

with the restoration of homeostasis for the most important

activities in the tissue environment, constituting an interesting

mechanism to be targeted for future development of paracrine

pharmacological therapy (Toh et al., 2016). Despite the need for

further studies, the advantage of low or no immunogenicity

displayed by MSC-derived sEV influences their use as drug

delivery, therapeutic agents in vaccination, cancer biomarkers

and in inflammatory disorders (Robbins and Morelli, 2014) of

both the nervous (Lv et al., 2015) or cardiovascular system

(Pankajakshan and Agrawal, 2014), and in wound healing

(Geiger et al., 2015; Elahi et al., 2019). Considering that,

19 studies were found at the Clinicaltrials.gov (Table 3) website

upon searching for “MSC+exosome” (https://clinicaltrials.gov/ct2/

results?cond=&term=MSC+exosomes&cntry=&state=&city=&dist=),

several focused on exploring their efficiency in tissue

regeneration in diseases such as epidermolysis bullosa,

acute ischemic stroke, and degenerative meniscal injury.

Others aim to test the therapeutic effects of MSC-derived

sEV in Alzheimer’s disease and COVID-19-associated

pneumonia (Accessed on 20 July 2022, at 15:20 p.m.).

Migration of endothelial cells to promote
angiogenesis

A study with sEV derived from human placental MSCs pointed

out that they can stimulate the transcriptional activity of Oct4 and

Nanog in dermal fibroblasts. Then, by their incorporation, stem cells’

plasticity for differentiation into adipogenic and osteogenic lineages

was considerably increased (Tooi et al., 2015). The pro-angiogenic

capacity of sEV from the human placenta was also described in vitro

using the ischemic lesion model of the murine atria, in which

increased levels and migration of endothelial tubes were observed

along with increased expression of genes related to angiogenesis

(Komaki et al., 2017). Upon evaluating the therapeutic potential of

human fibrocyte-derived sEV, a population of bone marrow-derived

mesenchymal progenitors’ cells, sequentially stimulated with platelet-

derived growth factor-BB (PDGF-BB) andTGF-β1 growth factors and
in the presence of fibroblast growth factor (FGF), presented pro-

angiogenic properties in vitro, induction of keratinocytes migration

and proliferation, and an accelerated healing process in type 2 diabetic

mice (Geiger et al., 2015).

Another interesting property of these vesicles is their ability

to be internalized by human umbilical vein endothelial cells

(HUVECs) in vitro, increasing their proliferation and migration,

increasing their proloferation and migration accelerating the

healing process of cutaneous wounds on the dorsal region of

diabetic rats by stimulating angiogenesis through activation of

the extracellular signal-regulated kinases 1/2 (Erk-1/2) signaling

pathway, contributing to the discovery of specific pathways,

which are activated during cutaneous regeneration (Zhang J

et al., 2016).

Repopulation of lost cell types through
cell proliferation and differentiation

Acellular derivatives from bone marrow MSCs were

described to accelerate wound closure by re-epithelialization,
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dermo-epidermal junction, regeneration of skin appendages,

inflammatory infiltration, vascularization, and formation of

granular tissue and higher density collagen fibers in diabetic

mice, in addition to concentrate factors and proteins relevant to

regeneration, compared to only bone marrow MSCs (de Mayo

et al., 2017). Therefore, the ability to migrate to the site of injury

and promote fibroblast migration and proliferation, together

with collagen synthesis, has been described for human adipose

tissue-derived MSC sEVs, contributing to the skin healing

process in mice (Hu et al., 2016), as well as skin flap

transplants through neovascularization and protection against

ischemia/reperfusion, in addition to stimulating lesion recovery

by increasing the interleukin- (IL-) 6 levels (Pu et al., 2017).

