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Confined cells migrating through 3D environments are also constrained by the

laws of physics, meaning for every action there must be an equal and opposite

reaction for cells to achieve motion. Fascinatingly, there are several distinct

molecular mechanisms that cells can use to move, and this is reflected in the

diverse ways non-muscle myosin II (NMII) can generate the mechanical forces

necessary to sustain 3D cell migration. This review summarizes the unique

modes of 3D migration, as well as how NMII activity is regulated and localized

within each of these different modes. In addition, we highlight tropomyosins

and septins as two protein families that likely have more secrets to reveal about

how NMII activity is governed during 3D cell migration. Together, this

information suggests that investigating the mechanisms controlling NMII

activity will be helpful in understanding how a single cell transitions between

distinct modes of 3D migration in response to the physical environment.

KEYWORDS

matrix, myosin, motility, cytoskeleton, mechanotranduction

Introduction

The ability of a single cell to move through three-dimensional (3D) environments is

critical for multicellular life, whether it is during the early stages of development, immune

cell surveillance of tissues and organs, or wound healing in an adult organism. The

chemical and physical diversity of the 3D environments that cells must navigate is

mirrored by the array of mechanisms that single cells can use to achieve motion (Yamada

and Sixt, 2019). Determining how motile cells sense and respond to their physical

environment will be essential to fully understand the molecular basis of 3D cell migration.

Adhesive cells migrating through 3D extracellular matrices (ECMs) are constantly

modifying the surrounding environment (Infante et al., 2018; DeLeon-Pennell et al., 2020)

and their own behavior (Friedl and Wolf, 2010) in response to the structure of the matrix

through the process of dynamic reciprocity (Xu et al., 2009). This bidirectional interaction

between cells and their physical microenvironment is often initiated by mechanosensing,

which then triggers mechanotransduction to adjust the molecular mechanisms that single

cells use to move [for a recent example see (Pittman et al., 2022)]. As a result of these cell-

matrix interactions, a single cell can reprogram its intracellular molecular landscape to

achieve motion despite the chemical and physical complexity of the environment it is

moving through (Petrie and Yamada, 2016). This process is known asmigratory plasticity.

Determining the molecular mechanisms responsible for migratory plasticity will be
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critical to therapeutically control cell movement to improve

human health outcomes, such as by promoting fibroblast

migration to heal chronic wounds or arresting the movement

of malignant cells to slow metatstatic disease.

One approach to determine if a cell is using a unique

mechanism or mode of 3D migration is to examine how the

cell is generating the necessary force to achieve forward motion.

Though the actin-binding motor protein myosin was first isolated

frommuscle at the time of the American Civil War (Hartman and

Spudich, 2012), how it generates force to help cells move through

3Dmatrices remains a focus of intense investigation (Agarwal and

Zaidel-Bar, 2019). The essential details of myosin II function are

well known. Myosin II is a filament forming, actin-binding motor

protein with ATPase activity that helps to slide actin filaments

(F-actin) past each other to generate mechanical force in muscles

(Spudich, 1989; Szent-Gyorgyi, 2004). Non-muscle myosin II

(NMII) and actin are also amongst the most abundant proteins

in migrating cells and have long been considered important

components of the molecular machinery driving adhesive cell

migration across 2D surfaces (Badley et al., 1980; Herman

et al., 1981). However, it is now clear that while NMII activity

is dispensable for 2D cell motility (De Lozanne and Spudich, 1987;

Even-Ram et al., 2007), it is required for the movement of many

cell types through the narrow openings within 3Dmatrices (Doyle

et al., 2012; Petrie et al., 2014).

This review will describe the known modes of 3D cell

migration and outline the factors that trigger migratory

plasticity to transition cells from one mode to another. We

will then characterize how the relocalization of NMII activity

in response to the physical environment is essential to reprogram

how intracellular forces are generated and applied to the cellular

microenvironment to sustain 3D cell motility. Finally, we will

highlight how two families of actin binding proteins,

tropomyosins and septins, govern NMII localization and

activity in migrating cells and other contexts. We speculate

that investigating these pathways could provide further insight

into the molecular regulation of migratory plasticity. Ultimately,

this review will propose that understanding the plasticity of NMII

localization and function will provide greater insight into the

molecular basis of migratory plasticity in cells responding to their

physical environment.

Migratory plasticity and 3D cell
motility

Movement across 2D surfaces

At the end of the 20th century, it seemed like the major

questions surrounding how cells migrate had been addressed by

investigating adherent cell migration across 2D surfaces. The

pathways responsible for adhesion, protrusion, cell body

translocation, and contraction of the trailing edge had all been

identified and a comprehensivemodel was proposed to explain how

these pathways and components were spatially and temporally

coordinated to achieve directional cell movement through the 2D

cell motility cycle (Ridley et al., 2003). First, integrin and growth

factor signaling at the presumptive leading edge of a crawling cell

helps to establish and sustain front-back polarity. Specifically, the

small GTPase Cdc42 and members of the PAR complex specify the

leading edge through microtubule stabilization (Etienne-

Manneville and Hall, 2001). This directs the polarized secretion

of new membrane and protein components to the leading edge to

bolster further protrusion and adhesion (Schmoranzer et al., 2003).

Concurrently with polarized secretion, phosphoinositide 3-kinase

(PI3K) and the Rac1 GTPase act through the actin nucleator Arp2/

3 to form the dendritic F-actin network within the lamellipodium

(Pankov et al., 2005; Suraneni et al., 2012) and push the leading edge

forward in combination with local membrane detachment from the

underlying cytoskeleton (Welf et al., 2020). As the membrane

protrudes forward, nascent integrin-based adhesions are formed.

Adhesion maturation then occurs through mechanotransduction

using the rigidity sensing machinery (Prager-Khoutorsky et al.,

2011), where basal NMII-mediated contractility probes the

resistance of the underlying substrate. On rigid surfaces, this

probing leads to a positive feedback loop where increased

contractility triggers recruitment of integrin and integrin-binding

proteins to the adhesion to form additional connections between

the integrins and the contractile actomyosin filaments. These

connections then begin to exert significant traction stresses

against the underlying ECM. A second pool of actomyosin

contractility at the rear of the cell is regulated by the small

GTPase RhoA, where it governs NMII contractility to sustain

retraction of the trailing edge and the disassembly of old cell-

matrix adhesions. Importantly, the mechanisms of 2D

lamellipodia-based migration remains a vibrant area of research

(Welf et al., 2020; Isomursu et al., 2022; Kage et al., 2022; Pasapera

et al., 2022; Pittman et al., 2022). However, we now know that

lamellipodia-based migration is only one of several modes of

migration that can be used by cells moving through 3D

environments (Table 1). These modes of migration can be

distinguished by whether they are pathfinding or path-

generating, as well as their requirement for cell-matrix adhesion,

NMII-mediated actomyosin contractility, and matrix

metalloproteinase (MMP) activity (Petrie and Yamada, 2016).

