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One of the main topics in regeneration biology is the nature of the early signals

that trigger the damage response. Recent advances in Drosophila point to the

MAP3 kinase Ask1 as a molecular hub that integrates several signals at the onset

of regeneration. It has been discovered that reactive oxygen species (ROS)

produced in damaged imaginal discs and gut epithelia will activate the

MAP3 kinase Ask1. Severely damaged and apoptotic cells produce an

enormous amount of ROS, which ensures their elimination by activating

Ask1 and in turn the pro-apoptotic function of JNK. However, this creates

an oxidative stress environment with beneficial effects that is sensed by

neighboring healthy cells. This environment, in addition to the Pi3K/Akt

nutrient sensing pathway, can be integrated into Ask1 to launch

regeneration. Ultimately the activity of Ask1 depends on these and other

inputs and modulates its signaling to achieve moderate levels of p38 and

low JNK signaling and thus promote survival and regeneration. This model

based on the dual function of Ask1 for early response to damage is

discussed here.
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Introduction

Regeneration, involving the repair or replacement of body parts, is widespread across

the metazoans (Bely and Nyberg, 2010). The extent of regeneration varies among phyla,

ranging from complete body parts to small pieces of damaged cells. Regardless of their

regenerative capacity, different animal models, from worms to mammals, are being used

in laboratories worldwide to shed some light on the basic principles of regeneration

(Goldman and Poss, 2020). Research using animal models has generated several

breakthroughs and has accumulated a vast amount of knowledge about the factors

necessary for wound healing, regenerative proliferation, and re-patterning (Reuter et al.,

2019). A definition of regeneration reminiscent of T.H. Morgan (Morgan, 1901) entails

two scenarios in metazoans: (a) reparative or traumatic regeneration and (b) a

physiological or homeostatic scenario, including cell turnover and tissue or epithelial
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lining wear and tear. In fact, optimal health is largely dependent

upon tissue homeostasis, which involves cell replacement,

regeneration, and tissue repair.

However, little is known about how tissues sense damage to

initiate a cellular response. This aspect can be studied in model

organisms where damage and its response can be reproducibly

traced in small populations of cells and where genetic

manipulation is possible, such as in Drosophila (Fox et al.,

2020). How cells know when the regeneration machinery

must be ignited is the subject of this paper, and in particular,

I will focus on recent contributions that have unveiled the early

dialog between damaged cells and healthy regenerating cells in

Drosophila.

Drosophila imaginal discs are a model for tissue regeneration,

as they undergo compensatory proliferation upon damage (Fan

and Bergmann, 2008; Martin et al., 2008; Perez-Garijo et al.,

2009; Smith-Bolton et al., 2009; Bergantiños et al., 2010; Herrera

et al., 2013). Moreover, imaginal discs, like the mammalian liver,

are epithelia that can heal and regenerate to their original size

following removal of part of their mass, implying that some form

of memory is retained in these organs (Hariharan and Serras,

2017). The wing imaginal discs, which are easily accessible,

permit the manipulation and monitoring of both fast

responses in the larval tissue and delayed responses in the

adult tissue.

How is damage sensed?

Upon damage, the internal and external microenvironments

can act as stressors for the cell. Stressors can affect the ionic

balance of the cell membranes, change the permeability of the

mitochondria and cause DNA damage. For example, injuries can

produce intracellular Ca2+ release from the endoplasmic

reticulum Ca2+ stores downstream of the inositol-3-phosphate

receptor, which in turn requires gap junctions for intercellular

propagation during wound healing (Razzell et al., 2013; Narciso

et al., 2015; Restrepo and Basler, 2016). Also, ROS produced as

byproducts of mitochondrial dysfunction generate oxidative

stress that can also propagate to healthy neighbor cells

(Serras, 2016). There are different sources of ROS in the cell.

