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Recent research shows that integrin-mediated adhesion contributes to the

regulation of cell division at two key steps: the formation of the mitotic spindle

at themitotic entry and the final cytokinetic abscission at themitotic exit. Failure

in either of these processes will have a direct impact on the other in each round

of the cell cycle and on the genomic integrity. This review aims to present how

integrin signals are involved at these cell cycle stages under normal conditions

and some safety mechanisms that may counteract the generation of aneuploid

cells in cases of defective integrin signals.
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1 Introduction

In contrast to cancer cells, normal mammalian cells depend on signals generated from

integrin contacts with the extracellular matrix (ECM) for their survival and proliferation.

Integrins do not have intrinsic enzyme activity but trigger several signaling pathways

through ligand-induced clustering, which via the integrin-associated talin-kindlin-

paxillin complex, brings focal adhesion kinase (FAK) together for trans-

autophosphorylation at Tyr397 (Acebron I et al., 2020; Lu F et al., 2022) and the

subsequent activation of Src family kinases (Calalb M B et al., 1995; Mitra S K et al.,

2005). In addition, the mechanical force exerted on integrin contacts can induce signals by

conformational changes in stretch-sensitive proteins (Martino F et al., 2018). The integrin

adhesion-dependent FAK-Src activation is a long-known requirement for sustained

induction of the PI3K-Akt and the Ras-ERK pathways needed to avoid apoptosis and

to pass the G1-S checkpoint of the cell cycle (Schwartz and Assoian, 2001; Reddig and

Juliano, 2005). The absence of the adhesion will efficiently stop proliferation unless the

checkpoint is suppressed by viruses or mutations (Thullberg and Stromblad, 2008; Deng Z

et al., 2021; Engeland K, 2022). More recently, integrin signals via FAK have been found to

contribute to cytokinetic abscission (Reverte C G et al., 2006; Thullberg M et al., 2007;

Pellinen T et al., 2008; Kamranvar S A et al., 2016), as well as to the arrangement of

centrosomes into a bipolar mitotic spindle which is also essential for successful cytokinesis

(Park A Y et al., 2009; Kamranvar S A et al., 2022b). Although failures at these stages will
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cause extensive cell death either immediately or in the following

cell cycles, they will not serve as reliable protection mechanisms

against unwanted proliferation (Hoevenaar et al., 2020;

Vasudevan A et al., 2021). In such situations, the centrosomes

become the key players for three different outcomes after the

failed cytokinesis: i) the presence of two (or more) mature

centrosomes can potently induce p53-dependent

G1 senescence via the PIDDosome complex (Fava L L et al.,

2017), ii) in the absence of functional p53, the presence of four

(or more) centrosomes after passage through S phase will cause

the formation of a multipolar spindle resulting in mitotic cell

death (Rizzotto D et al., 2021), or iii) if cells with inactivated

p53 cluster the centrosomes into a pseudo-bipolar spindle, viable

tetraploid or near-tetraploid daughter cells will be generated;

such cells tend to promote tumor formation and progression due

to increased frequency of chromosomal segregation errors and

aneuploidy (Fujiwara T et al., 2005; Baudoin N C et al., 2020).

The current review discusses the role of integrin signals in the

mitotic exit of mammalian cells, as well as the impact of their

dysfunction in the context of centrosome activities and genomic

integrity.

2 Spindle formation

An early critical step for the onset of mitosis, as well as for

mitotic exit and the following cytokinesis, is the formation of a

bipolar microtubule (MT) spindle by two centrosomes. The

centrosome, consisting of a pair of centrioles surrounded by

the pericentriolar matrix (PCM), duplicates once every cell cycle.

