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The placenta is important for fetal development in mammals, and spatial

transcriptomic profiling of placenta helps to resolve its structure and

function. In this study, we described the landscape of spatial transcriptome

of human placental villi obtained from two pregnant women at the first

trimester using the modified Stereo-seq method applied for

paraformaldehyde (PFA) fixation samples. The PFA fixation of human

placenta villi was better than fresh villi embedded in optimum cutting

temperature (OCT) compound, since it greatly improved tissue morphology

and the specificity of RNA signals. The main cell types in chorionic villi such as

syncytiotrophoblasts (SCT), villous cytotrophoblasts (VCT), fibroblasts (FB), and

extravillous trophoblasts (EVT) were identified with the spatial transcriptome

data, whereas the minor cell types of Hofbauer cells (HB) and endothelial cells

(Endo) were spatially located by deconvolution of scRNA-seq data. We

demonstrated that the Stereo-seq data of human villi could be used for

sophisticated analyses such as spatial cell-communication and regulatory

activity. We found that the SCT and VCT exhibited the most ligand-receptor

pairs that could increase differentiation of the SCT, and that the spatial

localization of specific regulons in different cell types was associated with

the pathways related to hormones transport and secretion, regulation ofmitotic

cell cycle, and nutrient transport pathway in SCT. In EVT, regulatory pathways

such as the epithelial to mesenchyme transition, epithelial development and

differentiation, and extracellular matrix organizationwere identified. Finally, viral

receptors and drug transporters were identified in villi according to the pathway

analysis, which could help to explain the vertical transmission of several

infectious diseases and drug metabolism efficacy. Our study provides a

valuable resource for further investigation of the placenta development,

physiology and pathology in a spatial context.
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Introduction

The placenta is important in fetal development of mammals by

enabling exchange of gas, nutrients and wastes between mother and

fetus. It secretes hormones and growth factors to facilitate fetal

growth and development in utero. As the functional unit of human

placenta, the chorionic villi has a complex and heterogeneous

structure composing of different types of cells, including

fibroblasts (FB), vascular endothelial cells (Endo), Hofbauer cells

(HB), villous cytotrophoblast (VCT), syncytiotrophoblast (SCT),

extravillous trophoblasts (EVT), and endothelial cells of blood

capillary networks (Strauss, 1964). Depending on attachment to

decidua, chorionic villi can be categorized as floating villi and

anchoring villi. The multinuclear SCT are localized to the

outermost layer of the villi and serve as a barrier between the

mother and the fetus for the exchange of nutrients and gas (Aplin,

2010). The SCT also produce pregnancy hormones, including

placental lactogen and human chorionic gonadotrophin (hCG),

to regulate growth of the fetus and the placenta (Costa, 2016).

The VCT are located beneath the SCT and proliferate to form the

villi branches. The VCT can differentiate into the SCT and the EVT,

the latter of which are localized to the distal cell column of anchoring

villi (Knofler et al., 2019). The EVT migrate from these villi and

invade the decidua to remodel the spiral arteries (Pijnenborg et al.,

1980). The inner core of the villi contains a large proportion of

fibroblast-like stromal cells (Ilic et al., 2008). The HB are fetal

macrophages that are involved in placental vasculogenesis and

development of the villous tree (Tang et al., 2011). All the above-

mentioned cells exert different roles and interact with each other to

ensure a healthy pregnancy outcome. Any developmental defects of

the placenta may lead to pregnancy complications such as preterm

birth, miscarriage, intrauterine growth restriction and preeclampsia

(PE) (Pollheimer and Knofler, 2012), which are associated with

long-term adverse outcomes in maternal and perinatal health.

Due to the importance of the placenta in fetal-maternal

communications, development and functions of the placenta

is a hot research topic for a long time. Early placental studies

were mainly based on histological analysis of specimens (Hertig

et al., 1956; Hamilton and Boyd, 1960), in vitro tissue culture

(Deglincerti et al., 2016; Shahbazi et al., 2016) and animal models

(Enders, 2007; Cockburn and Rossant, 2010). Recently, emerging

technology of single-cell RNA sequencing (scRNA-seq) has

greatly promoted placenta researches, including placental

development at different gestational weeks (Liu et al., 2018;

Suryawanshi et al., 2018; Vento-Tormo et al., 2018) (Tsang

et al., 2017) and placental functions in pregnancy

complications such as PE (Zhang et al., 2021a), preterm birth

(Pique-Regi et al., 2019), and gestational diabetes mellitus (Yang

et al., 2021). However, scRNA-seq could not be used to study in

situ physical interaction and microenvironment because the

spatial information of cells is lost during cell dissociation

prior to scRNA-seq.