Further, an individual cell can transition between subsets of

these migration modes in response to changes in the chemical

and physical microenvironment (Figure 1). Critically, the plasticity

of cell migration mechanisms is often mirrored in the plasticity of

NMII localization and function.

Modes of 3D cell migration

When cells are moving through 3D ECM, there are a large

variety of physical characteristics they can respond to, ranging
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from matrix composition and pore size to rigidity and elastic

behavior (Doyle et al., 2013). Many studies rely on the presence of

fetal bovine serum in the media to trigger cell motility without

specifically defining the ligand-receptor pair(s) responsible for

initiating the requisite intracellular signaling. It will be essential

to completely define these pathways in the future to better

understand the molecular origins of cell behavior in response

to their physical environment. In the case of primary human

fibroblasts, the presence of platelet derived growth factor in the

media in the absence of FBS is sufficient to not only trigger cell

movement, but also the specific mode of migration in response to

the 3D environment (Petrie et al., 2012). We speculate that the

pathways governing migratory plasticity will at a minimum

require the integration of growth factor signaling and

mechanotransduction downstream of integrin-based adhesion.

If the pore-size or channel dimensions are large enough, then

cells can use the pathfinding modes of migration. However, in

matrices with small pore sizes (Wolf et al., 2013) or that are

heavily crosslinked (Petrie et al., 2012), cells rely on migration

modes that are path-generating, such as MMP-dependent

movement through 3D collagen (Infante et al., 2018).

Whether pathfinding or path-generating, the central problem

that cells must solve to move through these structurally complex

3D environments is how to translocate their large, bulky nucleus

through the narrow openings within fibrillar protein matrices

(Harada et al., 2014). Interestingly, the nucleus is also required

for mesenchymal cells to move in 3D matrices, but dispensable

for movement across 2D surfaces (Graham et al., 2018). Though

we will introduce each migration mode individually, cells can

rapidly transition between modes, transitioning from lobopodia

to lamellipodia (mesenchymal), or lamellipodia (mesenchymal)

to unstable bleb amoeboid, for example (Figure 1). Importantly,

TABLE 1 Modes of single cell migration.

Migration mode Classification Protrusion type MMP required? NMII required? Cell-matrix adhesion
required?

2D lamellipodia Not applicable Lamellipodia No No Yes

Nuclear piston Path-generating Lobopodia No Yes Yes

Mesenchymal Path-generating Lamellipodia Yes Yes Yes

Unstable bleb amoeboid Pathfinding Small, dynamic blebs No Yes Yes

Stable bleb amoeboid (A1) Pathfinding Large, stable blebs No Yes No

Rapid amoeboid (A2) Pathfinding Small lamellipodia? No No No

Osmotic engine Pathfinding Not determined Not determined No No

FIGURE 1
Single cells can switch between distinct modes of 3D cell movement. Each of these modes of migration have different requirements for cell-
matrix adhesion and actomyosin contractility. Cells using the osmotic engine or stable blebmodes of movement rely on friction against the surfaces
that confine them to achieve forward movement. Cells using the unstable bleb amoeboid, 3D mesenchymal (lamellipodia-based), or nuclear piston
(lobopodia-based) modes rely on cell-matrix adhesions to propel themselves forward. The double headed arrows indicate the known
transitions that a single cell can use to switch between differentmodes ofmovement in response to the physical structure of the ECM and changes to
intracellular signaling.
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filopodia are another type of protrusion commonly found on

cells migrating on 2D surfaces and in 3D matrices, where they

help sense the physical and chemical environment to aid in

directional migration (Caswell and Zech, 2018; Peuhu et al.,

2022). We speculate that cells moving through 3D environments

in the body can continuously adjust the mode of their migration

in response to the physical environment they are moving

through, analogous to a motor vehicle that can switch from

two-wheel to four-wheel drive depending on the type of terrain

encountered (Talkenberger et al., 2017). Additionally, it remains

to be determined how much overlap exists between these

different modes of 3D cell motility. For example, the

directional flow of water from front to back may be a

required for all modes of 3D migration and not just the

osmotic engine mechanism that is described below (Stroka

et al., 2014). Determining which mechanisms are potentially

shared by these distinct modes of migration, along with

specifying which cell types are capable of utilizing each mode

will clarify the molecular regulation of migratory plasticity

(Table 2).

The osmotic engine

One of the most dramatic departures from the molecular

mechanisms driving 2D lamellipodia-based motility is the

osmotic engine mechanism of 3D migration. Tumor cells

using the osmotic engine to migrate along matrix-coated

channels completely occlude the channel, meaning all the

cellular surfaces are in contact with the channel walls (Stroka

et al., 2014; Li and Sun, 2018). When the osmotic engine is active,

the movement of the cell body is propelled by the directional flow

of ions and water across the plasma membrane at the leading

edge and out of the cell at the trailing edge. To achieve directional

water flow, the Na+/H+ exchanger NHE-1 and the aquaporin

water channel AQP5 are concentrated in the membrane at the

leading edge of the cell (Stroka et al., 2014), while the SWELL-1

chloride channel is enriched in the plasma membrane at the cell

rear (Zhang et al., 2022). Interestingly, NHE-1 and SWELL-1

polarization are regulated by Cdc42 and RhoA, respectively. As

Na+ ions are pumped into the cytoplasm at the leading edge,

osmotic pressure drives water influx through AQP5. This

initiates the directional flow of water from the front to the

back of the cell where it exits the cytoplasm through AQP4,

with chloride ion passing through SWELL-1, to propel the cell

forward. Interestingly, the osmotic engine can operate in the

presence of the actin depolymerizing drug latrunculin A, as well

as the NMII inhibitor blebbistatin, indicating that the osmotic

engine does not directly rely on actin polymerization or

actomyosin contractility. Further, strong adhesion is also

unlikely to play a role since adhesion maturation and

strengthening rely on NMII-generated contractility (Guilluy

et al., 2011).