Post duplication in S-phase, the two centrosomes remain

connected through a fibrous linker of rootletin polymers and

several associated proteins (Vlijm R et al., 2018), thereby acting as

a single major microtubule-organizing center. During the late

G2 and early mitotic (M) phases, the two centrosomes need to be

separated and moved apart to serve as spindle poles. Centrosome

separation (disjunction) is induced by PLK1, a key regulator of

the process, through the activation of downstream kinases,

among which NEK2A has the main role in the dissociation of

the rootletin linker from the parental centrioles (Mardin B R

et al., 2011; Hossain D et al., 2020). Once the linker is broken, the

centrosome migration and positioning depend on the net

balancing forces exerted by several motor proteins on MTs.

The mitotic kinesin-5 (Eg5) and dynein are the two major

motor proteins crucial for centrosome segregation and proper

spindle bipolarity (Van Heesbeen R G et al., 2014). PLK1,

together with CDK1 and NEKs 6, 7, and 9, activate Eg5 and

thereby induce the translocation of the centrosomes to opposite

sides of the nucleus (Bertran M T et al., 2011). Our recent

findings show that integrin-mediated adhesion via FAK

participates in the regulation of PLK1 and Eg5 and the

subsequent centrosome translocation. In case of insufficient

FAK signaling due to downregulated protein expression or

cell detachment, cells often form a monopolar spindle and

exhibit a strongly delayed mitotic exit (Kamranvar S A et al.,

2022a). PLK1 activity is known to be controlled by

phosphorylation at Thr210 in the activation loop by Aurora A

(Gheghiani L et al., 2017; Raab M et al., 2022), and additional

PLK1 modifications have been reported, which may further

contribute to its spatiotemporal regulation (Caron D et al.,

2016; Liu X et al., 2016; Yang X et al., 2017). Also, the

regulation of Aurora A is complex, and several different

activation mechanisms have been elucidated (Zhao Z S et al.,

2005; Tavernier N et al., 2021). Thus, while the mechanism by

which FAK promotes PLK1 activity remains to be identified, it is

likely to act in parallel with or possibly upstream of Aurora A.

3 Cytokinesis

Cytokinesis, i.e., the division of the cytoplasm following

karyokinesis, is usually considered a separate cell cycle stage

and not a part of mitosis. However, the cytokinesis process is

closely linked to mitosis and starts during anaphase (Echard and

O’farrell, 2003). Cytokinesis can be generally divided into three

stages: cleavage furrow formation and ingression, midbody

assembly, and abscission. CDK1 inactivation in the late

mitosis is the early sign of cytokinesis onset, leading to

mitotic spindle re-organization. The anaphase spindle initiates

the actomyosin ring assembly linked to the plasma membrane,

whose contraction gives rise to cleavage furrow formation and

ingression. Eventually, the ingressed furrow will separate the two

nascent daughter cells by a thin intercellular bridge, which at its

center forms a dense structure called midbody (MB). The MB

serves as a signaling platform to assemble the proteins needed for

severing the intercellular bridge, i.e., the abscission (Fededa and

Gerlich, 2012).

In pioneering works (Thullberg M et al., 2007; Pellinen T

et al., 2008), integrin-mediated adhesion was found to be

required for cytokinesis completion in several mouse and

human cell lines, and subsequently, it was shown that the

process was halted at the abscission stage in the detached cells

(Gupta and Johansson, 2013). Further work identified the

integrin-dependent step to the recruitment of the ESCRT-

associated proteins Alix and TSG101 to the MB (Kamranvar S

A et al., 2016).

3.1 Cleavage furrow formation and
ingression

Once the spindle assembly checkpoint has been satisfied by

the completed binding of all chromatid kinetochores to MTs, the

anaphase-promoting complex/cyclosome (APC/C) with its

specific factor Cdc20 marks two key substrates for

proteasomal degradation, i.e., securin and cyclin B (Peters
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J-M, 2002). During the subsequent segregation of chromosomes,

a cleavage furrow ingression will be induced midway between the

two spindle poles. In animal cells, the furrow formation and

ingression are the synergistic outcomes of signaling and

mechanical processes (Bement W M et al., 2005; Bringmann

and Hyman, 2005). In the early cytokinesis, de novo formedMTs,

together with existing MTs, assemble into the central spindle, a

structure of anti-parallel MTs with overlapping plus end regions

in the center of the cell between the segregating chromosomes.