The next generation sequencing (NGS)-based spatial

transcriptomics method was published in 2016, which allowed

each transcript to be mapped back to its original location using

unique positional molecular barcodes (Stahl et al., 2016).

Although this method has been rapidly adopted in many cell

atlas projects, there is still no report on the spatial transcriptome

of early human chorionic villi. The recently developed Stereo-seq,

using the random barcode-labeled DNA nanosphere microarray

pattern deposition, presents higher resolution and larger field-of-

view than previously reported spatial transcriptomics methods.

This method has recently been used to establish spatial and

temporal transcriptome profiles of mouse embryos, Drosophila

embryos, zebrafish embryos, axolotl brain and Arabidopsis leaves

(Chen et al., 2022a; Cheng et al., 2022; Jiang et al., 2022; Liu et al.,

2022; Wang et al., 2022; Xia et al., 2022). In this study, we

successfully constructed the spatial transcriptome of human

placental villi using a modified protocol of Stereo-seq, which

provides a valuable resource for future placental researches.

Materials and methods

Sample preparation

Two healthy pregnant women for termination of pregnancy

(TOP) surgery at the eighth week due to psychosocial reasons

were recruited in this study. The TOP surgery was performed at

the Department of Obstetrics and Gynaecology, The University

of Hong Kong-Shenzhen Hospital. Before the surgery, the

participants received genetic counselling, and signed a consent

form for the study, which was approved by the Institutional

Review Board of The University of Hong Kong-Shenzhen

Hospital ([2021]208) and the Institutional Review Board of

BGI (BGI-IRB 22118).

The placentas were collected by vacuum aspiration. The villi

samples were sorted immediately after the surgery based on the

villous morphology. Fetal membranes and tissues with blood

clots were discarded. About 1 cm × 1 cm × 1 cm of the fresh villi

samples were washed in a 1.5 ml tube containing 1 × pre-cooled

phosphate buffered saline (PBS) (GIBCO, 70011044, from 10 ×

PBS diluted with diethylpyrocarbonate treated water) on ice to

remove the residual blood. The samples were then mixed with

pre-cooled Tissue-Tek optimum cutting temperature (OCT)

compound (Sakura, 4583), snapped frozen in liquid nitrogen

and stocked at −80°C. All these procedures were completed

within 30 min after sample collection.
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FIGURE 1
The schematic diagram of the experimental, data analysis workflow and comparison of Stereo-seq performance on fresh and PFA fixed villi
samples. (A) The workflow of Stereo-seq using the PFA-fixed villi. (B) Pipeline of the data analysis. (C) The distribution of the signals on the chip from
fresh villi sample. (D) The distribution of the signals on the chip from PFA-fixed villi.
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For paraformaldehyde (PFA)-fixed samples, the villi were

trimmed to less than 1 cm × 1 cm × 2 cm block, washed with PBS

and immersed in 4% PFA (BOSTER, AR1069) at a 10:1 ratio of

volume for 16 h at 4°C (Figure 1A). The fixed tissues were then

dehydrated in 10% sucrose for 4–6 h, 20% sucrose overnight and

30% sucrose for 24 h at 4°C. The dehydrated samples were

embedded in OCT as mentioned above. The fresh villi and

the PFA-fixed samples were transferred in dry-ice.

Cryosections were conducted sagitally at a thickness of 10 μm

in a cryostat (DAKEWE Cryostat Microtome, 6250). Three

successive cryosections of the largest intersecting surface were

obtained from each sample. One of the cryosection was used for

Hematoxylin and Eosin (H&E) staining and the other two

sections were used for Stereo-seq as replicates.