The evolutionary conserved membrane bound NAPH-oxidases

(e.g. Duox, Nox) are specialized ROS producers and are involved

in signaling (Vermot et al., 2021). ROS are also produced during

mitochondrial electron transport or oxidation reactions. The free

radical superoxide (O2
−), which predominates in the

mitochondria, is the result of the reduction by one electron to

oxygen. Two-electron reactions that reduce oxygen to hydrogen

peroxide (H2O2) also occur in mitochondria (Finkel, 2011). ROS,

which have generally been considered to be deleterious, are now

emerging as active participants in cell signaling events (Finkel,

2011). For example, H2O2 is required for inflammatory cell

recruitment (Niethammer et al., 2009; Moreira et al., 2010;

Hunter et al., 2018; Niethammer, 2018). ROS produced after

Xenopus tail or zebrafish fin lesions are required for regeneration

(Gauron et al., 2013; Love et al., 2013; al Haj Baddar et al., 2019).

ROS can rescue regeneration in Erk-deficient planarians (Jaenen

et al., 2021). H2O2 is generated by the activation of NADPH

oxidases (DUOX) and is important for rapid recruitment of pro-

inflammatory cells to the wound (Razzell et al., 2013; Narciso

et al., 2015). ROS and Ca++ production are interrelated as

blocking the calcium waves or flashes produced after damage

inhibits H2O2 release at the wound site, suggesting that the

wound-induced Ca++ activates DUOX, likely via an EF-hand

calcium-binding motif that, in turn, produces H2O2 (Razzell

et al., 2013; Khan et al., 2017). Damaged cells can propagate H2O2

extracellularly and aquaporins might then act as conduits that are

needed for these extracellular ROS to be channeled into the

nearby healthy cells (Thiagarajah et al., 2017; Dhawan et al.,

2021). Several lines of evidence show that interfering with Ca++

flashes or with oxidative stress alters wound healing and tissue

repair (Razzell et al., 2013; Santabárbara-Ruiz et al., 2015;

Restrepo and Basler, 2016; Brock et al., 2017; Khan et al.,

2017). Therefore, these mechanisms operate as chemical alerts

to sense damage and eventually activate regeneration.

In summary, the capacity to sense damage by Ca++ or ROS is

a primary hallmark of tissue regeneration. ROS produced by

various redox metabolic reactions have recently emerged as

active participants in cell signaling events that spark

regeneration.

JNK and p38: two MAP kinases that
respond to ROS generated by cell damage

ROS act as second messengers to activate redox-sensitive

signals, including the stress activated MAP kinases Jun-N

Terminal kinase (JNK) and p38 (Droge, 2002; McCubrey

et al., 2006; Jiang et al., 2011; Sato et al., 2014). In

mammals, apoptosis enhances the activation of p38,

resulting in Wnt3 transcription, a signal required for

regeneration (Ankawa et al., 2021). In Drosophila, p38 and

JNK signaling pathways respond to ROS and foster

regeneration (Matsuzawa et al., 2005; Shi et al., 2014;

Santabárbara-Ruiz et al., 2015; Verghese and Su, 2016;

Brock et al., 2017; Khan et al., 2017; Pérez et al., 2017;

Diwanji and Bergmann, 2018; Worley et al., 2018; Patel

et al., 2019; Evans et al., 2022).

Because imaginal discs do not show significant apoptosis,

the ectopic activation of pro-apoptotic genes in discrete

zones is a suitable technique for neatly testing tissue

recovery (Smith-Bolton et al., 2009; Bergantiños et al.,

2010). This approach is less laborious than traditional

surgical methods and can, therefore, be incorporated into

large-scale genetic studies. It is based on the expression of the

yeast transcription factor Gal4 targeted at discrete zones of
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the epithelium using tissue specific regulatory elements and

also at a UAS that drives the expression of pro-apoptotic

genes. With these genetic tools, the binding of Gal4 to the

UAS will result in apoptosis in discrete zones of the tissue.

