
Making sense of fragmentation
and merging in lineage tracing
experiments

Yiteng Dang1,2,3 and Steffen Rulands1,2,4*
1Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany, 2Center for Systems
Biology Dresden, Dresden, Germany, 3Max-Planck-Institute for Molecular Cell Biology and Genetics,
Dresden, Germany, 4Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-
Universität München, München, Germany

Lineage tracing experiments give dynamic information on the functional

behaviour of dividing cells. These experiments therefore have become an

important tool for studying stem and progenitor cell fate behavior in vivo.

When cell proliferation is high or the frequency of induced clones cannot be

precisely controlled, the merging and fragmentation of clones renders the

retrospective interpretation of clonal fate data highly ambiguous,

potentially leading to unguarded interpretations about lineage

relationships and fate behaviour. Here, we discuss and generalize

statistical strategies to detect, resolve and make use of clonal

fragmentation and merging. We first explain how to detect the rates of

clonal fragmentation and merging using simple statistical estimates. We

then discuss ways to restore the clonal provenance of labelled cells

algorithmically and statistically and elaborate on how the process of

clonal fragmentation can indirectly inform about cell fate. We generalize

and extend results from the context of their original publication.
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1 Introduction

The development and maintenance of tissues relies on the tight regulation of cell

migration, proliferation, differentiation and death. Cellular behaviour is typically

linked to a progression through cell states in a lineage hierarchy, from multi-potent

stem and progenitor cells to terminally differentiated cells. Research on the cellular

programs that underlie these cell states has historically focused on molecular

processes, such as the expression of genes in gene regulatory networks and

epigenetic modifications of the DNA and chromatin. Recent advances in single-

cell genomics have given rise to unprecedented possibilities in identifying these

molecular states and associated molecular markers of cell states (Tam and Ho (2020);

Tanay and Regev (2017); Stuart and Satija (2019)). Detailed molecular profiles do not,

however, inform about the functional consequences of molecular cell states in terms

of cell migration, proliferation, differentiation and death. By quantifying the
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enrichment of marker genes obtained from single-cell

sequencing compared to lists obtained from perturbation

experiments cellular function can be inferred statistically in

a correlative manner (Ashburner et al. (2000)).

A more direct study of the functional behaviour of cells

requires time-resolved measurements on the functional level.

Despite recent advances in microscopy, live imaging remains

highly challenging in most tissues. Lineage tracing

experiments, where a subset of cells is genetically labelled,

give dynamic information on a functional level in vivo

(Blanpain and Simons (2013); Simons and Clevers (2011)).

In these experiments, transgenic mouse models are used to

label a subset of cells with genetic markers. These markers are

bequeathed to all progeny of a labelled cell, termed a clone.

Lineage tracing comes in many flavours: single and multi-

color constructs, genomic barcoding, combined with genetic

perturbations (Rulands and Simons (2016); Yum et al.

(2021)). All of these methods have in common that the

number of cells in a given clone, the clone size, reflects a

history of cell division, differentiation or cell death events

between the time point of initial labelling (induction) and the

time point of analysis (Ruske et al. (2020)). While a given

clone size is compatible with multiple histories between

labelling and analysis, statistical ensembles of clones allow

to rigorously infer mechanisms of cell fate behaviour and

lineage relationships from clonal fate data. As an example, the

average size of clones is related to the rate and mode of cell

proliferation. For example, in homeostasis, the balance

between clonal loss and growth leads to a linear increase of

the average clone size (Klein and Simons (2011)). If this

balance is tilted towards symmetric proliferation, such as is

typical in early development or cancer, clone size distributions

increase exponentially (Alcolea et al. (2014)). The probability

distribution of clone sizes in addition reflects how cell fate is

regulated, such as via extrinsic feedback or intrinsically.

Methods from statistical physics and statistics have been

successfully employed to unveil mechanisms of cell fate

decisions in numerous tissues and contexts (Snippert et al.

(2010); Doupé et al. (2010); Driessens et al. (2012); Shakiba

et al. (2019); Scheele et al. (2017); Robertson et al. (2022)).

Theoretical work has also highlighted generic features of

clonal fate data (Klein et al. (2007); Yamaguchi et al.

(2017); Rulands et al. (2018); Corominas-Murtra et al.

(2020); Greulich et al. (2021)). Both in homeostasis and

during tissue expansion clone size distributions converge

over time to shapes that only partially depend on the

details of cell fate regulation.

