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Objective: To evaluate the accuracy and feasibility of the auto-detection of

15 retinal disorders with artificial intelligence (AI)-assisted optical coherence

tomography (OCT) in community screening.

Methods: A total of 954 eyes of 477 subjects from four local communities were

enrolled in this study from September to December 2021. They received OCT

scans covering an area of 12 mm × 9mm at the posterior pole retina involving

themacular and optic disc, as well as other ophthalmic examinations performed

using their demographic information recorded. The OCT images were analyzed

using integrated software with the previously established algorithm based on

the deep-learning method and trained to detect 15 kinds of retinal disorders,

namely, pigment epithelial detachment (PED), posterior vitreous detachment

(PVD), epiretinal membranes (ERMs), sub-retinal fluid (SRF), choroidal

neovascularization (CNV), drusen, retinoschisis, cystoid macular edema

(CME), exudation, macular hole (MH), retinal detachment (RD), ellipsoid zone

disruption, focal choroidal excavation (FCE), choroid atrophy, and retinal

hemorrhage. Meanwhile, the diagnosis was also generated from three

groups of individual ophthalmologists (group of retina specialists, senior

ophthalmologists, and junior ophthalmologists) and compared with those by

the AI. The area under the receiver operating characteristic curve (AUC),

sensitivity, and specificity were calculated, and kappa statistics were performed.

Results: A total of 878 eyes were finally enrolled, with 76 excluded due to poor

image quality. In the detection of 15 retinal disorders, the ROC curve

comparison between AI and professors’ presented relatively large AUC

(0.891–0.997), high sensitivity (87.65–100%), and high specificity

(80.12–99.41%). Among the ROC curve comparisons with those by the

retina specialists, AI was the closest one to the professors’ compared to

senior and junior ophthalmologists (p < 0.05).

Conclusion: AI-assisted OCT is highly accurate, sensitive, and specific in auto-

detection of 15 kinds of retinal disorders, certifying its feasibility and

effectiveness in community ophthalmic screening.
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Introduction

With the rapid progress in population aging and the

escalating prevalence of systemic diseases like hypertension

and diabetes mellitus, as well as the increasing incidence of

myopia in contemporary society, the morbidity rate of

multiple ophthalmic diseases, especially with various retinal

disorders, has ascended consequently. It caused visual

impairment and even blindness in both developed and

developing countries (Hong et al., 2013; Wolfram et al., 2019;

Li et al., 2022b). Among them, the age-related macular

degeneration (AMD), diabetic retinopathy (DR), and myopic

retinopathy, as well as other macular disorders like epiretinal

membranes (ERMs) and macular holes, were the significant

components and chief culprits for visual loss in most

populations (Mitchell et al., 2018; Wang and Lo, 2018; Ruiz-

Medrano et al., 2019).

Early diagnosis and prompt treatment were essential to

achieve the best possible visual prognosis (Mitchell et al.,

2018; Wang and Lo, 2018; Ruiz-Medrano et al., 2019).

Therefore, early detection at the initial stages and positive

screening at the pre-hospital level were necessary, indicating

the importance of effective and efficient community screening. A

notable and challenging fact exists on the insufficient medical

human resources allocated in the community and the

inadequately experienced ophthalmologists in primary

hospitals, forging a considerable gap and actual bottleneck

toward the enormous demand for community screening (Feng

et al., 2018).

With tremendous progress in recent years, artificial

intelligence (AI) has been integrated with various fields of

science and taken to practical engineering in multiple scenes.

The deep-learning (DL) algorithm is an advanced type of

machine learning (ML) with a multi-layered convolutional

neural network (CNN) model. It is capable of learning and

detecting image features and recognizing patterns from a large

dataset. The application of DL in medicine has fulfilled the

function of automated lesion recognition and prognosis

prediction in various diseases (Gulshan et al., 2016; Zhang Q.

et al., 2021). In the field of ophthalmology, different AI

algorithms have been developed and applied for auto-

detection of diverse diseases like glaucoma (Keel et al., 2019;

Camara et al., 2022), ocular surface diseases (Zhang Y. Y. et al.,

2021), and multiple retinal disorders, like DR, AMD, and myopic

retinopathy, and have exhibited relatively high accuracy and

reliable performance in clinical diagnosis as well as the pre-

hospital community screening, providing a promising solution

for the challenge mentioned previously (Rajalakshmi et al., 2018;

He et al., 2020; Xie et al., 2020; Cen et al., 2021).