(Glotzer M, 2009; Uehara R et al., 2009). The central spindle is

organized by MT-associated proteins, among which the roles of

PRC1 and centralspindlin are well understood (Hu C-K et al.,

2012b; Adriaans I E et al., 2019). PRC1 is inhibited until anaphase

onset by CDK1/cyclin B and PLK1 phosphorylation, but then the

declining levels of these kinases allow dimerization of PRC1.

PRC1 dimers specifically recognize antiparallel MT overlaps at

the central spindle, promoting MTs sliding and binding of

essential central spindle-associated proteins (Mollinari C et al.,

2002; Subramanian R et al., 2010). The central spindle structure

and function depend on the heterotetrameric protein

centralspindlin, comprised of a pair of the kinesin motor

protein MKLP1 and a pair of the Rho-family GTPase

RacGAP1 (Mishima M et al., 2002). Centralspindlin forms

larger clusters and migrates towards the plus end of MTs. The

clustering is inhibited by the binding of protein 14-3-3 to a

CDK1- phosphorylated site in MKLP1, but upon the decline of

CDK1/cyclin B, 14-3-3 dissociates from MKLP1 (Mishima M

et al., 2004). The centralspindlin clustering is further stimulated

by Aurora B-mediated phosphorylation of MKLP1 (Guse A et al.,

2005). The transport of ECT2 (a Rho GEF) by centralspindlin

along astral MTs determines the ingression furrow location at the

cell cortex (Basant A et al., 2015; Basant and Glotzer, 2018). After

GTP-loading by ECT2, Rho A will bind and activate multiple

effectors that are essential for furrow ingression, including the

FIGURE 1
The schematic picture illustrates some major events during cytokinesis that start at anaphase.
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formin Dia1 and ROCK; Dia1 induces actin polymerization, and

ROCK stimulates myosin activity through phosphorylation of

myosin light chain (MLC) and MLC phosphatase (MYPT)

(Severson A F et al., 2002; Matsumura F, 2005). The

contractile ring is connected to the plasma membrane mainly

via the anillin-septin linker, whose formation is promoted by

RhoA-GTP and citron kinase (Oegema K et al., 2000; Maddox A

S et al., 2007; El-Amine N et al., 2019) (Figure 1).

3.2 Midbody formation

The cleavage furrow continues to ingress until it approaches a

diameter of 1–2 μm, a prerequisite for the formation of the MB,

whose composition gradually develops and will eventually

contain hundreds of different proteins (Capalbo L et al., 2019;

Addi C et al., 2020). During the membrane ingression, several

components of the actomyosin ring and the central spindle

rearrange their localization, contributing to the initiation of

the MB assembly (Hu C-K et al., 2012a). PRC1 localizes to

the MB region, and the centromere-associated proteins Aurora B

and CENP-E re-localize to the flanking region of theMB (Yen T J

et al., 1991; Gruneberg U et al., 2004). MKLP1 motor activity

brings the centralspindlin towards the MT plus end of the

intercellular bridge, where it recruits the major MB adapter

protein Cep55 (Fabbro M et al., 2005; Zhao W-M et al.,

2006). The recruitment of Cep55 is negatively controlled by

PLK1 and occurs only after the inactivation of PLK1 during the

anaphase (Lindon and Pines, 2004; Bastos and Barr., 2010), and

correct timing of the PLK1 degradation is crucial for cytokinetic

abscission (Bastos and Barr, 2010). We recently found that the

temporal regulation of PLK1, and thus Cep55 recruitment to the

MB region, depends on FAK signaling downstream of integrin

adhesion. In detached cells, PLK1 is degraded faster and

Cep55 accumulates prematurely, resulting in an “immature”

MB that, for unknown reasons, cannot support abscission by

recruiting ESCRT complex subunits (Kamranvar S A et al., 2016).

Thus, the emerging daughter cells will remain connected by a

thin intercellular bridge without proper adhesion signaling.