Given the osmotic engine mechanism does not require NMII

activity or actin polymerization, it suggests that directional water

flow is prevalent in cells using amoeboid modes of 3D migration,

since these can also less dependent on actin polymerization and

NMII activity (Paluch et al., 2016). However, it is not clear if the

osmotic engine represents a distinct mode of 3D motility, or if

directional water flow is a characteristic of all polarized cells

migrating through 3D environments. Further study will be

required to determine how universal this captivating

mechanism may be. Despite the potential ambiguity in which

modes of migration may rely on the directional flow of water,

there is evidence that cells can transition between water-driven

(osmotic engine) and actin polymerization-driven

(mesenchymal/3D lamellipodia) cell migration mechanisms by

changing NMII localization and activity (Li and Sun, 2018; Zhao

et al., 2021). Cells can sense and respond to the magnitude of the

hydraulic resistance or pressure they are moving against in tight

channels (Prentice-Mott et al., 2013). When hydraulic resistance

in front of the moving cell is low, cells rely on an amoeboid mode

of migration that does not require actin polymerization to

advance the leading edge (Zhao et al., 2021). When hydraulic

resistance increases, cells maintain the amoeboid type of

migration as there is sufficient NMII-generated contractility to

TABLE 2 Cell types and signaling pathways associated with each mode of single cell migration.

Migration mode Examples of cell
types capable of
using each migration
mode

Essential signaling pathways
and proteins

Pulled nuclear piston Primary human mesenchymal cells, fibrosarcoma cells RhoA-ROCK-NMII, Tpm 1.6, plectin, vimentin

Pushed nuclear piston Mesenchymal stem cells TRPV4, Piezo1, nesprin 2

Mesenchymal Primary human mesenchymal cells, single tumor cells NEDD9, DOCK3, Rac1, Arp2/3, NMII, MMP

Unstable bleb amoeboid Single tumor cells, T-cells FilGAP, ARHGAP22, RhoA-ROCK-NMII, JAK1, STAT3, ezrin, moesin

Stable bleb amoeboid (A2) Single tumor cells, immune cells Erk, NMII, Eps8, filamin-A, fascin-1, cofilin-1

Rapid amoeboid (A1) Normal fibroblasts, normal epithelial cells Not determined

Osmotic engine Single tumor cells RhoA, TRPV4, NHE-1, SWELL-1
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power forward protrusion in the face of this hydraulic pressure. If

NMII is not sufficiently enriched at the leading edge, these cells

switch to a mesenchymal mode of confined migration that is

dependent on Arp2/3 activity.

Stable bleb amoeboid

Cells that are unable to adhere to the surrounding

environment through integrin-based adhesion are unable to

migrate across a 2D surface (Bergert et al., 2015). However,

non-adhesive cells can begin to migrate after they are compressed

between at least two surfaces. This confinement allows amoeboid

cells to generate a large stable bleb and migrate using the friction

created by retrograde flow cortical actin and membrane

components to propel the cell forward (Liu et al., 2015; Logue

et al., 2015; Ruprecht et al., 2015). This mode of migration is used

by a wide variety of cells, including transformed epithelial and

mesenchymal cells, along with Jurkat T-cells, HL-60 neutrophils,

mouse bone marrow-derived dendritic cells, and human

monocytes (Table 2) (Liu et al., 2015). The intracellular

organization of cells using stable-bleb based migration is

dramatically different from cells using lamellipodia-based

migration on a 2D surface (Adams et al., 2021). These cells

form two large cytoplasmic compartments, separated by a

narrow cytoplasmic neck and the nucleus can be found in

either the forward or rearward compartment. The organelles

and endomembrane system are concentrated in the rear

compartment and within the narrow neck separating the

forward and rearward compartments. The cortical F-actin

network assembles at the tip of the leading bleb, facilitated by

the actin-bundling and capping protein Eps8, to increase tension

in the cortex and cytoplasmic pressure within the bleb (Logue

et al., 2015). Critically, actomyosin contractility drives the

FIGURE 2
NMII activity powersmultiplemodes of 3D cell migration via distinctmechanisms. (A). Actomyosin contractility in the front of the cell is attached
to vimentin intermediate filaments by the plectin crosslinker. The force generated by thismachinery is transmitted to the nucleus via nesprin 3 to help
pull the nucleus through 3D matrices. The forward movement of the nucleus increases cytoplasmic pressure to form lobopodial protrusions. (B).
NMII activity at the trailing edge is regulated by mechanical stress on the nucleus, tension within the plasma membrane, and the small GTPase
RhoA. This actomyosin contractility increases pressure at the rear of the cell and drives water into the nucleus which can lead to blebbing and rupture
of the nuclear envelope. (C). NMII activity in leading protrusions can transmit traction forces to the surrounding ECM. This helps to align matrix fibers
immediately in front of the cell to promote directional movement. (D). Actomyosin contractility in the cortex increases pressure in amoeboid cells
forming small, unstable blebs. NMII-driven retrograde flow propels cells forming stable blebs forward through preexisting channels.
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retrograde flow of the cortical cytoskeleton that is critical for this

low-adhesion mode of cell movement (Hawkins et al., 2011).

Cell-matrix adhesion is dispensable for stable blebmigration, and

this suggests that cells using this mode of cell migration find

existing paths, rather than generating a new path through the 3D

ECM. In addition to the retrograde flow beneath the plasma

membrane, there is significant cortical contractility at the rear of

the cell that is required for the rapid forward movement of these

cells in confinement (Venturini et al., 2020). Importantly, this

pool of cortical NMII activity at the rear of the cell also

contributes to the movement of adherent mesenchymal cells

using 3D lamellipodia-based migration (Lomakin et al., 2020)

and we speculate it may be a universal feature of cells migrating

through 3D matrices (Figure 2).

Interestingly, when clusters of cells are confined within non-

adhesive channels, they can switch their mode of migration from

a traction force-based migration mechanism (Friedl et al., 2012)

to an adhesion-independent amoeboid mode (Pages et al., 2022).

This collective amoeboid movement requires RhoA activity and

concentrated actomyosin contractility at plasma membranes of

cells at the rear of the cluster where it helps to steer the cell

cluster. However, unlike stable bleb amoeboid migration, there is

no significant retrograde flow associated with the forward

movement of the cluster.

It is not clear how cells transition from adhesion-based

mechanisms such as 3D mesenchymal migration to non-

adhesive mechanisms such as the stable bleb mode. It has

been proposed that early in development, before the

production of abundant ECM, adhesion-independent motility

could be essential for cells to move and position themselves

within developing tissues (Venturini et al., 2020). Thus, we

speculate that conditions of physical confinement allow cells

with sufficient cortical retrograde flow and negligible integrin

expression to migrate along preexisting paths within tissues

(Paluch et al., 2016). However, boosting cell-matrix adhesion

by increasing integrin expression could transition the cells to the

adhesion-based, 3D mesenchymal mode of migration that

utilizes lamellipodia based protrusions and matrix remodeling

to generate their paths through fibrillar 3D matrices such as type

I collagen.