The dynamic information encoded in clonal fate data

relies on the strict clonal relationship between a group of cells

at the time of analysis and a single induced cell at an earlier

time point (Figure 1A). The loss of this association

significantly complicates the interpretation of lineage

tracing experiments. This association can be lost in two

ways: First, at the time point of analysis, a group of cells

might be associated with multiple induced cells (merging)

(Figure 1B). In tissues, where clonal identity is usually defined

by spatial proximity of groups of labelled cells, clonal merging

is a consequence of the joining of multiple clones labelled

with the same fluorescent marker. Second, multiple groups of

cells at the time of analysis might be associated with a single

FIGURE 1
Overview of lineage tracing. (A) In lineage tracing experiments, a subset of cells is induced with an inheritable marker. The clonal relationship
between an induced cell and its quantified progeny is used to unveil cell fate behavior. (B) Fragmentation and merging of clones renders the clonal
identity of cells ambiguous.
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induced cell (fragmentation) (Figure 1B). Clonal

fragmentation is a consequence of large-scale tissue

rearrangements, cell migration, or stochastic forces by cell

divisions and cell loss (Ranft et al. (2010)). Cell intercalations,

also termed T1 transitions, where cells rearrange and change

neighbours, are also among the drivers of clonal

fragmentation (Bocanegra-Moreno et al. (2022)). Clonal

fragmentation therefore is particularly prominent in tissues

with a high rate of cell proliferation, such as in development,

regeneration or in tumours.

What can be learnt from lineage tracing data in these

scenarios? A combination of theoretical and experimental

work has shown that the ensuing size distributions tend to

take a universal shape that is independent of the biological

processes governing cell fate (Rulands et al. (2018)). This is

because these processes lead to variability in clone sizes that

dominates variability caused by other, cell-fate associated

processes. Therefore, the merging and fragmentation of clones

leads to the erasure of biological information contained in clone

size distributions. In order to safeguard against drawing

unfounded conclusions from clonal fate data it is therefore

necessary to faithfully detect clonal fragmentation and

merging in lineage tracing experiments and to restore

clonality using statistical inference methods.

Here, we discuss statistical strategies that have recently

been successfully employed to estimate rates of clonal

fragmentation and merging and to restore the clonal

provenance of fragmented cell clusters in a broad range of

tissues. Where applicable we generalise these results beyond

their original biological contexts. We argue that an estimation

of the rates of clonal fragmentation and merging is an

important step in the analysis of all lineage tracing

experiments. In order for these methods to be applied by

biologists who conduct these experiments we here focus on

simplicity, intuition and applicability rather than quantitative

exactness. We also discuss how the contiguity and the shape of

clones provide information about morphogenetic behaviours

such as oriented cell division and cell intercalation (Kaucka

et al. (2016)).

2 Sensing clonal fragmentation and
merging

A qualitative assessment of the prevalence of clonal

fragmentation and merging can be obtained by inspecting the

shape of the probability distribution of the sizes of labelled cell

clusters. Merging and fragmentation of clones lead to

stereotypical shapes - in particular the log-normal shape - that

can be indicative of these processes (Rulands et al. (2018)). In the

following, we will discuss strategies of how the rates of merging

and fragmentation in a given experiment can be estimated

quantitatively.

2.1 Estimating the induction frequency

A given number of labelled cell clusters can originate from

a combination of multiple induction, merging and

fragmentation events. Therefore, an independent estimate

of the induction frequency is an important step in the

analysis of lineage tracing experiments with an uncertain

degree of clonality. In Lescroart et al. (2014) the authors

studied the temporal commitment of Mesp1 expressing

progenitors to heart morphogenesis. They labelled cells at

different time points during early gastrulation (E6.5-E7.5),

where most of the labelled cells divide symmetrically and the

processes leading to the formation of different heart

compartments involve large-scale cell rearrangements.

These processes lead to the fragmentation of labelled clones

between the time of labelling and the time of analysis at E12.5.

To deal with fragmentation, a possible strategy could be to aim

to label 1 cell per heart on average, which would allow

calculating the fragmentation rate by simply calculating the

average number of clusters of labelled cells per sample.

However, since induction is generally stochastic, this would

have implied a significant fraction of unlabeled hearts of

roughly 30%. Therefore, Lescroart et al. aimed for an

average number of induced cells that is larger than one.

Since in this case a given number of labelled cell clusters

can originate from any combination of multiple induction and

fragmentation events, the retrospective clonal analysis

required an independent estimate of the induction frequency.

In order to obtain such an estimate, the authors made use of

the multi-color labelling strategy based on the Confetti construct

used in this study. If induction events in different colors are

statistically independent, then the number of different colors in a

sample follows a binomial distribution. For a labelling strategy

with a total of nC different colors the fraction of organs that is

labelled in n different colors, Cn then is

Cn � nC
n

( ) 1 − J( )nJnC−n, (1)

where J is the probability that the tissue is unlabelled in a

single color. Ifm0 denotes the average number of induced cells

in a given tissue region then J � e−m0 (Table 1). If only labelled

organs are recorded, then Eq. 1 needs to be divided by the

probability that an organ is labelled at all, 1 − JnC . While Eq. 1

cannot in general be solved for m0, we can solve for m0 in

terms of the ratio Cn/Cn+1. Therefore, the ratio of the number

of samples labelled in n colors, Cn and in n + 1 colors Cn+1 can

be used to infer the average number of labelled cells per

sample, m0 (Figure 2A),

m0 � log 1 + n + 1
nC − n

Cn+1
Cn

[ ]. (2)