The activity of Gal4 can be inhibited by a temperature-

sensitive allele of Gal80, a Gal4 repressor. Genetic ablation

is achieved by a temperature shift (from 17°C to 30°C) for a

period of several hours during third instar larval

development (Figure 1A).

When apoptosis is induced in imaginal discs, stress factors

stimulate the pro-apoptotic role of JNK, resulting in a loop that

ensures apoptosis (Shlevkov and Morata, 2012; Wells and

Johnston, 2012). However, in addition to the pro-apoptotic

role of JNK, proliferative and developmental roles have been

widely reported (Pinal et al., 2019). Reporters of JNK activity,

such as TRE-DsRed (Chatterjee and Bohmann, 2012), have been

detected in cells that undergo apoptosis, but also in cells adjacent

to the apoptotic zone, (Santabárbara-Ruiz et al., 2015)

(Figure 1B). The phosphatase puckered (puc) is expressed

downstream of the JNK pathway and acts as a negative

regulator of the pathway (McEwen and Peifer, 2005). Puc is

found at the edge of injured or apoptotic zones (Bosch et al.,

2005, 2008; Smith-Bolton et al., 2009; Bergantiños et al., 2010;

Santabárbara-Ruiz et al., 2015) (Figure 1B). In addition, blocking

ROS production or mutants in the JNK pathway prevent

regeneration (Smith-Bolton et al., 2009; Bergantiños et al.,

2010; Fogarty et al., 2016; Khan et al., 2017).

Another MAP kinase that controls cellular responses to stress

is p38. Phospho-p38, a reporter of p38 signaling, accumulates

considerably in the imaginal disc, particularly in cells that

surround the apoptotic zone (Figure 1B). Chemical

antioxidants and genetic ROS scavengers interfere with the

activation of p38; and loss-of-function of p38 signaling results

in impaired regeneration (Santabárbara-Ruiz et al., 2015).

Interestingly, the domain of puc cells is restricted to a few

cells at the edge of the apoptotic zone, whereas increased

p38 activity is much more extensive (Figure 1B). This

observation is reminiscent of the antagonism between p38 and

JNK (Wagner and Nebreda, 2009). In Drosophila gut, the

interaction between p38 and its major target MK2 ensures

proper stress response by keeping JNK activity low to avoid

apoptosis (Seisenbacher et al., 2011).

The link between ROS production and JNK
or p38 activation

There are two crucial questions that need to be addressed to

understand the onset of repair. First, how is the production of

ROS linked to JNK and p38 activity? And second, as the two

MAPKs can promote apoptosis, how do JNK and p38 avoid

killing the cells and be essential for regeneration? Recent

advances have shed some light on these issues.

A key molecule in both instances is the apoptosis signal

regulating kinase-1 (ASK1). Among the MAP3 kinases that

operate upstream from JNK and p38, ASK1 is particularly

sensitive to oxidative stressors (Takeda et al., 2006; Shiizaki

et al., 2013; Sakauchi et al., 2017). ASK1 is inhibited when

bound to thioredoxin (TRX) at the N-terminal region and to

13-4-4 protein close to the C-terminus (Saitoh et al., 1998; Zhang

et al., 1999). Upon oxidative stress, these inhibitory proteins

dissociate from the Ask1 complex and, thereby,

FIGURE 1
ROS-dependent responses in early regeneration. (A) Design
for genetic induction of cell death (genetic ablation). Drosophila
strains carrying tissue specific (enhancer/promoter) expression of
Gal4 (E/P-Gal4) will allow the transcription of the pro-
apoptotic gene cloned downstream of the UAS sequence when
Gal80 is inhibited (at 29–30°C). However, at 18°C the temperature
sensitive Gal80 is active and blocks Gal4 which results in
regeneration of the apoptotic tissue. (B) Scheme of wing imaginal
discs showing the activity of some of the early responding signals
after apoptosis. After genetic ablation, apoptotic cells produce
high levels of ROS (Red in the central disc), which spreads to cells
surrounding the apoptotic domain (shaded orange circle);
Apoptotic cells and few non-apoptotic cells nearby, show
expression of the JNK reporter TRE-DsRed (dark red). The
puckered phosphatase (puc in green) is transcribed downstream
JNK mainly in cells that are nearby the apoptotic zone. P-Akt and
P-p38 respond in a broader domain and both found in surrounding
the dead domain. Apoptotic cells are outlined with a black line in
the center of each disc or with a solid black background.
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ASK1 oligomerizes, autophosphorylates, recruits partners and