3D mesenchymal migration

Cells that form robust cell-matrix adhesions can migrate

through dense fibrillar matrices using lamellipodia-based

protrusions and traction forces generated by actomyosin

contractility within stress fibers near the front of the cell

(Petrie et al., 2012; Wang et al., 2019; Doyle et al., 2021). This

anterior contractility is coordinated with cortical contractility at

the rear of the cell to help disassemble cell-matrix adhesions and

keep the trailing edge advancing in synch with protrusion at the

leading edge. In addition, this mode of migration requires the

secretion of MT1-MMP to cleave collagen fibers within the ECM

to facilitate the passage of the large, bulky nucleus (Infante et al.,

2018). These cells use polarized signaling at the leading edge that

is classically associated with lamellipodia movement across 2D

surfaces (Petrie et al., 2012). Specifically, Cdc42 and Rac1 activity,

along with the PI3K-generated second messenger

phosphatidylinositol (3,4,5)-trisphosphate (PIP3), are polarized

towards the leading edge and enriched at the ends of long

pseudopodial protrusions in small lamellipodia. At the very

front of the cells, rearward directed traction forces generated

by NMII help align and stiffen matrix fibers to direct the

continuous forward movement of the cell (Doyle et al., 2021).

On synthetic matrices, this ability to increase tension within the

matrix, coupled with asymmetric adhesion, has revealed a

dramatic slingshot effect in some cases. Tension within the

matrix can be combined with the rapid release of cell-matrix

adhesions to dramatically catapult the cell body forward (Wang

et al., 2019). NMII-mediated contractility within the cortical

cytoskeleton along the sides of the cells acts to prevent the

formation of protrusions off the axis of migration (Fischer

et al., 2009; Elliott et al., 2015). Actomyosin contractility

within the cortical cytoskeleton at the rear of the cell assists in

pushing the nucleus forward from the back (Hetmanski et al.,

2019; Lomakin et al., 2020). Interestingly, the coordination

between the pools of NMII-generated contractility at the front

and back of the cell may help to steer the cell through the 3D

matrix (Godeau et al., 2022). It will be fascinating to learn how

these mechanisms interface with more localized steering

mechanisms like protrusion stability (Petrie et al., 2009) or

cortical control of protrusion formation (Fischer et al., 2009;

Elliott et al., 2015) to achieve directional migration such as

during 3D chemotaxis. Since the presence of the nucleus is

required for 3D cell migration (Graham et al., 2018), it is also

possible that the numerous connections between the nucleus and

cytoskeleton are required to help organize the distribution and

application of forces all over the cell to achieve productive cell

movement (Wang et al., 2009).

Interestingly, 3D mesenchymal cells can transition between

at least three different modes of migration depending on the

following factors: integrin-based adhesion, actomyosin

contractility, and the amount of cross-linking in the ECM

(Petrie and Yamada, 2015). If their integrin-based adhesions

are downregulated, along with reduced actomyosin contractility,

these cells adopt a rapid, amoeboid form of migration

characterized by a round cell body and single protrusion

tipped by a small lamellipodia (Liu et al., 2015). If actomyosin

contractility is elevated while cell-matrix adhesion remains low,

such as when MMP activity is inhibited in tumor cells (Wolf

et al., 2003), they transition to a round migration mode

associated with small unstable blebs. Finally, if mesenchymal

cells encounter a covalently cross-linked matrix, or if MMP

activity is reduced so they cannot rely on proteases to

remodel the matrix, they polarize their actomyosin
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contractility in front of the nucleus (Petrie et al., 2014; Petrie

et al., 2017). This anterior actomyosin contractility is connected

to the nucleus and is anchored in cell-matrix adhesions at the

front of the cell to help pull the nucleus forward (see nuclear

piston mechanism below).

Unstable bleb amoeboid

Rounded cells using unstable bleb-based amoeboidmigration

mechanisms result from an increase in cortical actomyosin

contractility, coupled with low adhesion to the surrounding

ECM. Unlike amoeboid migration using stable blebs, unstable

bleb-based migration still requires some degree of cell-matrix

adhesion (Wolf et al., 2003; Ferrari et al., 2019; Guzman et al.,

2020). This mode of migration is used by a wide variety of

transformed cells, as well as T-cells in response to sphingosine-1-

phosphate (Robertson et al., 2021). In tumor cells, the increased

actomyosin contractility is primarily triggered by reduced MMP

activity (Sahai and Marshall, 2003; Wolf et al., 2003), though

there are additional regulatory pathways governing this mode of

3D migration (Sanz-Moreno et al., 2011). This elevated

contractility, which is potentially a combination of cortical

NMII and NMII localized to the back of the cell (Poincloux

et al., 2011; Asante-Asamani et al., 2022), triggers a rounding up

of the cell, likely due to these cells lacking strong enough cell-

matrix adhesion to resist the inward pulling forces generated by

NMII. A combination of increased cytoplasmic pressure and

reduced attachment of the plasma membrane to the underlying

actin cortex (Charras et al., 2005; Charras et al., 2008), causes

rapid blebbing at the plasma membrane. These blebs are rapidly

retracted by actomyosin contractility in the bleb neck (Taneja

and Burnette, 2019). Dynamic blebs are also hotspots for the

formation of new cell-matrix adhesions to facilitate the forward

movement of these cells (Ferrari et al., 2019). These interactions

can be augmented by the physical intercalation of lateral cellular

protrusions, such as blebs, into the spaces in the surrounding

ECM to help propel the cells forward through a process termed

chimneying (Reversat et al., 2020). Interestingly, this mode of

migration may be a hybrid of pathfinding and path-generating.

Cells using the amoeboid modes of migration typically have more

deformable nuclei, allowing easier passage of the nucleus through

small openings within the matrix (Harada et al., 2014). However,

additional evidence suggests that rounded amoeboid cells may

upregulate other MMPs to compensate for reduced MT1-MMP

activity and to degrade and remodel the ECM (Orgaz et al., 2014).

Nuclear piston mechanisms

The unstable bleb amoeboid mode of migration is not the

only mechanism that is triggered by the inhibition of MMP

activity. When adhesive mesenchymal cells confront 3Dmatrices

that pose a barrier to the movement of the nucleus, they link

nuclear motion to protrusion formation and enlargement to find

their way forward (Petrie et al., 2014; Lee et al., 2021). Specifically,

cells that maintain robust cell-matrix attachment following the

increase in actomyosin contractility that is triggered by MMP

inhibition (Petrie et al., 2017) or encountering linearly elastic,

crosslinked 3D matrices (Petrie et al., 2012), can use their nuclei

like a piston to increase pressure in front of the nucleus. This

increase in pressure corresponds with the formation of

lobopodial protrusions to generate paths through the matrix

when degrading the matrix is not an option (Petrie et al., 2017;

Lee et al., 2021). The nuclear piston mode of 3Dmigration can be

subdivided into two distinct mechanisms depending on whether

the required actomyosin contractility is pushing the nucleus

forward from the back or pulling it forward from the front.