3.3 Abscission

During the MB maturation, the ingression furrow narrows

further to less than 1 μm. Abscission is executed by ESCRT

proteins and their binding partners, which are recruited to the

MB region stepwise (Mierzwa and Gerlich, 2014). Mature

Cep55 recruits Chmp4B, the main component of ESCRT-III, via

two routes with partially redundant functions. On one route,

Chmp4B is recruited through ESCRT-I, ESCRT-II and Chmp6

(an ESCRT-III subunit), where Cep55 interacts with TSG101 (an

ESCRT-I subunit), while in the other route via

Cep55–Alix–Chmp4B (Christ L et al., 2016). Both TSG101 and

Alix are dependent on integrin-induced FAK signaling for their

Cep55-dependent recruitment to the MB (Kamranvar S A et al.,

2016) (Figure 2). Alix and TSG101 cannot be recruited by Cep55 at

the MB in detached cells, perhaps due to the absence of other

necessary proteins or proteinmodifications. Due to the complex and

changing composition of MBs during the cytokinesis process,

finding the answer will be challenging.

FIGURE 2
Difference in the protein composition at the MB between the adherent and non-adherent cells during abscission.
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To bind Chmp4B, Alix has to be activated from a closed to an

open conformation induced by phosphorylation; the activating

kinase remains to be identified (Sun S et al., 2016). Upon

recruitment to the MB, Chmp4B will polymerize into a ring-

like structure and then further polymerizes into spiral filaments

of decreasing diameter that extend away from theMB. This spiral

causes the narrowing of the intercellular bridge and promotes the

membrane fusion process, possibly by deforming the membrane

followed by depolymerization or rearrangement of the Chmp4B

spiral (Guizetti J et al., 2011; Mccullough J et al., 2013; Harker-

Kirschneck L et al., 2019; Harker-Kirschneck L et al., 2022). The

spiral formation can be delayed or even prevented by pulling

force exerted on the intercellular bridge, and abscission is

promoted by tension relief through the accumulation of

caveolae close to the MB (Lafaurie-Janvore J et al., 2013;

Andrade V et al., 2022). At the abscission site, Alix is vital in

connecting the spiral with the plasma membrane and stabilizing

it by forming a link to the transmembrane proteoglycan syndecan

four via syntenin (Addi C et al., 2020). Before the membranes can

finally fuse, the dense MTs at the bridge have to be cleared away

by spastin, an MT-severing enzyme targeted to the constriction

region via binding to the ESCRT-III subunit Chmp1B (Yang D

et al., 2008; Connell J W et al., 2009).

3.4 Cytofission

In addition to the highly regulated abscission process,

cells can, under particular circumstances, divide by so-called

cytofission independently of the MB (Gupta D K et al., 2018;

Gupta D K et al., 2019). Cytofission instead depends on

traction force in adherent cells which can eventually rupture

the ingression bridge. Thus, the pulling force has opposite

effects on cell division via MB-mediated abscission and

cytofission. The cytofission mechanism has mainly been

studied in the slime mold Dictyostelium (Tuxworth R I

et al., 1997; Chung and Firtel, 1999; Kanada M et al.,

2005; Jahan and Yumura, 2017), but similar events have

also been described in cultured mammalian cells (Kanada M

et al., 2005; Choudhary A et al., 2013; Gupta D K et al., 2018).

However, mammalian cells rarely undergo cytofission, and

whether it will occur after a failed cytokinesis or if the cell

instead will become tetraploid depends on if the narrow

ingression furrow is present or not. If a mitotic cell has

formed and maintained the furrow, the connected daughter

cells will generate tension on the connecting bridge, owing to

their independent migration from each other, which may

result in cytofission. In cases where the ingression furrow

does not form or regress, the binucleated cell will migrate as

one unit and not undergo cytofission (Gupta D K et al., 2019)

(Figure 3).

In cells that fail in cytokinetic abscission because of

insufficient integrin signals, the ingression furrow remains

for long times in vitro (days), although the midbody

disintegrates within a few hours (Gupta D K et al., 2019).