becomes active (Bunkoczi et al., 2007; Takeda et al., 2008; Obsil

and Obsilova, 2017). A threonine-rich catalytic domain is

important for ASK1 signaling and can trigger JNK- and p38-

dependent apoptosis (Ichijo et al., 1997; Tobiume et al., 2001,

2002; Bunkoczi et al., 2007).

Little is known about the partners and mechanism of action

of the Drosophila Ask1. Ask1 can induce apoptosis in a JNK-

dependent manner (Kuranaga et al., 2002). But loss of function of

Ask1 impairs regeneration, which indicates that it has functions

other than those related to apoptosis (Patel et al., 2019;

Santabárbara-Ruiz et al., 2019). The activation of p38

(phospho-p38) mainly occurs in non-apoptotic cells and is

Ask1 dependent (Patel et al., 2019; Santabárbara-Ruiz et al.,

2019).

In addition to the autophosphorylation of Thr-rich sites,

the phosphorylation of various Ser residues by other kinases

also regulates mammalian ASK1 signaling activity (Zhang et al.,

1999, 2005; Kim et al., 2001; Fujii et al., 2004). Interestingly,

phosphorylation of human ASK1 Ser83 by Akt is thought to

attenuate Ask1 activity and inhibit apoptosis (Kim et al., 2001;

Zhang et al., 2005). Drosophila lacks the vertebrate N-terminal

region that includes Ser. However, position 83 of Drosophila

Ask1 is occupied by another Ser residue (Ser174 in human

ASK1) embedded in a consensus that is highly conserved from

sponges to mammals and that can be phosphorylated by Akt

(Santabárbara-Ruiz et al., 2019). Amino-acid substitution of

this Ser83/174 impedes p38 phosphorylation and regeneration,

suggesting that at least in flies, Ask1 Ser83/174 is key for

survival, skipping apoptosis and promoting repair

(Santabárbara-Ruiz et al., 2019). Remarkably, healthy cells

near apoptotic cells not only show increased

phosphorylation of p38 but also a ROS-dependent increase

in phosphorylated Akt, also known as Protein Kinase B (PKB)

(Santabárbara-Ruiz et al., 2019) (Figure Fig1B). Thus, ROS have

a dual function, one to activate Ask1 by removing Trx and the

other to promote the activity of Akt. The Akt pathway can be

enhanced through inhibition of the counteracting PTEN

phosphatase. Interestingly, hydrogen peroxide oxidizes and

inactivates human PTEN through disulfide bond formation

between the catalytic domain Cys-124 and Cys-71 residues

(Lee et al., 2002).

In summary, phosphorylation of Ask1 by Akt promotes

survival, perhaps by keeping JNK at low levels and thus

avoiding JNK-induced apoptosis, and by producing moderate

levels of phospho-p38. These low JNK and moderate p38 levels

set the scene for triggering tissue repair in healthy cells and

avoiding apoptosis. Moreover, Akt-dependent phosphorylation

of the Ser83/174 residue is required for p38-activity and for low

JNK activity. Thus, this Ser83/174 residue must be key for

swapping between p38 or JNK, and therefore between survival

or apoptosis.