In Lescroart et al. (2014) the authors applied this strategy

by calculating the number of induced colors in all embryonic
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FIGURE 2
Estimating the induction frequency andmerging probability. (A) In experiments involvingmultiple fluorescent markers, the induction frequency
can be inferred by comparing the numbers of samples with different numbers of colors, denotedCn for n colors. The ratioCnC−1/CnC is most sensitive
to the induction frequency at low values of the induction frequencies and in the case of many colors. (B) Calculating clonal merging rates from
experiments. In unicolor experiments, the merging rate can be approximated as the area or volume fraction of the tissue that is labelled. In
multicolor experiments, the unicolormerging probability is proportional to the bicolormerging probability times additional factors depending on the
labelling frequencies of each individual color. (C) The probability that an induced cell of type B is in contact with an induced cell of type A depends the
geometry of the tissue (coordination number) and the induction specificity. The insets show typical examples depicting different values of these
parameters.
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hearts analysed. In order to obtain a robust estimate ofm0 this

requires, however, a large number of animals. In larger

tissues, for example in later stages of development or

adulthood, an alternative strategy would be to define

equally sized regions that are sufficiently separated to be

statistically independent. Then one can quantify Cn and

Cn+1 across all of these regions. The average number of

induced cells per region can then be calculated as above

under the assumption that induction in all regions is

statistically independent and with equal frequency.

2.2 Estimating the merging probability

The potential merging of induced clones disproportionally

affects average clone sizes and the clone size distribution. For

example, an estimate made from Monte Carlo simulations

yields that a merging probability of 10% leads to a 20%

increase in the average clone size. This is because larger

clones have a higher probability of merging. Therefore,

since the number and positions of induced clones are

generally stochastic even for seemingly clonal experiments

the merging probability should be controlled statistically.

With an estimate of the induction frequency at hand the

probability that a given cluster of labelled cells is polyclonal

(merging probability) can, in principle, be estimated by

comparing the number of induced cells with the number of

observed cell clusters. If the number of observed cell clusters is

significantly lower than the estimated number of induced cells

then clonal merging is prevalent. Since this approach is based

on a comparison between the time point of induction and the

time point of analysis it implicitly relies on assumptions about

the kinetic processes influencing the number of labelled cell

clusters. Specifically, it neglects the possibility of clonal loss

and fragmentation. In the following, we will discuss how the

merging probability can be estimated independently of such

assumptions.

2.2.1 Multi-color experiments
For multi-color experiments the probability of clonal

merging can be obtained elegantly by comparing mergers

between cell clusters of different colors. As a first rough

estimate, one could make use of two different colors, c1 and

c2, that are expected to be induced with similar frequencies. Then,

the merging probability of two clones with color c1 (unicolor

mergers) is roughly equal to the probability that a cell cluster

labelled in color c1 is in spatial contact with a cell cluster of color

c2 (bicolor mergers). The latter is equal to the fraction of cell

clusters of color c1 that are bicolor mergers, which can be easily be

quantified from microscopy images.

If colors are not induced at similar frequencies, a more

detailed analysis is necessary. Aragona et al. (2017) performed

lineage tracing to study fate decisions of epidermal cells in the

mouse tail during wound healing. They labelled interfollicular

epidermis (IFE) stem cells using a Confetti labelling strategy, and

observed that the induced IFE cells formed elongated stripes

that extended towards the center of the wound. In order to

distinguish monoclonal stripes from stripes originating from

the merger of multiple stripes, they devised a statistical

framework to calculate merging rates in multicolor clonal

data. To this end, Aragona et al. calculated the correction that

is to be made to the heuristic argument presented in the

previous paragraph due to the fact that the fraction of bicolor

mergers is in itself influenced by the presence of mergers. If

kbicolor is the number of observed clusters that are bicolor

mergers between a color c and any other color and k is the

total number of clusters, then the fraction of unicolor

mergers is

Gc
unicolor ≈

kbicolor
k

rc
1 −∑cr

2
c

. (3)

The nominator of the second term, rc, is the relative

frequency of clones of color c which rescales the fraction

kbicolor/k by the relative contribution of color c. The

denominator corrects for the possibility of mergers when

counting k (Figure 2B). This correction is particularly

relevant if colors are not equally frequent. For example, in

Aragona et al. (2017) the authors find prevalence of CFP, RFP,

YFP clones at roughly 30% each and GFP at roughly 10%,

which corresponds to a correction factor to the merging rate of

roughly 0.72. For the labelling strategy used in Baggiolini et al.

(2015); Kaucka et al. (2016), migratory neural crest cells

induced at low recombination density express RFP at

roughly 73%, YFP at 17%, CFP at 9% and GFP at less than

1%. This gives a correction factor of 0.43.