Stereo-seq libraries construction

For the OCT-embedded fresh samples, Stereo-seq libraries

were prepared and sequenced using the STOmics Gene Expression

kit S1 (BGI, 1000028493) following the standard protocol V1.1 as

previously described (Chen et al., 2022a). Briefly, tissue sections

were immediately adhered to a Stereo-seq chip at −20°C, and

warmed by fingertip to melt the OCT. Then the chip was fixed in

methanol for 30 min at −20°C. After fixation, single-strand DNA

dye (Thermo fisher, Q10212) was added to image the nucleus

under a Ti-7 Nikon Eclipse microscope. Then the permeabilization

enzymes were added to release the transcripts under a condition

with pH = 2. After reverse transcription, the residual tissues were

digested, and the cDNA was released from the chips and purified

using the AMPure XP beads (Vazyme, N411-03). The indexed

Stereo-seq libraries were quantified by the Qubit ssDNA Assay Kit

(Thermo Fisher Scientific, Q10212). The PFA-fixed samples were

prepared with an extra de-crosslinking procedure by immersing

the chips into the Tris(hydroxymethyl)aminomethane-

ethylendiaminetetraacetic acid (Tris-EDTA) buffer (pH = 10)

containing 5% RNase inhibitor at 70°C for 1 h before

permeabilization. After de-crosslinking and permeabilization,

the chips were re-fixed in pre-cooled methanol at −20°C for

15 min. The captured RNA were reversely transcribed to

cDNA. After amplification, fragmentation and cyclization, the

DNA nanoballs (DNB) were sequenced on a MGI DNBSEQ-

T10 sequencer (MGI, Shenzhen, China) according to the

manufacturer’s protocol (50 bp for read 1, 100 bp for read 2)

(Chen et al., 2022a).

Data processing and quality control

The fastq files containing sequenced reads generated by theMGI

DNBSEQ-T10 sequencer were processed using the STOmics

Analysis Workflow (SAW) v4.1.0 (https://github.com/

BGIResearch/SAW) (Chen et al., 2022a) to generate spatial gene

expression matrices (Figure 1B). The coordinate identity (CID) and

the unique molecular identifiers (UMIs) sequences are in read

1 while the cDNA sequences are in read 2. Firstly, CID were

mapped to the designed coordinates of the in situ captured chip,

and low-quality sequences were filtered out based on the UMIs

quality score. Then read 2 was aligned to the reference genome

(hg38) using STAR (Dobin et al., 2013). Aligned reads with

MAPQ < 10 were filtered out, and retained reads were further

mapped to corresponding genes. Aftermerging barcode reads count,

a CID-containing expression profile matrix was generated for

further quality control. The Stereo-seq raw data were analyzed at

the resolution of bin50 (50 × 50 DNB, or 37.5 μm× 37.5 μm) in this

study, with the transcripts from the same genes combined into an

aggregated profile within each bin as described earlier (Chen et al.,

2022a). First, the distributions of both log-transformed total counts

and log-transformed n genes by counts were calculated, and the

presence of bimodal distributions suggested strong background

signals. After that, bin50s with the percent counts in top

100 genes reaching 100% were removed. The remaining bins

were then clustered by using the Spatially Constrained Clustering

(SCC). The clusters generated from background signals were filtered

out. The Wilcoxon test was conducted to identify the differentially

expressed genes (DEG). The dissociative counts fromdead cells were

filtered, since most of the top genes with high expression levels were

mitochondrial and ribosomal genes. After filtering out the low-

quality clusters, the final expression matrix was used for the

downstream analysis.

Spatially constrained clustering

Principal component analysis (PCA) of the expression matrix

were conducted using the Scanpy package (Wolf et al., 2018). SCC

was performed on the dimensional-reduced data with consideration

of both gene expression similarities and neighborhood relations in

spatial distribution. In brief, the spatial k-nearest neighbor (KNN)

graph, produced by the Squidpy (Holgersen et al., 2021), was

integrated with the KNN graph which was built from the

transcriptomic data by the Scanpy. The graph including gene

expression and spatial information was then passed to the Leiden

algorithm for further clustering, and the markers of each output

clusters were identified by the rank_genes_groups function of

Scanpy with the Wilcoxon method. All clusters were annotated

by combining the information from themarker genes and canonical

markers of villi cell types.

Spatially resolved gene regulatory
network: SCENIC

The gene regulatory network (GRN) was constructed following

the standard procedures of the pySCENIC pipeline (Aibar et al.,

2017). Co-expressing genes from the bin50 expression matrix with
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the humanHUGOGeneNomenclature Committee (hgnc) (Bruford

et al., 2020) transcription factors (TFs) were identified using the

GENIE3 algorithm (Huynh-Thu et al., 2010). To exclude false-

positive results from the co-expression networks, the cisTarget

database was then adopted to confirm the putative direct-binding

targets of each TF, and filtered out the indirect targets lacking motif

support. The verified co-expression modules were regulons with

significant motif enrichment of the corresponding regulator. Finally,

the AUCell algorithm was conducted to score the regulon activities

of all bins and identify cell subgroups with high subnetwork activities

(Aibar et al., 2017).