Mesenchymal stem cells moving through protease-resistant 3D

material, such as viscoelastic alginate hydrogels coupled to the

cell adhesion peptide RGD (arginine, glycine, and aspartate), use

cortical actomyosin contractility at the back of the cell to push the

nucleus forward (Lee et al., 2021). The forward movement of the

nucleus increases anterior cytoplasmic pressure, which increases

tension on the plasma membrane and triggers an influx of ions

through mechanically activated channels. Water then flows into

the cell enlarging the cytoplasm in front of the nucleus. This

enlarged cellular protrusion acts as a wedge to forge a path

through the hydrogel by providing additional space for the

nucleus to move into. Alternatively, primary human

mesenchymal cells, such as dermal fibroblasts, intestinal

myofibroblasts, and de-differentiated chondrocytes, polarize

their actomyosin contractility in front of the nucleus to pull

the nucleus forward when moving through covalently

crosslinked, linearly elastic material, such as cell-derived

matrix (CDM). As the nucleus is pulled forward, it can also

increase the hydraulic pressure in the cytoplasmic compartment

in front of the nucleus (Petrie et al., 2014). This elevated pressure

corresponds with a switch from low-pressure lamellipodia to

high-pressure lobopodial protrusions (Petrie et al., 2012). It

remains to be determined whether the influx of ions and

water that are integral to the pushed-piston mechanism (Lee

et al., 2021) have a similar role in maintaining cytoplasmic

volume when the pulled-piston mechanism is operating

(Petrie et al., 2014).

While it is unclear whether mesenchymal stem cells can use

more than one mode of 3D cell migration, primary human

fibroblasts can switch between at least three distinct modes of

cell migration. When moving through linearly elastic 3D

matrices, like CDM, they use the RhoA-ROCK-NMII

signaling axis to pull the nucleus forward, pressurize the

cytoplasm, and turn off the Rac1-Arp2/3 machinery

responsible for forming lamellipodial protrusions (Patel et al.,

2021). This triggers a switch from actin-driven lamellipodial

migration to pressure-based lobopodial protrusions. Inhibiting

actomyosin contractility in these environments causes the cells to
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revert to low-pressure, lamellipodia migration within ~15 min

(Petrie et al., 2014). Further, reducing adhesion in confined

channels will switch the migration mode to a rounded,

amoeboid form of motility characterized by low actomyosin

contractility (Liu et al., 2015). Interestingly, all the above

migration modes can be distinguished by the unique

localization and function of NMII. This suggests

understanding the signaling and mechanotransduction

pathways controlling NMII activity and its subcellular

localization will be essential to understand how cells transition

from one mode to another in response to changes in their

physical environment.

The plasticity of NMII during 3D cell
migration

The fundamental details of NMII structure and function have

been carefully investigated for many decades (Spudich, 1989;

Szent-Gyorgyi, 2004). The heavy chains of NMII are responsible

for converting the chemical energy present in ATP to molecular

motion via a series of conformational changes driven by ATP

binding, hydrolysis, and release of the resulting ADP. The small

GTPase RhoA is responsible for activating downstream effectors

like Rho-dependent kinase (ROCK) which then can

phosphorylate the myosin regulatory light chains to increase

NMII activity. Despite the wealth of information on the structure

and regulation of NMII, the molecular mechanisms that drive the

plasticity of NMII localization and function during 3Dmigration

are not fully understood. Interestingly, there are several distinct

subcellular regions where this force-generating machinery can be

precisely localized and regulated within each of the distinct cell

migration mechanisms described above. Further, the localization

of NMII activity can be governed by mechanosensing of the

extracellular physical environment and subsequent intracellular

mechanotransduction. Next, we will describe the most recent

findings regarding how NMII is localized in cells using the

distinct modes of 3D migration and the signaling pathways

regulating its activity at each subcellular location.

NMII at the trailing edge

The cortical cytoskeleton underlying the plasma membrane

at the rear of the cell can be enriched with RhoA and NMII

during the migration of adhesive cells across 2D surfaces (Ridley

et al., 2003). The actomyosin contractility at the rear of the cell

aids in adhesion disassembly and contraction of the trailing edge

(Vicente-Manzanares et al., 2007). The reciprocal distribution of

Rac1 and RhoA activities at the front and back of the cell,

respectively, is at least partially dependent on inhibitory

crosstalk between the two pathways (Iden and Collard, 2008).

The classical function of NMII activity at the back of the cell is

conserved within several modes of 3D cell migration, but it may

not strictly rely on RhoA regulation to direct its function

(Lomakin et al., 2020; Venturini et al., 2020). However, the

spatial control of RhoA activity at the back of the cell can

control the direction of cell movement through 3D matrices

(Chi et al., 2014).

As described above, the nucleus can be considered as the

master regulator of 3Dmigration. The nucleus is the rate-limiting

step of cell movement when moving through the narrow

openings of engineered channels or fibrillar protein matrices.

Confusingly, the nucleus is also required for 3D cell movement

(Graham et al., 2018), but not required for cell migration across

2D surfaces (De Lozanne and Spudich, 1987; Even-Ram et al.,

2007). There could be at least two reasons why the nucleus is

specifically required for the movement of cells through 3D

environments. First, the nucleus is subject to significant

mechanical forces during cell migration (Nader et al., 2021),

and those forces can be sensed by the nucleus to trigger an

increase in contractility at the rear of the cell rear to help push the

nucleus forward (Lomakin et al., 2020; Venturini et al., 2020)

(Figure 2B). Specifically, the nuclear envelope to acts as a

mechanosensor of the physical environment to regulate NMII

activity at the trailing edge. The nuclear envelope can

accommodate excess membrane in the form of folds or

wrinkles across its surface. When the nucleus encounters a

narrow opening in the 3D matrix and begins to move through

it, the mechanical stress on the nucleus can increase pressure

inside the nucleus and tension in the nuclear envelope. This

increased tension and pressure can lead to bleb formation and

even a transient rupture of the nuclear envelope (Denais et al.,

2016). In migrating mesenchymal cells using lamellipodia-type

protrusions (Lomakin et al., 2020) and in stable-bleb amoeboid

cells in zebrafish (Venturini et al., 2020), mechanical stress on the

nucleus triggers the release of calcium from the endoplasmic

reticulum and increased tension within the nuclear envelope that

leads to the rapid loss of membrane wrinkles. These two factors

in turn trigger the recruitment the calcium-dependent

phospholipase cPLA2 to the nuclear envelope where it

produces the second messenger arachidonic acid. Arachidonic

acid increases NMII activity at the rear of the cell by recruiting

the regulatory myosin light chain 2 to the cortical cytoskeleton.

This increased NMII activity at the trailing edge provides

additional pushing forces on the nucleus to force it past

barriers in the surrounding 3D environment. Further work is

required to determine if this is a universal feature of all modes of

3Dmigration using contractility, or if it is restricted to cells using

3D lamellipodia-based migration.