Moreover, MSC-derived EVs from induced human pluripotent

cells (iPSCs) could accelerate the healing process of cutaneous

wounds in rats by stimulating the proliferation and migration of

human fibroblasts motility, leading to increased collagen and

elastin synthesis and stimulating blood capillary networks

formation in vitro (Zhang et al., 2015b). This process could be

regulated by different mechanisms. For example, fetal dermal

MSC-derived EVs could promote cutaneous wound healing in

vivo and in vitro by activating fibroblast motility and secretion

ability via the activation of the Notch signaling pathway (Wang X

et al., 2019). sEVs derived from synovial MSCs presented the

potential to stimulate cell proliferation and migration and

maintain the synthesis of extracellular matrix proteins, in

addition to delaying the progression of osteoarthritis in an

animal model of knee joint cartilage injury through miR-140-

5p (Tao et al., 2017a).

Attenuation of apoptosis helps prevent
extensive cell loss

The wound healing process requires oxygen to promote

cytokine interactions and activation of cell proliferation (Han

and Ceilley, 2017). sEVs derived from bone marrow MSCs

displayed rapid degradation of the hypoxia-inducible factor

1α gene (HIF-1α) under normoxic conditions. This effect is

responsible for attenuating avascular necrosis of the steroid-

induced femoral head in rabbits by promoting angiogenesis

and accelerating bone regeneration, indicated by trabecular

reconstruction and microvascular density (Li H. et al., 2017).

The regeneration potential of EVs goes beyond wound repair.

sEVs derived from human embryonic MSC demonstrated

significant potential to reduce apoptotic rates and promote

the proliferation of cells together with osteochondral

differentiation (Zhang et al., 2018). Similar results were

obtained using sEVs derived from human umbilical cord

MSCs in an Alzheimer’s disease culture model. Results

showed a high level of neuronal apoptosis via exosomal

miR-223 targeting the PTEN-PI3K/Akt pathway, and this

study demonstrated that EV derived from Alzheimer’s

patients was capable of stimulating morphological changes,

cell number reduction, and shortened synapses (Wei H et al.,

2020).

Different studies have searched for a faster lung injury

therapy aiming to relieve the idiopathic pulmonary fibrosis

(IPF) condition, and during the COVID-19 pandemic, a race

against time started aiming for alternative therapies for acute

pneumonia from coronavirus infection. Thus, the inhalation of

lung spheroid secretome derived from hypoxic sEV could

attenuate the fibrosis scenario, decreasing collagen

accumulation and myofibroblast proliferation (Dinh et al., 2020).

Inflammation controlled by modulation of
the immune system

In injury, resident skin cells are exposed to multiple danger

signals known as damage-associated molecular patterns (DAMPs)

and pathogen-associated molecular patterns (PAMPs) that will be

recognized by the immune system, starting an inflammatory

process (Landén et al., 2016). An interesting recently evaluated

mechanism was that mouse adipose mesenchymal stem cells

(ASCs) display the potential to polarize macrophages from the

M1 to M2 phenotype viamiR-21 secretion targeting the PI3K/Akt

pathway, directly influencing the pro-angiogenic effects of these

EVs (Zhu et al., 2020). Thus, sEVs derived from bone marrow

MSCs induced macrophage M2 polarization via transfer of miR-

223, accelerating the wound healing process (He et al., 2019). This

mechanism was recently reported by Zhang et al., (2018),

describing that MSC sEV treatment enhances the M2-

macrophage infiltration and maintains this effect in cartilage. In

contrast, M1 macrophage levels and inflammation-associated

cytokines, such as IL-6 and tumor necrosis factor-α (TNF-α),
were lower after EV treatment (Zhang et al., 2018). Such evidence

highlight sEVmicroRNAs as a possible therapeutic target for tissue

repair. In addition, human bone marrowMSC-derived sEVs could

educate macrophages, resulting in an M2-like phenotype, which

was then used to promote tendon healing in an Achilles tendon

injury in vivo model via modulation of tissue repair and

inflammation (Chamberlain et al., 2019). Additionally,

accelerating wound healing without scar formation is the target

of many studies aiming at specific components that sEVs could

present. By analyzing sEVs from umbilical cord MSCs, specific

miRNAs were observed, such as miR21, miR23a, miR125b, and

miR145. Evidence has shown that they can play a key role in

suppressing the formation of myofibroblasts and scars in in vitro

and in vivo models by inhibiting the transforming growth factor-

β2 (TGF-β2) and the SMAD2 pathway in mice (Fang et al., 2016).