The slow depolymerization of septin filaments at the

intercellular bridge appears to be responsible for the

furrow’s stability. As a result, under disturbed integrin

signaling conditions, the ingression furrow’s longevity

increases the possibility of cytofission, which could serve

as a protection mechanism against the formation of

tetraploid cells (Choudhary A et al., 2013; Gupta D K

et al., 2018). However, it should be noted that cytofission

has not been studied in vivo and that this alternative

mechanism of cell division may be hampered at locations

with neighboring cells (Kanada M et al., 2005).

FIGURE 3
Cytofission is an alternative mechanism to fulfill the incomplete cytokinesis in non-adherent cells after re-adhesion. MB-independent fission
can occur due to the stability of the furrow by septin filaments (in brown). The arrows show the direction of tension in the connecting bridge.
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3.5 Cytokinesis and cancer

A characteristic feature of cancer cells is their ability to

complete cytokinesis without integrin adhesion, which may

facilitate colony formation at foreign locations during

metastatic spreading (Thullberg M et al., 2007; Pellinen T

et al., 2008; Desgrosellier and Cheresh, 2010; Deng Z et al.,

2021). Identification of the adhesion-independent cytokinesis

mechanism(s) used by cancer cells is of interest, particularly

since it may potentially lead to the identification of tumor-

specific treatment targets. Studies of colony growth in soft

agar or spheroid formation from single cells in suspension

culture show that many proteins (mutated or overexpressed)

can promote such adhesion-independent growth. However, in

these assays, it is difficult to distinguish whether the implicated

protein was acting directly on cytokinesis or had other indirect

effects on cell division, for example, the synthesis of ECM

(Salmenpera P et al., 2008), which could allow “pseudo-

anchorage-independent” growth (Gupta and Johansson, 2013).

Interestingly, several lines of more direct research on cytokinesis

indicate that Ras plays an important role in the process.

Dictyostelium cells cannot undergo normal cytokinesis after

inactivating the Ras gene (Tuxworth R I et al., 1997), the

slime mold orthologue of mammalian K-Ras, but they can

perform cytofission. In human fibroblasts, oncogenic H-Ras (a

close relative to K-Ras) was reported to promote anchorage-

independent cytokinesis (Thullberg M et al., 2007). Later the

detailed analysis showed that expression of the active Ras mutant

specifically overcomes the abscission block in the detached cells

by allowing the recruitment of Alix to the MB followed by

Chm4B-mediated membrane fusion (Gupta D K et al., 2019).

On the other hand, strongly elevated levels of Ras activity can

also impair the cytokinesis (Yang G et al., 2013; Duhamel S et al.,

2016). Several studies have shown that this effect is mediated via

the elevated protein levels of Aurora A (Yang G et al., 2013;

Duhamel S et al., 2016; Umstead M et al., 2017; Chiu S-C et al.,

2019). The present data indicate that Ras and Aurora A are

essential regulators of cytokinetic abscission and that too low or

too high activity of these proteins will impair the process.

4 Cytokinesis failure and their
consequences

As described above, mitotic exit is a prerequisite for cytokinesis.

In addition to insufficient integrin signaling, several other conditions

can cause cytokinesis failure, including defects in the bipolar spindle

formation caused by a variety of errors such as mitotic slippage,

lagging chromosomes blocking the membrane fusion, and

mutations (Ganem N J et al., 2009; Godinho S A et al., 2009).

The most prominent and immediate consequence of cytokinesis

failure is the formation of a tetraploid daughter cell with two

centrosomes (Lacroix and Maddox, 2012). The tetraploid state is

unstable and often develops into aneuploidy as a result of a

continued cell cycle with more than two centrosomes, leading to

themiss-segregation of chromosomes. Such aneuploid cells are often

viable because the loss of genes is more tolerable in the tetraploid

state containing the additional copies of the same gene that buffer

the loss (GanemN J et al., 2007; Lens andMedema, 2019). However,

while aneuploidy is commonly found in cancer cells, most somatic

cells have normal ploidy due to the induction of p53-dependent cell

cycle arrest in the G1 phase following a cytokinesis failure incidence.