An additional mechanism regulates NMII contractility at the

back of the cell during 3D mesenchymal cell migration. Excess

plasma membrane can accumulate at the rear of the cell (O’Neill

et al., 2018), leading to a reduction in plasma membrane tension

at the rear of cell relative the plasma membrane in front of the

nucleus (Hetmanski et al., 2019). This lower tension at the rear of
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the cell corresponds with an enrichment of plasma membrane

invaginations known as caveolae. Caveolae and their resident

proteins caveolin-1 and cavin-1 have long been known to act as

signaling hotspots (Zajchowski and Robbins, 2002), and only

more recently has their role as mechanosensors of membrane

tension been revealed. When plasma membrane tension is low,

the caveolae recruit the RhoA guanine exchange factor Ect2 to

the rear of the cell where it activates RhoA (Hetmanski et al.,

2019). The active RhoA binds and activates ROCK and PKN2 to

increase actomyosin contractility at the trailing edge to facilitate

the translocation of the nucleus and cell body through 3D

matrices. How this mechanism is related to the nuclear

mechanosensor and the cPLA2 pathway controlling NMII at

the rear of the cell is unclear at this time. However, the increased

RhoA activity at the rear of the cell can also increase pressure

inside the nucleus (Mistriotis et al., 2019), which could then

trigger activation of cPLA2 and further increase NMII activity at

the rear of the cell. Specifically, actomyosin contractility can

increase cytoplasmic pressure (Patel et al., 2021). Thus, the RhoA

activity at the rear of the cell likely increases cytoplasmic pressure

and drives water into the nucleus to increase nuclear pressure

(Mistriotis et al., 2019) and aid in the translocation of the nucleus

through narrow openings (Keys et al., 2022). This elevation in

nuclear pressure increases membrane tension and promotes

blebbing and rupture of the nuclear envelope. Though it has

not been directly demonstrated, it is possible that the cPLA2-and

RhoA-dependent mechanisms controlling NMII activity at the

back of the cell could represent a positive feedback loop where

RhoA activity at the rear of the cell promotes further contractility

via the pressurization of the nucleus and subsequent activation of

NMII at the plasma membrane due to the production of

arachidonic acid (Figure 2).

NMII within the cortical cytoskeleton

The NMII activity that is localized to the cortical F-actin

network immediately beneath the plasma membrane in front of

the trailing edge has several important roles in cells migrating

through 3D environments. NMII activity can accelerate the

retrograde flow of the F-actin network underneath the plasma

membrane, along with associated proteins and lipids (Shih and

Yamada, 2010). This accelerated retrograde flow creates

sufficient friction to propel the cell forward through

predetermined channels (Bergert et al., 2015) (Figure 2D). In

addition, the modes of migration defined by the presence of

small, unstable blebs rely on cortical NMII activity to retract the

expanding bleb and prevent it from becoming oversized (Taneja

and Burnette, 2019). Contractility in the cortical actomyosin

network can also increase tension in the plasma membrane to

open mechanically-gated channels and increase ion and water

flow into the cell to increase cytoplasmic pressure and control cell

volume (Tao and Sun, 2015; McEvoy et al., 2020; Lee et al., 2021).

Finally, the cortical NMII activity that increases membrane

tension helps to prevent the formation of lateral protrusions

and promote directional cell movement, but also acts as a point of

regulation to locally reduce membrane tension (Fischer et al.,

2009; Elliott et al., 2015). These local changes in pressure and

membrane tension may help initiate protrusion formation to

help steer the direction of 3D cell motility in cells using 3D

mesenchymal migration mechanisms.

Important questions to address are how is NMII integrated

with the cortical F-actin network and what controls its activity

there? A hotspot of cortical actomyosin assembly is close to the

leading edge (Anderson et al., 2008). This is where F-actin is

polymerized and anchored to the plasma membrane via proteins

like ezrin (Robertson et al., 2021). Multiple NMII isoforms

(NMIIA and B), along with other myosin family members like

myosin 18A, can co-assemble with cortical stress fibers and

F-actin at the leading edge (Beach et al., 2014; Billington

et al., 2015; Shutova et al., 2017). Subsequent retrograde flow

of this network can lead to sorting of NMIIA and B, with NMIIA

remaining more peripheral and NMIIB concentrated closer to

the cell body. This distribution of NMIIA and B is consistent with

the finding that NMIIA is important for generating traction

forces in cellular protrusions (Shutova et al., 2017; Doyle et al.,

2021), while NMIIB is critical for helping to move the nucleus

through 3D matrices (Thomas et al., 2015), as well as directing

adhesion formation beneath the cell body (Doyle et al., 2021).

Though these findings are derived mainly from examining stress

fibers embedded within the cortical F-actin network, we

speculate similar mechanisms could be operating to

concentrate NMII within the cortical F-actin network itself.

Importantly, cortical F-actin can also assemble at the sides of

the cell away from the leading edge in response to the actin-

nucleating activities of Arp2/3 and mDia1 (Bovellan et al., 2014).

The architecture of the resulting cortical F-actin network is

governed by the balance between branched F-actin and long

F-actin filaments nucleated by Arp2/3 and mDia1, respectively.

This mechanism is a way to control membrane tension

independently of NMII activity. Interestingly, inhibiting Arp2/

3 increases NMII intercalation into cortical F-actin and also

increases membrane tension (Truong et al., 2021), consistent

with the finding that Arp2/3 inhibition increases cytoplasmic

pressure dependent on NMII activity (Patel et al., 2021). Once the

cortical actomyosin network is assembled, the associated NMII

activity can be controlled by at least two distinct mechanisms.

Calcium entry through the plasma membrane can feedback on

NMII activity in the cortex to further increase contractility (Chen

et al., 2013). Secondly, the small GTPase RhoB can be

translocated to the plasma membrane from the

endomembrane system with the help of the kinesin KIF13A

(Gong et al., 2018). Once at the plasma membrane, RhoB

activates NMII within the cortical cytoskeleton to increase

cytoplasmic pressure and trigger the small dynamic blebs that

are characteristic of unstable bleb-based amoeboid motility.
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NMII near the leading edge