2.2.2 Single-color experiments
Calculating the rate of clonal mergers in experiments

with a single fluorescent color is much more challenging. In

this case, the merging rate must be inferred from statistical

models that are based on simplifying assumptions about

clonal induction events and the spatial location of clones.

Fortunately, in many cases the assumptions that clonal

induction events are statistically independent and

spatially uniform and that clonal expansion is spatially

isotropic are approximately valid. They therefore serve as

a starting point for statistical frameworks of clonal merging.

An intuitive argument already gives an estimate of the

merging probability. For this argument, let us consider a

tissue with a number of labelled clones. Let us pick out a

random clone and put it in a random location in the tissue.

What is the probability that this clone is put onto a location that

is covered by another clone? If we neglect the spatial extension of

the randomly picked clone then this probability is equal to the

fraction of the tissue occupied by labelled cells (Figure 2B).

Therefore, to quantify the degree of clonal merging an
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estimate can be obtained from a simple quantification of the area

or volume fraction of labelled cells.

A similar argument was employed in Frede et al. (2016) who

studied oesophageal tumour growth and observed a small

number of clones that were much larger than the typical

clone size. They reasoned that these clones might be a result

of merging events and estimated the merging probability. Since

the circumference of the tumour lesions they studied is effectively

one-dimensional, the merging probability for a given clone size s

is equal to the probability that the distance to the neighbouring

clone is smaller than s. If p is the probability that a cell is induced

this is equal to 1 − (1 − p)s. Taking into account that clone sizes

are variable and are described by a distribution P(s), one then

sums over contributions from different clone sizes,

pmerge � 1 −∑∞
s�1

1 − p( )sP s( ). (4)

This argument, which was formulated for one spatial

dimension (the circumference of the lesion) can be

generalised to planar tissues (two spatial dimensions) and

volumnar tissues (three spatial dimensions). Under the

conditions of statistical independence and spatial uniformity

of induction events and isotropy of clone expansion, the

probability of clonal merging events can be estimated by

noting that the strongest contribution to the merging

probability comes from merging events with nearest

neighbouring clones, while merging events between three or

more clones are much less probable. Then, the probability of

merging is equal to the probability that the distance between the

centers of nearest neighbours is smaller than the sum of their

radii. From this we obtain as a generalisation of Eq. 4,

pmerge � ∫∞

0
1 − e−ρVd r( )( )C r( )dr. (5)

where ρ = m0/V is the density of clones in the tissue,

Vd(r) � π
d
2 rdΓ(d2 + 1) is the volume of a sphere of radius r in d

spatial dimensions, where Γ is the Gamma function and C(r) is

the probability that the sum of two radii is equal to r which is

derived from the clone size distribution. This means that,

similar to Frede et al. (2016), the merging probability can in

general be obtained from an estimate of the induction

frequency, m0, and the clone size distribution.

2.3 Application to multipotency

An important application of lineage tracing experiments is to

establish lineage relationships between different cell types. The

idea is that if an induced cell type gives rise to clones containing

another type of cells then the latter is lineage related to the

former. However, if induction is not entirely specific such that

both types of cells are induced, then the chance of merging of

clones might lead to unguarded conclusions about multipotency.

Therefore, in order to establish the hypothesis of multipotency

one needs to devise a statistical test quantifying the significance of

an enrichment of clones containing both cell types compared to

clonal merging by chance.

Wuidart et al. (2016) devised a statistical framework to test

for multipotency which they applied to mammary gland and

prostate tissues, two ductal epithelial tissues where basal cells and

luminal cells are in direct contact with one another (Figure 2C). If

induction events are statistically independent the probability that

a given pair of basal and luminal cells are chance mergers is

binomial. This constitutes the null hypothesis. Therefore, a

binomial test can be used to establish the statistical

significance of the alternative hypothesis of multipotency. If k*

is the number of observed pairs of basal and luminal cells of the

same color, the p-value is

p � ∑N
k�k*

N
k

( ) ]k 1 − ]( )N−k. (6)

The value of the sample size N and the parameter ] depend
on the statistical model used to describe the null hypothesis.

Based on this idea, Wuidart et al. derived two orthogonal

statistical tests. In the first test, they considered only pairs of

labelled basal and luminal cells. The null hypothesis then is that

among these pairs the ones that are of the same color arise by

chance labelling events. In this case, ] is the probability that a

given pair of labelled basal and luminal cells is of the same color.

This probability is equal to

] � ∑
C

rBCr
L
C, (7)

where rAC and rBC the relative probabilities of labelling luminal

and basal cells in color c respectively. As an example, in an

experiment using the Confetti construct on two cell types A and

B, the majority colors RFP, YFP and CFP are approximately

induced at the same probability rAC � 1/3 and rBC � 1/3 for all

colors and consequently ] = 1/3. Then, if 50 out of 100 pairs are

unicolor, k = 50 and N = 100 such that the p-value, Eq. 6, is p =

0.0004.