One disadvantage of AI algorithms trained to detect retinal

disorders is that they are mainly based on the features from

fundus photography images, which could not offer a

comprehensive message of deep layers of the retina and the

choroid (He et al., 2020; Xie et al., 2020; Cen et al., 2021).

Meanwhile, the optical coherence tomography (OCT) technique

can provide the cross-sectional images of the retina with high

resolution realizing in vivo visualization of cellular tissue

microstructure via interferometry and has been widely utilized

in the clinical practice of ophthalmology. By providing the

morphological features and quantitative measurement data of

the different layers of the retina, especially at the macular and

around the optic head, and the certain depth of the choroid, OCT

shows its advantage in detecting multiple retinal diseases

superior to utilizing fundus image only. One emerging trend

is to develop AI algorithms based on OCT images to diagnose

some retinal diseases. At the same time, several studies have

shown its feasibility and revealed its accuracy in clinical

application (Sandhu et al., 2018; Treder et al., 2018; Sandhu

et al., 2020; Sogawa et al., 2020; Wang et al., 2020).

Another major disadvantage of current AI software was that

it mostly focuses only on one specific retinal disorder. In

comparison, a very considerable proportion of patients suffer

from more than one retinal disorder, which redistricts the

practical application of this AI software in a real clinical

setting (Sandhu et al., 2018; Treder et al., 2018; Sandhu et al.,

2020; Sogawa et al., 2020; Wang et al., 2020). Therefore, the

impending demand rising from clinical practice and community

screening work is to develop AI algorithms that can recognize

multiple retinal disorders simultaneously in single detection.

In view of the aforementioned requirement, this study

involved the utilization of an AI-assisted OCT instrument to

examine the retina in a community screening, with the acquired

images analyzed using a pre-designed DL algorithm that could

detect 15 retinal disorders simultaneously, aiming to evaluate its

accuracy and feasibility in the practical application.

Materials and methods

Participants’ enrollment

The inhabitants of four local communities (DaNing Road

community, GongHe Road community, PengPu Town

community, and Linfen Road community, all of which are

located in Jing’an District, Shanghai) participated in the study.

The study period was from September to December 2021.

The inclusion criteria were: 1) age>18 years; 2) co-operation
with the ophthalmic examinations; and 3) voluntary
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participation in the study. The exclusion criteria were as follows:

1) patients with ophthalmic disease causing severe refractive

media opacity like keratoleukoma, cataract, and vitreous or

within ophthalmic emergency situations; 2) patients with

other severe uncontrolled systemic diseases; and 3) patients

during pregnancy or lactation period.

The study was approved by the Ethical Committee of

Shanghai Tenth People’s Hospital and conducted in

accordance with the tenets of the Declaration of Helsinki,

with the written informed consent forms signed by all the

participants voluntarily.

Community screening
All the participants underwent the following ophthalmic

examinations: 1) best-corrected visual acuity (BCVA); 2)

intraocular pressure (IOP), performed using an iCare

tonometer device (iCare IC 100, Icare Oy, Vantaa, Finland);

3) slit-lamp examination (YZ5X, Suzhou 66 Vision, Suzhou,

China); 4) automatic nonmydriatic fundus photography

(TRC-NW400, Topcon, Tokyo, Japan), images captured with

bothmacula-centered and disc-centered; and 5) spectral domain-

OCT scan (SD-OCT, BV1000, Bigvision Inc., Jiangxi, China).

Meanwhile, the demographic information of the participants and

their general medical history of systemic diseases, such as

hypertension and diabetes mellitus, were recorded.