Deconvolution: Cell2location

To identify cell type abundances in each spatial spot, we

conducted deconvolution analysis by the cell2location software

(Kleshchevnikov et al., 2022). A high-quality scRNA-seq

reference panel is necessary for the accurate estimation of cell

types in the spatial transcriptomic data, and here the scRNA-seq

data from a previous study (Vento-Tormo et al., 2018) was

adopted for the spatial data deconvolution. We selected the

data sampled from placenta tissues and filtered out cells not

belonging to SCT, VCT, EVT, FB, HB, and Endo for further

analysis. First, the cell2location identified reference cell type

signatures from the scRNA-seq profile using the negative

binomial regression. Then, the cell-type gene-signature model

was used to decompose the spatially resolved gene-count

matrices into the reference cell-type signatures, thereby

estimating the absolute cell abundance of individual cell types

across all spatial spots.

Cell-cell communication: CellPhoneDB

To study crosstalk between cell clusters mediated by ligand-

receptor complexes, cell-cell communication analysis was

performed using the CellPhoneDB software (https://github.

com/Teichlab/cellphonedb). The CellPhoneDB datasets of

ligands, receptors and their interactions were adopted, and the

statistically significant enriched ligand-receptor interactions were

identified based on the expression levels of ligands and

coordinate receptors (Efremova et al., 2020).

Results

Comparison between the fresh and
paraformaldehyde-fixed placenta villi

The Stereo-seq data of fresh and PFA-fixed treated villi were

dramatically different in terms of tissue morphology and data

quality. The cryosections of the fresh villi embedded in OCT

showed poor morphology and changed tissue shapes, making it

difficult to determine the structure. The H&E staining results of

the sections showed that the outer SCT layer were ruptured.

Many cells, especially the inner core cells beneath the SCT were

lost (Supplementary Figure S1A). Approximate 1.8 G reads were

generated in each section of the fresh sample with a Q30 bases of

89.5%. The number of gene types (mean gene type) detected in

each bin50 area (37.5 μm × 37.5 μm) was 399 and the number of

transcripts (mean molecular identifier, MID) detected in each

bin50 was 820 (Supplementary Table S1). We observed strong

diffusion of the transcriptome signals of the fresh villi from the

sequencing results (Figure 1C), possibly due to RNAs spillover

during the permeabilization of villi. In contrast, H&E staining of

the PFA-fixed villi showed intact villi structures and good cell

morphology, especially the integrity of the cells in the inner core

of villi (Supplementary Figure S1B). Approximate 5.5 G reads

were generated from the PFA fixed villi with a Q30 bases of

90.9%. The mean gene type of bin50 was 617 and the MID of

bin50 was 1.59 K (Supplementary Table S1). Compared to the

fresh villi, the sequencing results of the cryosections of the PFA-

fixed villi showed dramatic reduction of the RNA signal diffusion

(Figure 1D). Due to the severe RNA diffusion, trophoblast-

specific markers could not be identified in the fresh villi

(Supplementary Figure S2A). In contrast, Specific RNA signals

of trophoblast-specific markers were identified in the PFA-fixed

villi (Supplementary Figure S2B).

Spatial transcriptome resolves the villi into
distinct functional regions

The PFA fixed villi were analyzed in detail for functional

regions since they had better data quality and tissue morphology.

A series of quality control (QC) steps were performed to remove

background noise and low-quality bins that were mainly

composed of mitochondrial and ribosomal RNAs. After data

QC, the cell clusters corresponded well to the ssDNA image

(Supplementary Figure S3). After cell bin clustering by SCC and

cell type annotation, four major cell clusters were identified using

the classic markers of placenta cells. To demonstrate the fine

structure of a villus, a chip region with a representative integral

villi structure was selected for detailed spatial transcriptome

analysis (Figures 1D, 2A). Markers of SCT namely, CGA

(Vento-Tormo et al., 2018), PSG1 and CSH1 (Sheridan et al.,

2021) were identified in the outermost layer markers; VCT were

identified in the inner layers of SCT using EGFR (Fock et al.,

2015), ITGA6, and LRP5 (Shannon et al., 2022) as markers;

markers of EVT (MMP2, FN1, and HLA-C) (Papuchova et al.,

2019) were identified in an anchoring villus-like cell column

structure (Figure 2B). Besides trophoblasts, markers of FB

including COL1A1, COL1A2 and PITX2 (Vento-Tormo et al.,

2018) were identified in the core of the villi (Figure 2B). We also

identified the markers of HB cells (MTF,MAF and POU2F2) and

Frontiers in Cell and Developmental Biology frontiersin.org05

Liu et al. 10.3389/fcell.2022.1060298

https://github.com/Teichlab/cellphonedb
https://github.com/Teichlab/cellphonedb
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1060298