This example demonstrates that although this test is

insensitive to assumptions about the tissue architecture

and overall labelling frequencies, it requires a large

number of unicolor pairs in order to establish statistical

significance. If induction frequencies are low these pairs

are rare such that a large number of tissues potentially

needs to be analysed.

For a broader statistical test, Wuidart et al. used the fraction

of basal cells in contact with a luminal cell of any color. Under the

null hypothesis of chance merging, this probability depends on

the geometry of the tissue, which is encoded in the coordination

number z giving the number of luminal cells in contact with one

basal cell. As the coordination number may differ between
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individual basal cells, we define the distribution of coordination

numbers, F(z), which can be directly obtained experimentally

from microscopy images. The probability that an induced basal

cell is paired to a labelled luminal cell then takes the rather

lengthy form

] � ∑
C

λC⎛⎝ ⎞⎠∑∞
z�1

z 1 −∑
C′
λC′⎛⎝ ⎞⎠z−1

F z( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (8)

which now depends on the luminal induction probability, λC,

which should be determined independently. If variations in

coordination number are small we can approximate the

pairing probability as

] ≈ �z∑
C

λC, (9)

where �z denotes the average coordination number.

Therefore, in this case the pairing probability depends only on

the geometry of the tissue and the specificity of the genetic

labelling construct. Substituting this into Eq. 6 gives another

binomial test for mulipotency where k* now is the number of

labelled basal cells in contact with a labelled luminal cell and N is

the total number of labelled basal cells. A similar approach was

also followed in Lilja et al. (2018) in order to quantify the degree

of bipotency in the mammary gland during different time points

in development.

These tests are not restricted to tissues containing basal and

luminal cells, but can be applied and generalised to any tissue

where cell layers are in direct contact with each other. Since both

tests rely on complementary aspects of the clonal data it is

advisable to strengthen one’s conclusion about multipotency

by performing both of them. Should these tests indicate

unipotency, then a direct comparison between the predicted

values of Eqs 7–9 with experimental data could further

strengthen this conclusion. In the case that the analysis

supports multipotency, these comparisons can allow inferring

the rate of differentiation between both cell types.

2.3.1 Clonal merging in barcoding experiments
In recent years, fluorescent-marker-based assays have been

supplemented with labelling strategies using nucleic-acid-based

barcoding (Kebschull and Zador (2018); Wagner and Klein

(2020)). Due to the large number of induced cells, these

approaches require the creation of a barcode library with

sufficient diversity to induce individual cells with unique

barcodes, as well as a sequencing-based method to read out

the barcodes. In vivo barcoding methods generally fall into one of

two classes: 1) methods based on recombinase enzymes, which

flip or excise DNA sequences to generate sequence diversity and

2) CRISPR-based methods where an endonuclease enzyme such

as Cas9 introduces insertions or deletions into a genomic region

of the DNA. Readout of the barcodes can be performed by PCR

amplification followed by bulk sequencing, through single-cell

RNA sequencing, through fluorescence in situ hybridization

(FISH) methods or even through spatial transcriptomics (Rao

et al. (2021)).

While typically a large number of different barcodes is

generated, not all of them are induced with the same

probability. This gives rise to the chance induction of several

cells with the same barcode and hence clonal merging. The non-

spatial methods discussed in Sections 2.1–2.3 can be applied to

barcoding experiments, where different barcodes take the role of

fluorescent colors. Alternative approaches rely on modelling the

molecular processes leading to the generation of barcodes in

order to estimate the induction frequency of individual barcodes

(Marcou et al. (2018)).

2.4 Estimating the fragmentation rate

Estimating the rate of clonal fragmentation is not only

important to understand the degree of clonality of a given

experiment, but can also be informative for understanding the

underlying processes that cause fragmentation (cf. Section 3.3).

In order to estimate the rate of fragmentation, Lescroart et al.

(2014) derived the probability distribution F(k) of the number of

fragments k in a given sample. Since this distribution depends

both on the average number of fragmentation events between

labelling and analysis, f, and the number of induced cells, m, it in

principle allows inferring both simultaneously from clonal fate

data. To this end, they defined the joint probability of inducing

m cells and observing k fragments, J (k,m). This joint probability

is equal to the conditional probability of observing k fragments

givenm induced cells multiplied with the marginal probability of

inducing m cells. Since individual induction and fragmentation

events are considered to be statistically independent, both follow

Poisson distributions, such that

J k,m( ) � mf( )n−m
k −m( )!

mm
0

m!
e−mf−m0 . (10)

Because completely unlabelled organs are often not

quantified, this needs to be divided by the probability that a

tissue is unlabelled, J (0,0). Taken together, the number of

fragments then follows

F k( ) � ∑k
m�1J m, k( )
J 0, 0( ) . (11)

With this, the fragmentation rate f and the induction

frequency m0 can be estimated from the data, for example by

maximum likelihood estimation.