The OCT scan covered an area of 12 mm × 9 mm at the

posterior pole of the retina involving the macular and optic disc

in one image view and extended to a depth of 2.3mm, with the

axial resolution of 5 μm and the horizontal resolution of 20 μm in

tissues. Owing to the maximum A-scan speed at 45,000 times per

second and the automated voice prompt operating system, the

process of the examination was convenient and fast. The images

were then transmitted to the AI algorithm, which was integrated

into the instrument to generate an analysis of multiple retinal

disorders. During the process, the time duration for the OCT

examination for one eye (starting from the participant placing

their head and chin at the bracket to terminating at the end of the

scan for one eye) and the output time of the AI report were also

recorded.

AI auto-detection

The inference pipeline was as follows: first, the quality of

collected OCT images was assessed using an AI algorithm. The

OCT b-scans with poor quality, such as heavy noise, severe

artifacts, low contrast, or low brightness, were excluded to avoid

the analysis results with low confidence. The module of quality

assessment is a trained binary classification model, which is

composed of ResNet-50. Then, the OCT b-scans with good

quality were imputed into a trained object detection model to

detect up to 15 categories of retinal pathologies, and the detection

model was based on the deep-learning convolutional neural

network. Subsequently, the trained key-point detection model

extracted the Bruch’s membrane opening locations on OCT

b-scans, and the false optimistic predictions of the bounding

boxes near the site of the optic disc would be eliminated. Finally, a

probability ratio (0–1) of auxiliary diagnosis based on all

considerations and lesion locations of 15 categories of retinal

disorders on OCT b-scans was calculated and applied (Figure 1).

As for the development strategy of the AI algorithm, a

multi-stage object detection model based on the adjusted

FIGURE 1
Framework of our AI algorithms designed to detect
15 different retinal disorders. (A)Workflow chart of AI algorithm (B)
Framework architecture and model establishment of our AI
algorithm with FPN-Cascade-RCNN. Conv, convolution.
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Cascade-RCNN was adopted (Essa et al., 2011). The feature

pyramid network architecture was used to extract the multi-

scale features of each b-scan image to enhance the ability of

the model to detect large-size retinal and tiny-size pathologist

such as retinal detachment and exudation. We trained the

model for 48 epochs, and the SGD optimizer was used (Zhang

Z. et al., 2021). The Smooth L1 loss function was used in the

regression of the region proposal network and cascade-head

network, and the cross-entropy loss was used in classification

parts. The online hard example mining mechanism was used

to improve the convergence speed due to the unbalanced ratio

between the foreground and background, and the tremendous

differences in learning difficulty among 15 categories of

retinal disorders were observed (Chen et al., 2021). As for

the datasets, 1311 cubes were collected and divided into the

training set, validation set, and test set with a ratio of 6:2:2.

The distribution of the datasets is presented in Supplementary

Table 1, which shows 363 cubes are normal, and most of the

retinal disorders are PVD. Three or more typical b-scans slices

were selected from cubes, and these selected slices contained

various lesions of retinal disorders, which contributed to the

better learning and adaptive ability of AI algorithm.

Subsequently, the external test was performed, and the

results of the external test set can be used as evidence of

the generalization ability of the AI model.

Ophthalmologist diagnosis

Three groups of ophthalmologists were organized to perform

manual annotation with the selection criteria as follows:

The junior group (OP1) consists of three resident doctors

who had worked in the Department of Ophthalmology for more

than 3 years. The senior group (OP2) consists of three attending

ophthalmologists with more than 8 years of experience in clinical

practice. The retinal specialist’s group (OP3) consists of three

retinal professors who have dedicated to working in the field of

retinal diseases for more than 12 years. The ophthalmologists

were all from the Department of Ophthalmology of Shanghai

Tenth People’s Hospital and trained together before the task. If

the conclusions of three doctors in each group were inconsistent,

a panel discussion and vote inside the group would be arranged

to reach a consensus and generate a standard conclusion.