Endo cells (ZEB1, ZBTB20 and PECAM1) (Papuchova et al.,

2019) in the core of villi (Figure 2C). Since the FB, HB and Endo

were mixed in the core of villi, we denoted them as the inner core

cells. All the cell clusters were then deconvoluted by the

Cell2location using the RNA-seq data from a previous study

(Vento-Tormo et al., 2018). The results suggested that the HB

and the Endo cells were dispersed among the FBs (Figure 2D). A

localization map of different cell types in villi is shown in

Figure 2E. Applying the same methodology, similar cell types

and spatial localizations were found in the PFA-fixed villi of

another chip (Supplementary Figure S4).

Gene ontology (GO) annotation was used to find the DEG

and the involved biological processes in different trophoblast

(Supplementary Figure S5; Supplementary Table S2). The most

significantly upregulated GO biological processes in EVT versus

VCT included cell migration, cell adhesion and cytoskeleton,

while the pathways of cell proliferation such as protein

translation, folding and negative regulation of degradation

were downregulated in EVT. This result was in accordance

with the previous data (Apps et al., 2011). Compared to VCT,

the most significantly upregulated GO pathways in SCT included

regulation of protein transport, hormone secretion, negative

regulation of immune system process, viral entry into host

cell, response to ER stress and apical plasma membrane,

whereas the positive regulation of growth pathways was

downregulated.

Cell communication in villi predicted by
CellphoneDB

To investigate cell communications, we analyzed the

expression level of ligand-receptor pairs in different cell

types of the villi. SCT and VCT exhibited the highest

number of ligand-receptor pairs, while the inner core cells

have the least number of ligand-receptor pairs (Figure 3A;

Supplementary Table S3). As expected, the ligand DLK

localized mainly to FB, while its receptors, NOTCH2 and

NOTCH3, were expressed in all trophoblasts, implying a

role of the interaction in maintenance of FB through

paracrine signaling from trophoblast (Figure 3B). The

interaction between PGF and FLT1 was abundant in villi,

both expressed in nearly all trophoblasts. The imbalance of

this interaction is an indicator for PE (Maynard et al., 2003).

FIGURE 2
The localization of different cell types. (A) Unsupervised spatially constrained clustering of the villi. Bins are colored by their annotation. (B) The
expression level and (C) the distribution of themarkers for specific cell types in villi. (D) Estimated cell abundances (color intensity) of major cell types
(color) across regions. (E) The distribution of cell types after deconvolution by cell2location showed in one map.
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The imprinted Igf2-Igf2r pairs have been well studied. In mice,

Igf2 is expressed highly in feto-placental endothelial cells, and

is important in maintaining trophoblast development,

particularly the SynT-II layer (Sandovici et al., 2022). Our

study found that IGF2 was abundant in FB and VCT, while

IGF2R was in all cell types. Wnt ligands such as Wnt5A and

WNT7A were highly expressed in SCT, while the receptors of

Wnt, including FRZB and LDLR, were expressed in SCT and

inner core cells (Figure 3B). Wnt induces SynT-II cells fusion

in mice through induction of Gcm1 and SynB expression (Zhu

et al., 2017). Here, Wnt may function on SCT through an

autocrine action. EGFR was also highly expressed in SCT and

VCT, while the ligands were expressed in nearly all the villous

cells (Figure 3B). The expression of EGFR increases with

differentiation of the SCT (Rab et al., 2013). With the

Stereo-seq data, we directly mapped the location of various

ligand receptors in the villi, and showed their co-localization

with corresponding ligands inferring the physical contact

between specific cells with ligand-receptor pairs (Figure 3C).