Because two parameters with similar effect on the

distribution F(k) need to be estimated simultaneously

(Figure 3A), it is expected that with the sizes of typical lineage

tracing experiments the uncertainties associated with these

estimates are large. Therefore, in the case of multi-color
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labelling, the induction frequency should be estimated

independently as in Section 2.1. Then, in a second step, the

fragmentation rate f can be inferred more robustly.

3 Interpreting nonclonal experiments

Given that merging or fragmentation of clones confound a

lineage tracing experiment, how can information about cell fate

behaviour still be inferred? In the following, we will discuss three

approaches that solve this problem in different ways: by

discarding nonclonal experimental samples, by restoring the

clonal origin of labelled cells and by taking clonal

fragmentation as an opportunity to learn about the

mechanical effects of cell fate decisions.

3.1 Filtering for monoclonal samples

In the first approach, samples with fragments deriving from

multiple induction events are filtered out and the downstream

analysis is restricted to monoclonal samples (Figure 3B). This

approach was followed in Lescroart et al. who devised a

statistical framework that allows, with known uncertainty, to

filter for monoclonal samples. The decision of whether a sample

is monoclonal is quantified by the ratio of two probabilities: the

probability that a given number of fragments are polyclonal and the

probability that a given number of fragments are monoclonal.

Following Bayes’ theorem, this ratio is equal to the ratio of two

likelihood functions: if L (k|m) should be L(k|m) is the probability
that an observed number of k fragments arises fromm labelled cells

then this ratio is

FIGURE 3
Computing clonal fragmentation rates. (A) The number of labelled cell clusters depends in similar ways on the induction frequency and the
fragmentation rate (shaded areas). Since both are a priori unknown their simultaneous inference is challenging. (B) To determine whether a sample is
monoclonal, a statistical framework based on comparing the likelihood that a sample ismonoclonal (black line) with the likelihood that it is polyclonal
(red line) defines a threshold (dashed line) in the number of fragments that separates samples that are consideredmonoclonal or polyclonal. (C)
For each sample colors with more fragments than the threshold value defined in (B) are discarded. Samples can be tissues from different animals or
large, but spatially separated and statistically independent tissue regions from the same animal. In this example, samples with two or fewer fragments
are considered monoclonal.
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Λ � ∑∞
m�2L m|k( )

L m � 1|k( ) . (12)

By defining a threshold value of Λ this defines a number of

fragments in a given color below which a given color in a given

sample is considered monoclonal (Figure 3B). If Λ ≥ 1 a given

sample is more likely to be polyclonal than monoclonal and these

samples were discarded in Lescroart et al. (2014). To achieve a given

higher significance level (a stricter criterion for monoclonality) a

smaller number than one can be chosen as a threshold at the cost of a

larger number of discarded data points. With this threshold defined,

the experimental data can then be filtered for samples containing

fewer fragments than this threshold (Figure 3C). All downstream

analysis then only considers samples that are monoclonal with

defined uncertainty. Lescroart et al. (2014) used hearts from

different animals and different fluorescent colours to define such

samples. An alternative approach is, as mentioned in Section 2.1, to

define regions in the tissue that are much larger than the typical

expected size of dispersed clones and sufficiently distant to be

considered statistically independent (Figure 3C).

3.2 Restoring clonality

If the rates of merging and fragmentation are small, clonality

can potentially be restored statistically by making use of the fact

that labelled cells belonging to the same clone have the tendency

to be located closer to each other compared to cells originating

from different induction events. As a first approach one might

therefore employ standard clustering techniques, such as

hierarchical clustering or k-means clustering on the spatial

coordinates of labelled cells. These approaches, however, have

shortcomings in the context of lineage tracing experiments: First,

they often lack unambiguous ways of determining the total

number of induced clones, which then becomes an

independent parameter that needs to be determined using

different tools (cf. Section 2.1). Secondly, they lack ways for

quantifying levels of uncertainty associated with the assignment

of cells to clones. Importantly, these uncertainties need to be

propagated to downstream analyses, such as the calculation of

average clone sizes. Transparency about uncertainties also allows

one to be tolerant with respect to mis-assignments in clonal

identity. Thirdly, standard clustering algorithms usually do not

allow to take into account additional information

experimentalists might have on a specific biological context,

such as on the rates of cell migration.

Than-Trong et al. (2020) studied cell fate behvaiour of neural

stem cells in the Zebrafish brain. Because labelled clones dispersed

over time, they devised a statistical framework that overcomes these

limitations by combining a biophysical model of clone dispersion

with Bayesian inference. The key idea is to calculate the probability

that a given partition of labelled cells into clones is the true clonal

partition (posterior). According to Bayes’ theorem, this probability is

proportional to the probability that a given clonal partition arises

from statistically independent induction events (termed likelihood)

multiplied with the a priori probability that a given partition arises in

the first place (termed prior). The likelihood was modelled as a

stochastic process of clonal induction and dispersion while the prior

contains information about clonal induction frequencies or clone

dispersion estimated independently from the data. Then, the

partition of cells into clones that maximized the posterior, and its

uncertainty, was approximately obtained by successively coarse

graining cells in larger and larger clones.