A manual review and final diagnosis of the 15 retinal

disorders were prepared according to all the participant’s

medical information, including slit-lamp examination, fundus

photography, OCT images, demographic information, and

systemic medical history. Doctors in each group carried out

an independent diagnosis and were masked to AI diagnosis

results from doctors in the same group as well as in other

groups. The manual diagnosis and AI algorithm outputs were

compared according to the recognized diagnostic criteria, noting

that a combination of various pathologies could coexist in one

participant.

Statistical analysis

To evaluate the performance of the AI algorithm compared

with three different levels of ophthalmologists, the receiver

operating characteristic curve (ROC) was generated using the

diagnosis results given by the retinal specialist (OP3) regarded as

the reference standard. The area under ROC (AUC), sensitivity

and specificity, and Youden index with 95% confidence intervals

(95% CIs) were calculated. Paired comparisons were performed

between the AUC of AI to OP3, junior ophthalmologist (OP1) to

OP3, and senior ophthalmologist (OP2) to OP3 to assess their

difference toward the reference standard. Kappa (κ) statistics

were used to quantify and evaluate the degree of agreement

between AI and three different level group ophthalmologists

(OP1, OP2, and OP3). To transfer the AI grading score to a

binary decision for analysis, the cut-off value was set at 0.7 based

on the pre-setting data during model establishment, which

means that a value equal to or larger than 0.7 in AI calculated

results as positive, while less than 0.7 is recognized as negative.

The threshold value 0.7 was selected on the validation set, which

means that the AI gained the maximum value of the F1 score on

the validation set when the threshold value was set at 0.7. The

F1 score is an index that could balance the false detection rate and

missed detection rate, and it is a commonly used index for

selecting the threshold of the algorithm model. A p-value <
0.05 was considered statistically significant. All data generated

were analyzed using SPSS version 21.0 (IBM Inc., Chicago,

Illinois, United States).

Results

From September to December 2021, 477 subjects (954 eyes)

from four local communities mentioned previously participated

in the study. However, after image quality control, only 878 eyes

(from 439 subjects) were finally enrolled, while 76 eyes were

TABLE 1 Demographic information and baseline characteristics of the
participants.

Characteristic Data

Participants’ eyes, right, n (%) 439 (50%)

Age (years), mean ± SD 53.16 ± 17.14

Gender, male, n (%) 213 (48.5%)

Hypertension, n (%) 75 (17.1%)

Diabetes, n (%) 48 (10.9%)

OCT scan (seconds), mean ± SD 18.4 ± 0.11

AI outputting time (minutes), mean ± SD 4.01 ± 0.03

Frontiers in Cell and Developmental Biology frontiersin.org04

Bai et al. 10.3389/fcell.2022.1053483

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1053483


FIGURE 2
ROC curves of AI/group of junior ophthalmologists (OP1)/group of senior ophthalmologists (OP2) compared to the group of retinal specialists
(OP3, as the golden standard) in diagnosis of 14 retinal disorders. (A–N) Pigment epithelial detachment (PED), posterior vitreous detachment (PVD),
epiretinal membranes (ERMs), sub-retinal fluid (SRF), choroidal neovascularization (CNV), drusen, retinoschisis, cystoid macular edema (CME),
exudation, macular hole (MH), ellipsoid zone disruption, focal choroidal excavation (FCE), choroid atrophy, and retinal hemorrhage.
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TABLE 2 AUC (with 95% CI), Youden index, specificity, and sensitivity in ROC of AI/group of junior ophthalmologists (OP1)/group of senior ophthalmologists (OP2) compared to the group of retinal
specialists (OP3, as the golden standard).