Spatial regulatory activity of transcription
factors in villi

Using the SCENIC analysis, we identified a total of

316 regulons in EVT, VCT, SCT and inner core cells. The top

20 regulons specific in each cell type were identified based on the

regulon specificity score (RSS). The heatmap generated from the

Z-scores of these cell-type-specific regulons shows that the cell

clusters based on the regulons AUC scores (Figure 4A;

Supplementary Table S4). A group of TFs reported to be

specifically expressed in the placenta was used to confirm our

analysis of spatial regulatory activity (Figure 4B). For example,

TFAP2C, MSX2, FOSL1 and HMGA1 are expressed in VCT

FIGURE 3
Intercellular interactions between different cell types in placenta villi. (A)Heatmap for the log-transformed number of ligand-receptor pairs in all
cell clusters. The different colors indicate log2 of the counts. (B) Interactions between selected ligand–receptor pairs; p values indicated by the size
of circles. The means of the average expression level of the molecules in ligand-receptor pairs are indicated by color. (C) The distribution of
representative ligand-receptor pairs.
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(Renaud et al., 2014; Hornbachner et al., 2021). We showed

consistent findings on the expression and spatial localization of

these TFs (Figures 4B,C). However, we did not find the

expression of FOSL1 and HMGA1 in the EVT, which is

against the report that FOSL1 is also expressed in the

proliferative EVT cell columns, while HMGA1 in the EVT

invading the decidua (Renaud et al., 2014). TCF7L2, TEAD1,

ASCL2, and SMAD3 have been reported to be expressed

specifically in EVT (Meinhardt et al., 2014; Dong et al., 2022;

Haider et al., 2022). These TFs were also highly expressed in EVT

in our results (Figure 4B). We also confirmed the dominant

expressions and spatial distribution of AHR, CEBPA, TBX3 and

NFE2L3 in the nuclei of SCT (Figures 4B,C), consistent with

previous studies (Simmons et al., 2008; Iqbal et al., 2021; Chen

et al., 2022b; Dong et al., 2022).GATA6, ZEB1, RUNX1, and ERG

are fibroblast or endothelial cells-related TFs (Molkentin, 2000;

Ponder et al., 2016; Yuan et al., 2020; Zhang et al., 2021b;

Caporarello et al., 2022). We confirmed that these TFs were

mostly expressed in the inner core cells (Figures 4B,C). To further

validate our results, we acquired the protein expression data of

the above TFs from the Human Protein Atlas (https://www.

proteinatlas.org/), which showed the concordant expression in

cell types and localization (Supplementary Figure S6).

By GO analysis, the regulons upregulated in SCT relative to

VCT were related to hormones transport and secretion, and

response to hormones (Figure 4D; Supplementary Table S5).

This is consistent with the fact that the SCT synthesize and

secrete a variety of hormones, including hCGA and hCGB,

CSH1, PSGs, PGF, CRH and others (Jaremek et al., 2021).

Meanwhile, the regulons associating with the regulation of

mitotic cell cycle were downregulated, which is concordant

with the exit from the mitosis before differentiation of SCT.

Pathways of nutrient transport and mammary gland

development were also identified (Figure 4D). In EVT,

pathways such as the epithelial to mesenchyme transition

pathway, epithelial development and differentiation,

extracellular matrix organization were identified as previously

described (Illsley et al., 2020; Papuchova and Latos, 2022), which

were associated with the invasive activities of EVT (Figure 4D;

Supplementary Table S5).

The expression of virus receptors and drug
transporters in syncytiotrophoblasts

As the outermost cell type, SCT has direct contact with the

maternal interface. We found that the DEG of SCT contained the

genes involving in viral entrance to cells and viral life cycles,

implying possible vertical transmission of virus from mother to

fetus through SCT (Supplementary Figure S7; Supplementary

Table S6). To evaluate the placental receptors of virus

transmission, we mapped the expression of a panel of 20 viral

FIGURE 4
Analysis of the spatial regulatory activity of transcription factors in villi. (A)Heatmap of AUC Z-scores for the cell-type-specific regulons (B) The
AUC score levels of representative regulons. (C) Distribution of the representative regulons. (D) GO pathway analysis of differentially expressed
regulons.
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receptors and co-receptors for TORCH (Toxoplasma gondii,

Other agents, Rubella, Cytomegalovirus & Herpes simplex

virus), severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), ZIKA, and other infectious diseases in the villi

(Figure 5A). Generally, EGFR, SDC1, HSPA5, MYH9, CD46 were

strongly expressed in the SCT but also widely expressed in other

cell types. In contrast, ITGAV, CD55, TFRC, SCARB1, HSPG2,

and BSG were only mainly expressed in SCT.