In a more simplistic way, experimentalists quantifying clonal

fate data could also decide on the clonality of a group of

fragments based on the distance between these fragments. In

order to specify a distancew* below which a pair of fragments can

be considered clonal we consider a pair of fragments and assume

that these fragments are nearest neighbors. Then, if we aim for a

given fraction α of polyclonal cell clusters at a distance shorter

than w* (significance level), we get as a condition

∫w*

0
P m � 2|w( )P w( )dw � α, (13)

where P (m = 2|w) is the probability that two fragments at a

given distance w arise from two separate induction events and

P(w) is the probability to find any two fragments at distance w.

According to Bayes’ theorem this is equal to∫w*

0
P(w|m � 2)P(m � 2)dw, where P (w|m = 2) is the

probability that a pair of monoclonal fragments have a

distance w. If clone induction events are statistically

independent then P(w|m � 2) � e−ρπd/2wd/Γ(d/2+1) (Diggle

(2013)), where ρ = m0/V is the density of clones, V is the area

or volumes analysed, and Γ is the Gamma function. P (m = 2) is

the a priori probability that two clusters of labelled cells at any

distance arise from two separate induction events. If the

fragmentation rate is known this is equal to the probability

that an induced clone has fragmented, ef. Taken together, we

can solve for w* and obtain

w* � Γ d/2 + 1( ) f − 1( )V
πd/2k ln 1 − αe−f( )[ ]1/d

. (14)

As expected, the distance threshold w* decreases with the

number of fragmentation events between induction and analysis,

f, and with the overall number of cell clusters, k. w* is the distance

belowwhich two labelled cell clusters are clonal with significance level

α. A reasonable choice could be α = 0.5 such that at distances shorter

than w* two fragments are more likely clonal than polyclonal.

3.3 Learning from clonal fragmentation
about cell fate

Instead of treating clonal fragmentation as a liability for the

analysis of clonal fate data, in recent years several groups have
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taken an orthogonal perspective. They noted that the dispersion

of clones after labelling reflects a history of mechanical forces

acting on the cells in the clone and that an analysis of clonal

fragmentation can give insights into these processes. Watson

et al. (2020) used a zebrafish line that fluorescently labels

osteoblasts and then used CRISPR to induce mutations of

Plod2 and Bmp1a in a subset of cells. The ensuing clone size

distribution takes the universal shape as predicted to arise from

fragmentation and merger events (Rulands et al. (2018)).

Therefore, clone size distributions were not informative about

the phenotype. However, by using statistical measures for the

spatial distribution of labelled cells they could identify systematic

differences between wildtype and mutant samples. One of

these measures is termed Moran’s I which is a statistical

measure of spatial correlations. The authors further used

multivariate statistical tests to compare the spatial

fluorescence signal between conditions and performed

Monte Carlo simulations. This work exemplifies that while

clone size distributions may converge to universal shapes that

are independent of the biological condition, quantities

capturing the spatial statistics of labelled cells may carry

cell fate specific information.

Further works associated clonal fragmentation with

mechanical processes in tissues. Ramanathan et al. (2019)

used models from statistical mechanics to show that clone

dispersion is inversely proportional to cell size, such that

smaller cells show higher clonal dispersion. In these

models, termed vertex models, cells are considered as

polygons with vertices and edges representing the

boundaries between cells Farhadifar et al. (2007). The

location of vertices and edges then follows equations of

motion determined by different forces acting on vertices.

Numerical results obtained from these models were also

compared to experimental findings from the Drosophila

wing disk of mutant embryos with smaller cells.

Bocanegra-Moreno et al. (2022) took a more direct

approach of inferring mechanical and material properties

from clonal fragmentation. They performed lineage tracing

using the MADM system (Zong et al. (2005)) in the mouse

neural tube. Based on these experiments they used

information on the fragmentation of clones to infer

mechanical and material properties of tissues, and to learn

about cellular processes that control fragmentation.

Specifically, in order to compare patterns of clone

fragmentation with theoretical predictions, they

implemented a vertex model parametrised by normalised

tension and normalised contractility, and applied noise to

the normalised tension. In their simulations they labelled

individual cells and tracked how the progeny of these cells

dispersed in the tissue. While clonal fragmentation alone was

not sufficient to determine the position of the tissue in

parameter space, the combination of fragmentation, the

rate of T1 transitions - where cells rearrange and change

neighbours - and geometric parameters describing cell

shapes allowed them to identify tissue and material

properties of the neural tube. They also found in vivo and

in silico that the fragmentation rate increases with the rate of

cell divisions, while cell differentiation leads to a reduction in

clone fragmentation.