Cell-matrix adhesion is critical for the path-generating

modes of 3D migration, such as during lamellipodia- (Doyle

et al., 2012) and lobopodia-based (Petrie et al., 2012) motility

(Figure 2A,C). The adhesions that form at the very front of the

cell are strengthened over time by actomyosin contractility with

cycles of membrane protrusion and retraction helping to apply

traction forces to the matrix fibers to promote directional cell

migration (Wang et al., 2019; Doyle et al., 2021). NMIIA is the

NMII isoform responsible for generating these traction forces at

the leading edge of the cell in 3D. The initial engagement of

integrins with the matrix triggers the further recruitment of the

focal adhesion proteins vinculin and paxillin to form stable

adhesions that are strongly adherent to the matrix and

associated with negligible retrograde flow. Thus, the

contractility that drives adhesion maturation also increases the

local matrix alignment at the front of the cell. NMIIA activity at

the leading edge could also be regulated by local influxes of

calcium through the TRPM7 stretch-activated Ca2+ channels in a

feedback loop initiated by NMII-generated tension within the

plasma membrane (Wei et al., 2009). Alternatively, the collagen

adhesion-mechanoreceptor DDR1 is an important component of

machinery responsible for generating traction forces and

remodeling the collagen matrix. DDR1 associates with the

myosin phosphatase Rho-interacting protein (MRIP) which

regulates the clustering and growth of DDR1 containing

adhesions by increasing NMII activity at the leading edge of

the cell (Coelho et al., 2020). Finally, the local RhoA activity at the

leading edge could also govern actomyosin contractility at the

front of the cell (Machacek et al., 2009).

When primary human mesenchymal cells encounter linearly

elastic, covalently crosslinked 3D matrices they activate a second

pool of NMII contractility that also acts in front of the nucleus. The

function of this perinuclear pool of NMII is to pull the nucleus

forward through the tight spaces in the 3DECM (Petrie et al., 2014;

Thomas et al., 2015). We speculate that NMIIB is the isoform

responsible for generating and maintaining the tension necessary

to pull the nucleus forward. A critical question is how is this

cytoplasmic contractility applied to the nucleus to pull it forward?

Interestingly, it is not necessarily a direct connection. Vimentin

intermediate filaments are required for the nucleus to be pulled

forward by actomyosin contractility through 3DCDM (Figure 2A)

(Petrie et al., 2017). The cytoskeleton crosslinking protein plectin

connects the cytoplasmic F-actin network in front of the nucleus to

the basket of vimentin intermediate filaments that surround the

nucleus in response to substrate rigidity (Marks et al., 2022).

Specifically, this network is assembled in response to soft

substrates and requires NMII activity, consistent with

mechanosensing by the classical rigidity-sensing machinery.

Once this nuclear piston pulling machinery is connected, it

becomes activated via an unknown mechanism that can sense

the elastic behavior of the surrounding matrix (Petrie et al., 2012;

Petrie et al., 2014). The actomyosin filaments that are responsible

for pulling the nucleus forward to generate pressure are further

distinguished from actomyosin filaments that create traction forces

by the presence of the acting-binding protein Tpm 1.6 (Figure 3A)

[(Sao et al., 2019); and see Tropomyosins below]. The association

of Tpm 1.6 promotes NMII activation to generate the force

necessary to pull the nucleus forward, while Tpm 2.1 negatively

regulates the actomyosin machinery responsible for traction forces

and matrix remodeling. Consistent with traction forces and

pressure being critical for nuclear piston migration, both Tpm

1.6 and 2.1 are required for 3D cell migration. In addition to

nesprin 3, nesprin 2G has been implicated in contributing to 3D

cell movement by coupling the nucleus directly to the cytoplasmic

F-actin network. These connections transmit tension to the

nucleus (Arsenovic et al., 2016) and are concentrated in the

front of the nucleus in cells migrating through a confined

environment (Davidson et al., 2020), consistent with

actomyosin contractility acting through nesprin 2G to help pull

of the nucleus forward. Further work is needed to fully understand

how the distinct cytoskeleton-nucleoskeleton connections are

coordinated to achieve 3D migration.

FIGURE 3
Tropomyosins, septins, and the BORG proteins canmodulate
the NMII activity within discrete populations of actin filaments. (A)
Tpms canmodulate the activity of NMII on F-actin. In this example,
the association of Tpm 1.6 with actin stress fibers increases
NMII activity. This mechanism aids in pressure-based 3Dmigration
mechanisms such as the nuclear piston. (B) SEPT2 can promote
actomyosin contractility through a direct interaction with NMII on
F-actin. (C) BORG (binder of Rho GTPases) proteins are effectors
of the small GTPase Cdc42 that bind and regulate septins to
modulate intracellular force production by NMII.
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Additional mechanisms that could
control local recruitment and
activation of NMII during 3D cell
migration

Given that the plasticity of 3D cell migration is a relatively

new field of study (Friedl and Wolf, 2010), many additional

questions remain regarding how NMII activity is localized and

controlled when cells switch between distinct migrationmodes. It

is likely, therefore, that better understanding how the localization

of NMII and the mechanotransduction triggering its activation

will be essential to understand how cells are able to navigate the

diverse physical matrix structures present in the body. Septins

and tropomyosins are components of the cytoskeleton that have

already been shown to contribute to some of the mechanisms

driving cell motility through 3D ECMs. The following provides

some additional information about how these highly adaptable

proteins are known to influence NMII localization and activity

which may also play a role in directing NMII plasticity in

migrating cells.

Tropomyosins

Tropomyosins (Tpms) are a large family of filament forming,

F-actin binding proteins that can specify the function of the

F-actin filaments with which they associate (Figure 3A)

(Gunning et al., 2015). The diversity in F-actin filament

function can then be explained by the forty unique Tpm

mRNAs that are expressed from four genes (Geeves et al.,

2015). An example of how Tpm association with actin can

change depending on the location and function of the F-actin

filament comes from examining the distribution of Tpm isoforms

in cells adhering to a 2D surface (Tojkander et al., 2011). In these

cells, Tpm 1.6 associates along the full length of dorsal stress

fibers, while Tpm 2.1, Tpm 3.1, and Tpm 3.2 are enriched at the

ends of these dorsal stress fibers where they correspond to

vinculin-positive focal adhesions. An early example of their

role in cell migration and protrusion formation comes from

the discovery that the expression of Tpm 3.12 triggered the loss of

lamellipodia and lamellipodia-independent 2D migration

(Gupton et al., 2005). Further, Tpm 1.6 is enriched in actin

stress fibers across the full length of cells migrating over 2D

surfaces but redistributed exclusively in front of the nucleus in

cells using the nuclear piston to migrate through 3D matrices

(Sao et al., 2019).

Tpms can co-assemble with polymerizing actin fibers whose

formation is nucleated by formins (Johnson et al., 2014), though

evidence exists that Tpms can also be recruited to pre-assembled

F-actin networks (Appaduray et al., 2016). In vitro studies have

revealed that the association of different Tpm isoforms with

actomyosin filaments can change the characteristics of NMII

function within those filaments. These characteristics include

sliding filament velocity driven by NMII activity, the amount of

time the NMII is continuously walking along the filaments

(processivity), and duty load as an indirect measure of the

force generated by the filaments (Gateva et al., 2017). In the

presence of other actin-binding proteins it gets a little more

complicated. Tpm can compete with other actin-binding

proteins to change the architecture and function of the

F-actin network, along with NMII activity (Hu et al., 2019).