Human cytomegalovirus (HCMV) may infect SCT to induce

monocyte activation through the receptor EGFR and the co-

receptor integrin proteins (Wang et al., 2003; Chan and Guilbert,

2005). However, this theory is still controversial, as the virion

may across the syncytium by transcytosis instead of direct

infection (Fisher et al., 2000; Maidji et al., 2006). We found

that SCT exhibited little expression of the neonatal Fc receptor

(FCGRT), which helps to transport IgG for passive immunity.

Yet, the key integrin receptors, α1β1 and αVβ3, together with

EGFR had moderate or strong expression in SCT (Figures 5A,B),

which provides the molecular basis for viral infection. The

protein expressions of α1β1 and αVβ3 in SCT were also

verified by the data from the Human Protein Atlas

(Supplementary Figure S8).

Till now, it is still controversial whether the SARS-CoV-2 can

be vertically transmitted (Islam et al., 2020; Rodrigues et al., 2020;

Yoon et al., 2020; Kotlyar et al., 2021).We assessed the expression

of a series of SARS-CoV-2 receptors in villi. Our results indicated

a low expression of ACE2 and TMPRSS2 in all cell types in the

villi (Figures 5A,B), consistent with previous single-cell analysis

studies (Lu et al., 2020; Pique-Regi et al., 2020). However, BSG

and HSPA5 were expressed highly in the SCT as previously

reported (Dong et al., 2021; Lee et al., 2022) (Figures 5A,B),

inferring the possibility of vertical transmission of SARS-CoV-2.

In SCT, the transporter genes were strongly upregulated,

inferring their roles in transportation of nutrition, gas, and

hormones between mother and fetus (Supplementary Figure

S7; Supplementary Table S6). Specifically, we analyzed the

transporter genes relevant to drug transportation, including

52 members in ATP-binding cassette (ABC) family (Sarkadi

et al., 2006) and 395 members in solute carrier protein (SLC)

families (Schlessinger et al., 2013). A total of 47 transporters were

enriched in SCT, most of which have been previously reported

(Figure 5C; Supplementary Figure S9). ABCB1, for example, has

been reported to localize at the apical membrane of SCT to back-

transport xenobiotics and drugs to maternal circulation (Sun

et al., 2006). ABCG2 is also localized predominantly to the apical

surface of SCT, and limits the transfer of nitrofurantoin (Merino

et al., 2005), cimetidine (Pavek et al., 2005) and glyburide

(Gedeon et al., 2008) to fetal circulation. Moreover, SLC6A4

(Wang et al., 2007), SLC22A11 (Shimizu et al., 2005), SLC2A1,

SLC3A2, SLC4A2 (Nishimura and Naito, 2008), SLC7A5 (Jia

FIGURE 5
Distribution of virus receptors and drug transporters in chorionic villi. (A) Expression level of receptors for different viruses in villi. (B)Distribution
of representative virus receptors. (C) Expression level of representative drug transporters in villi. (D) Distribution of representative drug transporters.

Frontiers in Cell and Developmental Biology frontiersin.org09

Liu et al. 10.3389/fcell.2022.1060298

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1060298


et al., 2022) protein or RNA have been shown to localize to SCT.

These were all detected in our data (Figures 5C,D; Supplementary

Figure S9). We also found transporters that had not been

elucidated in the placenta, such as SLC40A1, SLC19A2 and

SLC31A2 (Figure 5D; Supplementary Figure S10), which could

be candidates for future study on blood-placental barrier.

Discussion

Spatial transcriptome is important for understanding the

structure-function relationship of placenta. For the first time,

we provided the spatial transcriptome profile of chorionic villi of

early placenta (8 weeks gestation) using our proprietary Stereo-

seq method. The main cell types of placental villi were identified,

and their spatial localizations were accurately pinpointed on the

villi structure at single-cell level. Cell communication in the villi

was identified and specific TFs were found to be involved in

regulating differentiation and functions of trophoblast in villi.

Finally, the viral receptors and drug transporters, which is

important for the blood-placental barrier, were spatially

identified in villi.

Human placenta is not a compact structure and is rich in

extracellular matrix composing of syndecans and integral

proteoglycans (Moore et al., 2021). We found that the loose

structure of fresh placenta villi was incompatible with the Stereo-

seq method, as shown by the severe RNA diffusion and damaged

tissue morphology. We reckoned that the reason is due to cell

damage during sectioning, leading to diffusion of intracellular

RNA. In comparison, PFA fixation of placenta villi distinctly

reduced RNA diffusion and improved the specificity of signal

localization. Although PFA fixation may cause cross-linking of

nuclei acid and damage RNA integrity, sufficient gene numbers

in each cell bin were obtained by increasing the sequencing

depth. Hence, we recommend the PFA fixation of placenta for

spatial transcriptome profiling of the first-trimester placenta villi

by Stereo-seq. It is worth to verify the usefulness of PFA fixation

on other samples with complex but loose structures, such as small

intestinal villi, testis and lung.