AI vs. OP3 OP1 vs. OP3 OP2 vs. OP3 p
(AUC,
AI–OP3 vs.
OP1–OP3)

p
(AUC,
AI–OP3 vs.
OP2–OP3)

AUC 95% CI p Youden
index

Sensitivity
(%)

Specificity
(%)

AUC 95% CI p AUC 95% CI p

PED 0.985 0.974–0.992 <0.0001 0.9391 97.62 96.29 0.643 0.610–0.675 0.0001 0.808 0.780–0.833 <0.0001 <0.0001 <0.0001
PVD 0.973 0.960–0.983 <0.0001 0.8743 91.83 95.60 0.775 0.745–0.802 <0.0001 0.830 0.804–0.855 <0.0001 <0.0001 <0.0001
ERM 0.955 0.940–0.968 <0.0001 0.8552 91.84 93.68 0.704 0.673–0.734 <0.0001 0.759 0.730–0.787 <0.0001 <0.0001 <0.0001
SRF 0.956 0.940–0.968 <0.0001 0.8450 94.87 89.63 0.756 0.727–0.784 <0.0001 0.833 0.807–0.857 <0.0001 <0.0001 = 0.0003

CNV 0.983 0.972–0.990 <0.0001 0.9556 97.22 98.34 0.860 0.835–0.882 <0.0001 0.917 0.896–0.934 <0.0001 = 0.0007 = 0.0227

Retinoschisis 0.926 0.906–0.942 <0.0001 0.7456 92.23 82.32 0.727 0.696–0.756 <0.0001 0.739 0.708–0.767 <0.0001 <0.0001 <0.0001
Drusen 0.891 0.868–0.911 <0.0001 0.7222 92.10 80.12 0.728 0.698–0.758 <0.0001 0.803 0.775–0.828 <0.0001 <0.0001 <0.0001
CME 0.997 0.991–0.999 <0.0001 0.9537 96.43 98.94 0.732 0.702–0.761 <0.0001 0.875 0.851–0.896 <0.0001 <0.0001 = 0.0028

Exudation 0.944 0.927–0.959 <0.0001 0.7856 89.57 88.99 0.657 0.624–0.688 <0.0001 0.793 0.764–0.819 <0.0001 <0.0001 <0.0001
MH 0.948 0.931–0.962 <0.0001 0.8931 90.48 98.83 0.785 0.756–0.811 <0.0001 0.857 0.832–0.880 <0.0001 = 0.0020 = 0.0376

Ellipsoid zone
disruption

0.935 0.916–0.950 <0.0001 0.8000 87.65 92.35 0.704 0.672–0.734 <0.0001 0.734 0.703–0.763 <0.0001 <0.0001 <0.0001

FCE 0.967 0.953–0.978 <0.0001 0.9058 91.18 99.41 0.764 0.735–0.792 <0.0001 0.808 0.781–0.834 <0.0001 <0.0001 = 0.0001

Choroid atrophy 0.959 0.943–0.971 <0.0001 0.8288 93.62 89.26 0.718 0.687–0.748 <0.0001 0.799 0.771–0.825 <0.0001 <0.0001 <0.0001
Retinal hemorrhage 0.991 0.982–0.996 <0.0001 0.9631 100.00 96.31 0.744 0.714–0.773 0.0034 0.798 0.770–0.824 0.0003 = 0.0022 = 0.0136
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FIGURE 3
Display of multiple retinal disorders and their locations. (A–L) Fifteen categories of retinal disorders are marked by rectangles with specific
colors on OCT images.
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excluded due to poor OCT image quality, mainly due to small

pupils, keratoleukoma, cataracts, vitreous opacity, etc. The

439 subjects consisted of 213 males and 226 females, aging

from 34 to 72 (53.16 ± 17.14), among whom 75 (17.1%) had

a history of hypertension and 48 (10.9%) had a history of diabetes

mellitus. The demographic information, average time for the

OCT scan, and AI output are presented in Table 1.