The adult Drosophila gut, a stem cell-based regenerating

tissue, has many structural similarities to the human intestine

and is the subject of intensive research that has been reviewed

elsewhere (Colombani and Andersen, 2020; Zhang and Edgar,

2022). Remarkably, p38 is activated in enterocytes upon

damage, and Ask1 acts upstream from p38 in response to

FIGURE 2
Different requirement of JNK and p38 in Drosophila wing disc cells during apoptosis and regeneration. Apoptotic stimulus produces ROS that
promote the dissociation of the thioredoxin (Trx) from Ask1. As a consequence, the activity of the Ask1 kinase domain is enhanced and JNKK will be
phosphorylated and eventually the cell will irreversibly enter into apoptosis (Cell committed to die). The adjacent healthy cells will be sensitive to
propagated ROS from the apoptotic cell, albeit in much lower levels, and moderately activate Ask1 (Cell recruited to regenerate). Ask1 can
activate JNK in low levels or transiently until puckered (puc) attenuates JNK. In addition, the JNK-p38 antagonism could also attenuate JNK in the
regenerating cell. This is key to maintain the viability of the regenerating cell. Activation of the Pi3K/Akt by nutrients or insulin signaling will result in
phosphorylation of the Ser residue of YH_GVRESF Ask1 consensus. This signal is crucial for the activation of p38 but not JNK. Akt is also sensitive to
ROS, likely through PTEN inactivation (dotted line).
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numerous stressors, among them ROS produced by the NAPH

oxidase NOX. This NOX/Ask1/P38 module in enterocytes acts

as the signal for Upd cytokines to induce intestinal stem cells to

proliferate, repair damage and regenerate the gut (Patel et al.,

2019). Moreover, p38 signaling protects enterocytes from JNK-

induced apoptosis after chronic stress (Seisenbacher et al.,

2011).

Kinases and nutrients

Akt mediates phosphatidylinositol 3-kinase (Pi3K) to

modulate different signals that foster proliferation and

survival and prevent apoptosis. One of the canonical signals

upstream from Pi3K/Akt is the insulin/insulin-like growth

factor signaling pathway (IIS) that, upon activation of its

tyrosine-kinase receptor, PIP2 is converted to PIP3 by Pi3K

(Revathidevi and Munirajan, 2019). PIP3 recruits Akt to the

plasma membrane and binds to phosphoinositide-dependent

kinase-1 (PDK1), which in turn phosphorylates Akt. The

conserved IIS and the target of rapamycin (TOR) pathways

have a central role in metabolic homeostasis, stress response,

growth, and aging, in flies, worms and mammals (Partridge

et al., 2011).

One of the central mechanisms that organisms use to sense

nutrients and their own nutritional status is the highly

evolutionarily conserved insulin/insulin-like growth factor

signaling (IIS) and the target of rapamycin (TOR) pathways

(Flatt and Partridge, 2018). The decreased activity of these

pathways can improve health and delay aging (Johnson et al.,

2013; Flatt and Partridge, 2018). However, reduced activity of

the IIS and TOR pathways can impair wound healing in flies

and mice (Squarize et al., 2010; Kakanj et al., 2016). Thus, it is

conceivable that the mechanisms that sense the nutritional

status of the organism are key in sensing damage and

therefore in the onset of regeneration. Indeed, it has recently

been found that nutrient restriction blocks regeneration in

similar phenotypes such as downregulation of Pi3K/Akt or

in the mutated Ser83 of Ask1 (Santabárbara-Ruiz et al.,

2019; Esteban-Collado et al., 2021). More importantly, it has

also been found that the anomalous regeneration resulting from

nutrient restriction or from mutated Ask1 Ser83 can be rescued

by ectopic activation of p38, but not of JNK (Esteban-Collado

et al., 2021). These observations demonstrate that the function

of Pi3K/Akt in regeneration is channelled through p38 rather

than JNK.