Cell cycle arrest or apoptotic cell death in the G1 phase is primarily

controlled by the tumor suppressor p53, which can be regulated by

p53-induced protein with a death domain 1 (PIDD1) (Thompson

and Compton, 2010; Fava et al., 2017; Burigotto and Fava, 2021).

Upon activation, PIDD1 recruits both RAIDD and caspase-2

(CASP2) to form a multiprotein complex known as the

PIDDosome. Recent studies have shown that the PIDDosome

assembly is dependent on PIDD1 interaction with the centriole

distal appendage protein ANKRD26 (Evans L T et al., 2021), which

is only present in the fully mature mother centriole.

ANKRD26 recruits PIDD1 when two (or more) mature

centrosomes are present in a cell after cytokinesis failure, possibly

due to themerging of the centrosomes (Fava et al., 2017; Evans et al.,

2021). The assembly of the PIDDosome complex promotes the

autocatalytic, proximity-induced activation of CASP2. Activated

CASP2 stabilizes p53 via cleavage of MDM2 and causes the

subsequent upregulation of the cell cycle inhibitor p21 by p53

(Thompson and Compton, 2010; Fava L L et al., 2017; Burigotto

and Fava, 2021; Evans L T et al., 2021). Cells with inactivated p53,

similar tomany cancer cells (Davoli andDe Lange, 2011), bypass the

PIDDosome block and enter the subsequent mitosis with more than

two centrosomes. To avoid multipolar spindle formation, the cells

must cluster the supernumerary centrosomes into two polar groups

forming a pseudo-bipolar spindle. However, since pseudo-bipolar

spindles, as well as tri- or multi-polar spindles, increase the

frequency of faulty chromosome segregation, aneuploid cells can

be formed (Figure 4).

5 Future perspectives

The understanding that integrin-mediated adhesion is

required for cytokinetic abscission in normal cells and for

separating the two centrosomes to opposite sides of the

nucleus to form the mitotic spindle raises several

questions. The most immediate question regards the

involvement of FAK in the spatio-temporal regulation of

PLK1 activity. PLK1 regulates the centrosome separation,

and the upstream links between the activation of PLK1 and

FAK need to be identified. The contribution of FAK to MB

maturation may also concern the regulation of PLK1 since

the blocked recruitment of Alix and TSG101 to

Cep55 correlates with a strongly enhanced degradation of

PLK1 during cytokinesis in cells with reduced FAK activity.
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Another critical question is how Ras and Aurora A can

promote or prevent cytokinesis dependent on their activity

levels and, in particular, how oncogenic Ras mutants can

induce mitotic abscission in non-adherent cells. Although

more indirectly connected to integrin signals, it would be

interesting to clarify whether the MB-independent cell

division by cytofission observed in vitro also is a phenomenon

occurring in vivo. The cytofission in vitro depends on the

slow septin depolymerization at the intercellular bridge, a

mechanism that needs to be understood and waiting for

clarification. Additionally, many questions can be addressed

regarding the regulation of centrosome functions since, as

indicated in this review, in case of failed cytokinesis due to

insufficient adhesion signals or other causes, the centrosomes will

have central roles in the fate of the cell.
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FIGURE 4
Possible outcomes of cytokinesis failure in the next cell cycle round. Cells that failed cytokinesis because of different abnormalities become
tetraploid with supernumerary centrosomes (two mature centrosomes). In the G1 phase, the presence of more than one mature centrosome will
activate PIDD1 and trigger PIDDosome-induced cell cycle arrest of normal cells. However, some viral infections and p53mutations allow the cells to
bypass the PIDDosome block (gray box) and proceed through the cell cycle. In theM phase, such cells may die or form a heterogenous progeny
of tetraploids or aneuploids (blue box), depending on how the centrosomes will be arranged.
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