The overall ROC curve comparison between AI diagnosis

and the group of retinal specialists (OP3) represented a large

AUC (0.891–0.997), high sensitivity (87.65–100%), and high

specificity (80.12–99.41%). Since no case of RD was detected

in the whole participants’ screening either by doctors or by AI

software, the data related to RD were unavailable beyond any

comparison or discussion. Among the rest 14 retinal disorders,

the best performance was revealed in the diagnosis of CME and

retinal hemorrhage, with the AUC, sensitivity, and specificity at

0.997, 96.43%, and 98.94%, and 0.991, 100%, and 96.31%,

respectively. Also, high accuracy with a relatively large AUC

was acquired in the diagnosis of PED, PVD, ERM, FCE, and

CNV, with the AUC, sensitivity, and specificity at 0.985, 97.62%,

and 96.29% in PED; 0.973, 91.83%, and 95.60% in PVD, and

0.955, 91.84%, and 93.68% in ERM, respectively. As for the

diagnosis in FCE, the AUC was 0.967 with a sensitivity of

91.18% and specificity of 99.41%, while the result was 0.983,

97.22%, and 98.34%, relatively for CNV, respectively. The lower

results were generated in the detection of exudation (AUC of

0.944, sensitivity of 89.57%, and specificity of 88.99%) and

retinoschisi (AUC of 0.926, sensitivity of 92.23%, and

specificity of 82.32%). The lowest AUC appeared in the

recognition of drusen, which still reached 0.891, with a

sensitivity of 92.10% and a specificity of 80.12%.

The ROC curve comparisons between the groups of junior

(OP1) or senior (OP2) ophthalmologists and AI to the group of

retinal specialists (OP3) were generated and compared. The

paired comparison showed that the AUC of AI–OP3 was

larger than that of OP1–OP3 or OP2–OP3 with a significant

difference, indicating that the AI results were much closer to

OP3 taken as the golden standard, surpassing OP1 or OP2.

The ROC curves for 14 retinal disorders are shown in

Figure 2, and comparisons of AUC, Youden index, specificity,

and sensitivity with 95% CI are shown in Table 2. At the same

time, representing images with lesions labeled at the specific

location of the retina are illustrated in Figure 3.

The results of the kappa analysis are shown in Table 3. The

consistency between AI and retinal specialists was relatively high,

with the average value of 0.731, while the average value was

0.579 between AI and OP1 and 0.707 between AI and OP2.

Discussion

To relieve the conflict between the enormous demand for

early screening of multiple retinal diseases with rising prevalence

and the lack of human medical resources, the application of AI

algorithms, especially the DL models as auxiliary tools for

diagnosis provided a feasible and promising solution (He

et al., 2020; Xie et al., 2020; Cen et al., 2021). Taking the

retinal OCT image rather than fundus photography only as

the diagnosis reference proof was a new trend in this field

(Treder et al., 2018; Sogawa et al., 2020; Wang et al., 2020).

However, most current software was designed to detect one

single category of retinal disease, which hindered its

application in real-world practice. Our study utilized an AI

algorithm that can recognize 15 retinal disorders at one time

with features extracted from OCT images and evaluated its

accuracy and feasibility in community screening.

In this study, the demographic information showed

equivalence in gender but possessed a relatively elder

population age, which conformed to the actual characteristic

of the four communities involved. The prevalence of

hypertension (17%) and diabetes mellitus (11%) among our

participants was similar to that of the general population

(Wang et al., 2018; Sun et al., 2022). Except for the retinal

detachment with no case occurred in the study, the incidence

rate of the rest 14 retinal disorders was close to the natural scale

in the general population (Hong et al., 2013; Mitchell et al., 2018;

Wang and Lo, 2018; Wolfram et al., 2019; Li et al., 2022b).

According to our data, the overall ROC curve comparison

between AI diagnosis and the group of retinal specialists (OP3)

exhibited large AUC (0.891–0.997), high sensitivity

(87.65–100%), and high specificity (80.12–99.41%). Also, the

AUC of AI–OP3 was larger than that of OP1–OP3 or

TABLE 3 Kappa analysis results.

Diagnosis Kappa value

AI vs. OP1 AI vs. OP2 AI vs. OP3

PED 0.608 0.816 0.774

PVD 0.657 0.763 0.873

ERM 0.452 0.584 0.834

SRF 0.440 0.539 0.580

CNV 0.824 0.860 0.843

Drusen 0.383 0.751 0.720

Retinoschisis 0.424 0.426 0.520

CME 0.809 0.847 0.803

Exudation 0.373 0.616 0.709

MH 0.555 0.630 0.709

RD NA NA NA

Ellipsoid zone disruption 0.627 0.669 0.669

FCE 0.767 0.803 0.807

CA 0.553 0.690 0.792

RH 0.635 0.899 0.595

Average 0.579 0.707 0.731
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OP2–OP3 with a significant difference, while the average value

generated from kappa analysis representing the consistency

between AI and retinal specialists (OP3) was larger than

AI–OP1 and AI–OP2, which in all supported that AI results

were much closer to OP3 as the golden standard, exceeding the

performance of OP1 or OP2, and certified the accuracy of the AI

auto-detection system we utilized.