Essentially, increased disorder in the F-actin network leads to

higher tension and traction forces generated by NMII activity in

response to increased Tpm 3.1/3.2 driving α-actinin out of the

network. Further, Tpm 3.1/3.2 are not uniformly distributed

along the length of F-actin, instead they are associated with NMII

head domains, rather than the long NMII heavy chain tails or

with α-actinin binding sites (Meiring et al., 2019). Tpm

3.1 expression is required for NMII association with those

F-actin networks. Tpm 1.6 and Tpm 2.1 also localize to

distinct domains within dorsal stress fibers (Sao et al., 2019).

Importantly, unique functions are associated with these spatially

segregated Tpms. Tpm 1.6 increases actomyosin contractility to

generate increased cytoplasmic hydraulic pressure, while Tpm

2.1 negatively regulates the actomyosin contractility responsible

for generating traction forces. Post-translational modifications in

the form of N-terminal acetylation may be a critical regulator of

Tpm function and help to diversify the functional characteristics

of NMII associated with distinct subsets of F-actin (Reindl et al.,

2022).

Septins, anillin, and the Borg

Septins are filament forming proteins that regulate the

organization and activity of contractile actomyosin structures

required for normal migration and tumor cell invasion by

directly binding non-muscle myosin II, scaffolding myosin

binding partners, and facilitating the assembly of higher order

structures (Figure 3B). [For a comprehensive review of septins,

see (Spiliotis and Nakos, 2021)]. Which septin family members

are involved and their specific roles can vary by cell type,

dimensionality of the ECM, and mode of migration. In vitro

experiments revealed that septin 2 (SEPT2) binds directly to a

coiled-coil region of NMIIA (Figure 3B) (Joo et al., 2007). SEPT2-

NMIIA binding is required to maintain intact actomyosin stress

fibers at the center of the cell and, during cell division, maintain

the degree of myosin light chain phosphorylation necessary for

completing cytokinesis. SEPT2 may indeed scaffold the kinases

ROCK and CRIK to activate NMII, as ROCK and CRIK associate

whether or not NMII is present, and the interaction of NMIIA

with SEPT2 is required for MLC di-phosphorylation to complete

cytokinesis (Joo et al., 2007). In mouse podocytes, active NMIIA

forms a complex with SEPT7 and the t-SNARE protein SNAP3

(Wasik et al., 2017). Here, SEPT7 stabilizes the formation of a

complex between NMIIA and SNAP23 but suppresses NMIIA
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activity. In immature rat hippocampal neurons, a wreath-like

network of septin filaments containing SEPT7 acts as a scaffold to

localize NMIIB to the base of F-actin bundles within incipient

neurites to regulate somatic contractility and protrusion

formation (Radler et al., 2022). In human renal epithelial cells

migrating using a mesenchymal mode, septin filaments

comprised of septins 2/6/7/9 localize to contractile transverse

arc stress fibers where SEPT9 crosslinks actin bundles, while

depletion of SEPT2 does not alter levels of activated NMIIA

(Dolat et al., 2014). Similarly, in amoeboid mouse lymphocytes,

knocking down SEPT7 does not change NMII expression or

phosphorylation of NMIIA heavy and light chains. However,

SEPT7 in lymphocytes (Tooley et al., 2009; Gilden et al., 2012)

and SEPT9 in melanoma cells (Farrugia et al., 2020) do help

modulate cortical contractility.

Anillin is a scaffold protein that was first discovered for its

role in governing actomyosin contractility at the cytokinetic ring

during the final stages of cell division (Field and Alberts, 1995).

More recently, anillin has been found to coordinate with septin

filaments within the cytokinetic ring during ring assembly and

cytokinesis. Specifically, anillin-like proteins in yeast help to

organize a double ring of septin filaments on either side of

the central ring of actomyosin (Chen et al., 2020; Arbizzani

et al., 2022). Interestingly, anillin has also been found to regulate

actomyosin filaments in interphase epithelial cells, where it

recruits vinculin to the medial-apical actomyosin network at

the surface of epithelial cells (Arnold et al., 2019). This results in

an increase in tension in this network that may be partially

dependent on septins.

Borg (binder of Rho GTPases) proteins, also known as

Cdc42EPs, are Cdc42 effectors that bind and regulate septins.

Cdc42EP3 (Borg2), -EP5 (Borg3) and -EP1 (Borg5) have been

studied with regard to their potential impact on NMII function.

Cdc42EP3 directly binds SEPT2 and SEPT7 (Joberty et al., 1999;

Joberty et al., 2001) and F-actin, and these interactions generate

filamentous septin and actin networks in cancer-associated

fibroblasts (CAFs) (Figure 3C) (Calvo et al., 2015). Depleting

Cdc42EP3 or SEPT2 reduces actomyosin stress fibers and active

NMII in vitro and reduces the ability of CAFs to remodel matrix

in vitro and in vivo. In 3D collagen, Cdc42EP5 predominately

localizes with active contractile actomyosin at the cell cortex in

melanoma cells (Farrugia et al., 2020). Cdc42EP5 depletion, but

not depletion of any other Borg proteins, reduces the

phosphorylation of myosin light chain 2 levels without

affecting MLC2 expression. Still in 3D collagen,

Cdc42EP5 interaction with SEPT9 increases NMII activity and

is required for actomyosin-dependent melanoma invasion. On

2D surfaces, filamentous Cdc42EP1, which interacts with SEPT7

(Joberty et al., 2001), co-aligns with SEPT7, actin stress fibers,

and active NMII above the nucleus in myocardial endothelial

cells (Liu et al., 2014). Loss of Cdc42EP1 or SEPT7 disrupts the

tripartite association of septin, Cdc42EP1, and actomyosin

filaments. Further, there is a decrease in perinuclear NMII

activity and a reduction of persistent directional migration in

2D and 3D environments, though the relationship remains

correlative between Cdc42 EP1 expression, disrupted

structures and migration (Liu et al., 2014).

Conclusion

Overall, we have learned much in the nearly 160 years since

myosin was first isolated about how this essential actin-binding

motor protein converts chemical energy to mechanical energy to

achieve motion at the cellular, tissue and organismal scales. The

utility of actomyosin contractility is also exemplified by the

numerous ways that non-muscle cells have adapted this force-

generating system to achieve migration through 3D matrices. It

remains an open question as to howmany ways there are for cells

to migrate through the physically diverse environments within

the body. By continuing to investigate the unique roles of NMII

in producing the physical forces to achieve cell motility, we

predict the rules governing mode switching will be revealed.
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