This suggests an alternative pathway to cell therapy by

administering modified EVs with transfected miRNAs in

wounds, preventing scar formation.

The most common COVID-19 symptom was lung injury

produced by high levels of pro-inflammatory cytokines, such as
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TNF-α, granulocyte colony-stimulating factor (G-CSF),

monocyte chemoattractant protein 1 (MCP-1), interferon- γ
inducible protein 10 (IP10), IL-6, and IL-7 (Gupta et al., 2020;

Jayaramayya et al., 2020). MSCs’ potential to stimulate the

immune system by cytokine release and differentiation into

other cell phenotypes called attention during the COVID-19

pandemic. Considering all that was previously discussed, human

blood samples were analyzed, demonstrating elevated ACE2+ EV

levels in COVID-19 patients with an even-higher rate in acute-

inflammatory phase patients. Together, the infection inhibition

potentials of ACE2+-EVs and ACE2−-EVs were compared,

concluding that virus infection was blocked in the presence of

ACE2−-EVs (El-Shennawy et al., 2022). Considering the variants

tested, ACE2+EV can neutralize their infection, supporting their

potential as an antiviral mechanism (El-Shennawy et al., 2022).

Similar effects were demonstrated by comparing EV-ACE2 with

soluble ACE (Cocozza et al., 2020).

Also, the potential of EVs was shown in neurological

pathologies. Human exfoliated deciduous teeth (SHED)

derived-sEVs were used as an alternative for the treatment of

rat traumatic brain injury, reducing the neuro-inflammation

resulting from the change in polarization of the microglia. In

the end, sEV could improve motor function and reduce the

cortical lesion in the in vivo test (Li Y. et al., 2017).

Current challenges and future
perspectives

This review highlights the high therapeutic potential of

MSC-derived extracellular vesicles, which have been of

growing interest as a promising tool for cell-free therapy.

The standardization of extracellular vesicle isolation is already

a reality with great improvements in recent years. However,

the literature is very poor regarding fundamental information,

such as the initial and final number of cells used to obtain EV,

the exact content of EV and their respective protein amount.

Moreover, most of the time, there is a lack of details about the

methodology used for analysis. These drawbacks result in

standardization issues and the impossibility of conducting

comparative tests among different applications, hampering

trials/ reprodutibility worldwide.

The action of these vesicles is demonstrated at all stages

of the regenerative process, mediating cell migration and

proliferation and stimulating angiogenesis in newly formed

tissues until the recruitment of new cells. Despite that and

their low immunogenic potential, compared to their host

cells, further studies are needed to validate their efficacy and

safety before employing them in clinical applications, as

already occurring in different clinical trials shown

previously. Issues such as the composition of EVs still

need to be evaluated: what frequency should be used and

the exact amount of EVs required in each application still

require a rigorous investigation.

Moreover, considering their punctual action as an

immunomodulatory molecule, the mechanism involved in EVs

on tissue regeneration must be deeply investigated to avoid any

adverse reaction that could harm the patients’ health after

treatment. Taking this into account, a wide spectrum of

questions is open to investigate and map which EV

components act in each step of the regenerative process. The

future perspective lies in strategically step into explore specific

components of EVs cargo to modulate the body’s response for

efficient tissue regeneration through target cell-free therapy.

Conclusion

MSC EVs have shown great potential since they appear to have

the same beneficial characteristics of cells application, such as the

release of cytokines and growth factors. They are particularly used in

tissue regeneration tests due to a vast number of reports in the last year

uncovering a great deal of information on their biogenesis, isolation,

and characterization processes. Currently, with the COVID-19

pandemic and the requirement for faster therapies, their

application has been widely explored for coronavirus pneumonia

and other diseases, such as tissue repair. This can be noted in the

increasing number of clinical trials demonstrating that MSC-sEV

present potential for tissue regeneration. Despite this progress, further

studies in the field are needed to clarify misunderstood questions such

as mechanisms of action and exactly which molecules participate in

the regenerative process to provide a safe therapy approach.
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