Compared to the function of other AI software developed

for a specific category of retinal disorders (AMD, DR, or ERM

solely) in previous studies, our system also demonstrated

equal or even better performance in the corresponding

specific disease. As for the detection of AMD, one of the

leading causes of visual impairment in elderly patients, several

deep-learning algorithms have been developed to recognize

relative lesions and perform machine discrimination. Treder

et al. (2018) developed an AI algorithm based on an open-

source multi-layer deep CNNmodel to diagnose AMD and the

generated sensitivity, specificity, and accuracy were 100%,

92%, and 96%, respectively. However, the size of the test

was relatively small (n = 50). The DL model of Lee et al.

(2017) achieved an area under the ROC curve of 92.78% with

an accuracy of 87.63% at the image level, while at the patient

level, the data were 97.45% and 93.69%, respectively.

However, neither the classifiers could detect the specified

lesion nor the position of AMD, which was fulfilled in our

algorithm (Lee et al., 2017; Treder et al., 2018). Elsharkawy

et al. (2021) reviewed several studies using DL models for

AMD diagnosis in a qualitative and quantitative manner and

found that despite the positive results generated from different

algorithms, most of them could not identify or grade each type

of AMD. Also, the majority of the testing was conducted on

preselected individuals’ sample only, rather than real-world

validation in our study. Mantel et al. (2021) developed a DL

algorithm for the automated identification, localization, and

volume measurement of exudative manifestations of

intraretinal fluid (IRF), sub-retinal fluid (SRF), and

pigment epithelium detachment (PED) in neovascular age-

related macular degeneration (nAMD). The results showed

that the AUC, sensitivity, and specificity were 0.97, 0.95, and

0.99, respectively, with accurate measurement of the volumes,

despite a limited number of included OCT volumes,

advancing the aspect of AI from quantitation to

quantification.

As for the automated diagnosis of DR, the prevalence of

which was ascending worldwide and causing a visual loss for a

large population, and previous studies were carried out using

fundus photographs as image sources. In contrast, recent studies

were conducted utilizing OCT images (Sandhu et al., 2018;

Sandhu et al., 2020; Lakshminarayanan et al., 2021).

Lakshminarayanan et al. (2021) reviewed different ML models

on DR diagnosis published within 6 years (2016–2021) and

concluded that although some of the recent CNN-based

models exhibited high performance in terms of the standard

metrics, the lack of validation for real-life clinical applications

remained as defects, with difficulty in detecting specific lesion like

exudation and microaneurysms.

Previous studies also involved auto-detection of myopic

macular diseases using AI algorithm due to the rising

prevalence of myopia and multiple vision-threatening

retinal damages (Sogawa et al., 2020; Choi et al., 2021; Ye

et al., 2021; Li et al., 2022a). Ye et al. (2021) engineered the

deep-learning (DL) model to identify myopic maculopathy,

including macular choroidal thinning, macular Bruch

membrane (BM) defects, sub-retinal hyper-reflective

material (SHRM), myopic traction maculopathy (MTM),

and dome-shaped macula (DSM), and the result showed

that the AUC was 0.927–0.974 for five myopic

maculopathies. Choi et al. (2021) trained and validated

three DL models to identify myopia and generated a result

of the absolute agreement with retina specialists which was

99.11%. However, the specific lesion associated with myopia

could not be detected, and validation with an external dataset

was needed. Li et al. (2022a) developed four independent CNN

models to identify retinoschisis, macular hole, retinal

detachment, and pathological myopic choroidal

neovascularization and acquired satisfactory results with a

high AUC for all conditions (0.961–0.999), revealing that the

sensitivity and specificity of the AI system were equal to or

even better than those of retina specialists.