Discussion

In the last two decades several types of Drosophila epithelia,

from embryo to adult, have contributed to our understanding of

the early signals that respond to damage in an organism. A

central feature is Ask1, a kinase initially associated with

promoting cell death that has now emerged as being pivotal

in regeneration. We foresee Ask1 as a signaling hub that

integrates early moderate Ca++/ROS signals and phospho-Akt

survival signals to divert Ask1 towards the p38-regeneration

response (Figure 2). In contrast, high ROS or pro-apoptotic

signals will act on the Ask1 hub to steer it towards JNK-

dependent apoptosis (Figure 2). In addition to ROS and IIS/

Pi3K/Akt, the decision to survive or not may require other

molecules interacting with Ask1. Various signaling proteins

such as the TNF receptor associated factors (TRAF) can bind

to Ask1 and modulate its function (Nishitoh et al., 1998;

Matsuzawa et al., 2005; Fujino et al., 2007).

JNK has a variety of functions other than promoting

apoptosis (Martin-Blanco et al., 1998, 2000; Zeitlinger and

Bohmann, 1999; Pastor-Pareja et al., 2004; Muñoz-Descalzo

et al., 2005; Gettings et al., 2010; Martín et al., 2017; Pinal

et al., 2019). JNK’s function in early regeneration events will

strongly depend on its levels or perhaps on how long these are

sustained. In Drosophila discs, constitutive activation of JNK

results in apoptosis (Igaki, 2009; Shlevkov andMorata, 2012). But

in physical injuries, JNK is activated at the wound edges (Bosch

et al., 2005, 2008; Lee et al., 2005; Mattila et al., 2005; Blanco et al.,

2010; Diaz-Garcia and Baonza, 2013; Ahmed-de-Prado et al.,

2018). Reporters of JNK (i.e. TRE-dsRed) are expressed earlier

than the phosphatase puc (i.e. puc > GFP) (Santabárbara-Ruiz

et al., 2015). In addition, the cell lineage of these puc positive cells

has shown that most of the reconstructed disc derives from puc

positive cells (Bosch et al., 2008). The presence of puc positive

cells indicates that JNK has been activated and dampened down,

likely to restrict JNK to beneficial levels.

An exciting suggestion would be that JNK responds rapidly

to the first flashes of ROS or Ca++. But once the phospho-Akt

diverts Ask1 towards the survival pathway, JNK activity is

restricted to protecting the tissue from further damage. This is

an attractive hypothesis as it implies that the onset of stress-

induced repair has two phases: one more dependent on JNK and

a second on p38. Further research will be needed to elucidate

whether the activity of these kinases overlaps.

The transcriptional signature downstream of the damage

response includes the program for regenerative proliferation

and repatterning (Vizcaya-Molina et al., 2018; Harris et al.,

2020; Worley et al., 2022) and the identification of the

blastema signature (Worley et al., 2022). In addition, JNK and

p38 MAP kinases target the unpaired (Upd) cytokines (the

Drosophila members of the interleukin-6 family), which are

capable of activating the JAK/STAT pathway for growth

control (Pastor-Pareja et al., 2008; Jiang et al., 2009; Diaz-

Garcia and Baonza, 2013; Katsuyama et al., 2015;

Santabárbara-Ruiz et al., 2015; la Fortezza et al., 2016;

Verghese and Su, 2016; Ahmed-de-Prado et al., 2018; Worley

et al., 2018; Patel et al., 2019). Also, non-apoptotic JNK activity in

regeneration is driven by, for example, Wg/Wnt signaling
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(Smith-Bolton et al., 2009; Harris et al., 2016; Gracia-Latorre

et al., 2022), Hippo signaling (Grusche et al., 2011; Sun and

Irvine, 2011; Repiso et al., 2013; Meserve and Duronio, 2015;

Ruiz-Romero et al., 2015), Gadd45, involved in DNA repair

(Camilleri-Robles et al., 2019), and Ets21c, a JNK-dependent

transcription factor key for disc blastema cells (Worley et al.,

2022). Further research will be necessary to clarify whether the

genetic response to JNK and p38 differs. In addition, studies are

needed to explore whether this mechanism of sensing damage

has been conserved through evolution.
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