Extensive works have been done to illustrate the cell types

and cell interactions in placenta by scRNA-seq (Pavlicev et al.,

2017; Perez et al., 2022). With our Stereo-seq data, we identified

SCT, VCT, EVT and FB as themain cell types in the placenta villi,

consistent with previous histological and scRNA-seq studies.

Meanwhile, the placenta scRNA-seq data were used to

reinforce our spatial transcriptome analysis. By deconvolution

of the spatial expression matrix with scRNA-seq data, we

revealed the localization of two minor cell types of HB and

Endo in villi. Functioning as fetal macrophages, HB plays

important roles in anti-pathogens, placental vasculogenesis,

angiogenesis and SCT differentiation (Seval et al., 2007). Endo

are the main cell type of blood vessels in the villi that can interact

with HB to regulate growth of the vessels. The stereo-map

colocalized these two cell types and demonstrated their

interaction.

A major advantage of spatial transcriptome comparing with

scRNA-seq is the localization of specific cell subtypes, and

determination of cell functions, cell interaction and

microenvironment in spatial context. In this study, we

demonstrated the usefulness of Stereo-seq data in studying the

ligand-receptor pairs and spatial regulatory activity in villi cells.

Using the CellPhoneDB, we confirmed the previously found ligand-

receptor pairs including PGF-FLT1 (Maynard et al., 2003), DLK-

NOTCH3 (Cleaton et al., 2016) in different cell types in the villi. We

further identified new pairs, including the IGF2-IGF2R and the

WNT-FRZB pairs, providing new aspects for the study of villi

development. Although previous analyses of CellphoneDB were

mainly based on scRNA-seq data, our results show that it is also

applicable to our spatial transcriptome data. The proximity is one of

the most important determining factors of cell-to-cell interactions.

For paracrine or membrane-bond ligands, interaction exists

between neighboring cells. We used SCENIC to construct GRN

and found four main modules, which were consistent with the

localization of different cell subtypes, and further verified the

reliability of the Stereo-seq data. GO analysis of TFs also

indicated the developmental dynamics during VCT

differentiation towards EVT and SCT, and reflecting the

function of placenta, including pregnancy hormone production,

invasion to decidua to remodel the spiral artery.

The Stereo-seq data can also be used to analyze the

distribution of viral receptors and transporters in placental

cells. We found that the receptors of HCMV and SARS-CoV-

2 were expressed in cells in villi including SCT. Our results

provided some theoretical basis for predicting mother-to-fetus

transmission of the virus and guiding medication during

pregnancy. In this study, we showed some potential

application scenarios of spatial transcriptomics on placenta

villi, including hormone secretion, nutrient and gas exchange,

decidua remodeling, and the developmental regulation of villi.

However, we could not study the pathways of immune response

because there was no decidua involved in this study, which is the

main region where feto-maternal immune response occurs.

In this study, the spatial transcriptome analysis was

conducted with the resolution of bin50, which approximately

equals to an area of 37.5 μm × 37.5 μm. As multiple cells may be

present in the area, a true single-cell profile of placenta villi was

not obtained in this study. The lack of the spatial transcriptome

profile of placenta villi at single-cell level may explain why it

needed to use the deconvolution method to identify rare cell

types in the villi, such as HB and Endo mixed with FBs. It is

possible to further improve the resolution to cell bin20 or above

by increasing the sequencing depth to obtain a higher gene

number for each cell (Wang et al., 2022). Another possible

strategy is to determine the cell border to perform the spatial

single-cell analysis via bioinformatic approaches (Wei et al.,

2022).
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Conclusion

In this study, we successfully constructed the spatial

transcriptome of the early placenta villi using a modified

method that may be applied to tissues with a loose structure.

All the main cell types in the villi were identified in their

physiological position. We investigated the regulons and

found specific TFs in different cell types associated with the

differentiation and functions of trophoblasts. Finally, the viral

receptors and drug transporters in villi were identified according

to the pathway analysis. Our work provides a valuable data

resource for further investigation of the placenta structure,

development, physiology and pathology.
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