Among the literature, we reviewed another two specific

retinal disorders: ERM and PED (Sun et al., 2016; Lo et al.,

2020). Lo et al. (2020) proposed a deep-learning model to

identify the epiretinal membrane (ERM) in OCT. Also, the

results showed that the diagnostic accuracy was 98.1% and the

AUC was 0.999, implying that the model’s performance was

slightly better than the average non-retinal specialized

ophthalmologists. Sun et al. (2016) proposed an automated

framework to segment serous PED in SD-OCT images. The

average true-positive volume fraction (TPVF), false-positive

volume fraction (FPVF), dice similarity coefficient (DSC), and

positive predictive value (PPV) were calculated as 90.08%,

0.22%, 91.20%, and 92.62%, respectively. However, the test

dataset consisted of only 25 patients.

No literature was found concerning AI auto-detection based

on OCT images of the following specific retinal disorders:

ellipsoid zone disruption, FCE, PVD, and RD.

Through the aforementioned literature review, we saw a

different performance of various AI models, as well as

compared our results. The underlying reason may include:

1) different models and architecture; 2) variant resources and

sizes of the dataset for training and testing; 3) inconsistent

standards for lesion labeling, as well as the difference in

definition and classification of a specific disease; 4)

different procedures of image quality control, as the quality

of an image may affect the results of AI output; and 5)

different methodology of evaluation, as with image view
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(only judge the image) or patient view (with consideration to

other clinical information.)

A common disadvantage of the aforementioned studies was

that their AI models focused on only one specific retinal disorder

leaving others unable to be recognized, which reduced their

feasibility and availability in real-world practice as community

screening (Kuwayama et al., 2019; Wang et al., 2020; Guo et al.,

2021; Liu et al., 2022). Our AI model could identify multiple

retinal disorders simultaneously in single detection, which was

more appropriate for the scene of community screening with the

unpredicted situations and comprehensive diseases and saved

more time and occupied fewer human resources. In addition to

the AUC and specificity, our results revealed a relatively high

sensitivity, which ensured its potency as a screening tool in the

early stage. In the procedure of the OCT scan, the average

examination time was 18.4 s for one eye and the average

output time of the AI report was 4 min. The high accuracy

and efficiency were proposed due to 1) the strategy in

architecture and model establishment, as well as the online

hard example mining mechanism utilized to improve the

convergence speed due to the unbalanced ratio between the

foreground and background; 2) accumulated experience and

advanced technology in OCT image analysis with AI

algorithms (Sun et al., 2016; Zhu et al., 2017; Shi et al., 2019;

Shi et al., 2021; Wang et al., 2022); 3) the integrated design of the

OCT instrument and AI algorithm; 4) the high performance of

the OCT instrument with a maximum A scan speed at

45,000 times per second as well as the high resolution of the

images. The aforementioned issues all guaranteed the accuracy

and speed of the community screening work.

However, there are still some limitations to our study. First, the

images were acquired from one type of the OCT instrument, and the

procedurewas carried out in one district by one singlemedical center.

To certify the accuracy of the AI system about images from other

OCT instruments and the participants from other communities with

other medical centers, we will further promote the study. The second

issue was that the detection of RD was not verified due to the

limitation of the participants in our study. Further evaluation may be

performed with specified patients. Finally, for some retinal disorders,

the performance of specificity and sensitivity still needs to be

improved with the further imperfection of the algorithm.

Conclusion

To the best of our knowledge, this was the first study carried

out in real-world community screening utilizing the SD-OCT

and integrated AI algorithm to auto-detect 15 different retinal

disorders simultaneously, with its accuracy compared to three

different levels of ophthalmologists judging from the patient

aspects. Positive results revealed that the accuracy of AI was close

to that of the retinal specialist, surpassing that of junior and

senior ophthalmologists, indicating a promising prospect of the

application of the OCT instrument and AI software in clinical

practice and community screening.
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