Kaucka et al. (2016) combined lineage tracing, computer

simulations, live imaging and mouse mutants to study clonal

dynamics and cell movements of the cranial neural crest cells

that give rise to the ectomesencyhme. They found that clones

originating from a single neural crest cell form clonal

envelopes, well-defined clusters of labelled cells that

remain stable over time. However, these clusters overlap

with one another, such that there is considerable mixing

between cells from different clones. Computational

modelling suggested that pushing of cells arising from cell

division rather than cell migration is responsible for

generating this clonal mixing. This is confirmed through

live imaging, which revealed crowd motion of these clones

with limited individual cell migration. Furthermore, they also

find evidence of oriented cell divisions, which are consistent

with a computational model that includes a signalling

gradient, which in turn would explain the elongated shapes

of clones they observed. Taken together, these works show

that merging and fragmentation processes in themselves

carry valuable information about the mechanical processes

that underlie tissue morphogenesis.

TABLE 1 Notations used throughout this review.

m0 Parameter describing the average number of induced cells in a given experiment

m Random variable describing the actual number of induced cells in a given sample

k Random number describing the number of observed cell clusters in a given sample

rc Probability that a given labelled cell has color c

z Coordination number giving the number of neighbours a cell has

nc Total number of colors expressed in a lineage tracing experiment

f Average number of fragmentation events per clone between induction and analysis

pmerge Probability that a given cluster of labelled cells is polyclonal
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4 Discussion

The intepretation of genetic tracing experiments relies on the

integrity of the clonal relationship between induced cells and

their progeny at the time point of analysis. Large-scale cell

rearrangements or stochastic forces in the tissue lead to the

fragmentation and merging of clones, which renders the

retrospective analysis of such experiments highly ambiguous.

This is on the one hand because the resulting size distributions

obtain universal shapes that are largely independent of cell fate

behaviour. On the other hand, since the induction frequency and

the merging and fragmentation rates are a priori unknown,

restoring the clonal origin of induced cells is statistically

challenging.

If such non-clonality is undetected it might lead to

unguarded claims about cell fate behavior. In this review,

we discussed statistical strategies to detect non-clonality

in genetic tracing experiments. Genetic constructs where

clones can be induced in multiple colors provide simple

and elegant routes to estimating the induction frequency

by comparing the fractions of samples induced in different

numbers of colours. They also allow for estimating

the merging rate by counting the number of mergers

between cell clusters of different colours. For experiments

using only a single color, estimates of merging and

fragmentation rates are feasible using stochastic models of

clonal induction and a priori knowledge about the clone size

distribution. Given that estimating the merging and

fragmentation rates is feasible with no additional

experimental effort, we suggest that such estimates should

be conducted as a safety check in the analysis of clonal fate

data. With the advent of single-cell genomics and deep

sequencing, strategies that label clones with fluorescent

colors have been complemented with nucleic-acid based

barcoding. Since these barcodes are induced at different,

not neccessarily clonal frequencies, multiple cells can be

labelled with the same barcode. From a statistical

perspective this again leads to the effective merging of

clones. By treating barcodes as different colours the

statistical tools presented here to detect merging in multi-

color experiments can be used to estimate the degree of

clonality in barcoding experiments.

If clonal merging or fragmentation has been detected,

several strategies exist for interpreting nonclonal data. A first

strategy relies on filtering for monoclonal fragments. This

approach is applicable even if the fragmentation rate is high,

but it comes with the downside that a potentially large

fraction of the data is not used for further analysis. If

fragmentation and merging are infrequent, such that the

number of fragmentation events is much smaller than the

number of cell divisions in a given time interval, the clonal

provenance of labelled cell clusters can be faithfully restored

by statistical inference or through setting simple thresholds

in the distances between labelled cells. While these

approaches cannot restore clonal information that is

ultimately lost due to strong dispersion, they do come

with well-defined statistical uncertainties in the

assignment of cells to clones. As long as these

uncertainties associated with the assignment of cells to

clones are transparently propagated, occasional mis-

assignments of the clonal origin of labelled cells do not

compromise the interpretability of downstream results.

While clonal fragmentation and merging renders the sizes

of clones ambiguous, valuable information about cell fate

might be contained in other statistical quantities of labelled

cell clusters. First, the rates of merging and fragmentation and

their respective changes over time are associated with the rates

of cell proliferation and cell rearrangements in the tissue.

Further, the shapes of clones reflect anisotropic forces which

are relevant for understanding morphogenesis. Such forces

may arise through oriented cell divisions (Economou et al.

(2013)), but also through collective motion leading to

morphogenetic flows. In order to quantitatively interpret

these features and to deduce mechanisms of tissue

morphogenesis, models describing the collective effects of

mechanical forces in tissues need to integrate clonal

dynamics. Here, a promising line of research will be the

integration of the shapes and boundary roughness of

labelled cell clusters into quantitative frameworks of tissue

mechanics.
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