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Meibomian gland dysfunction (MGD) is caused by abnormalities of the meibomian

glands (MG) and is one of the causes of evaporative dry eye (DED). Precise MG

segmentation is crucial for MGD-related DED diagnosis because themorphological

parameters of MG are of importance. Deep learning has achieved state-of-the-art

performance inmedical image segmentation tasks, especiallywhen training and test

data come from the same distribution. But in practice, MG images can be acquired

from different devices or hospitals. When testing image data from different

distributions, deep learning models that have been trained on a specific

distribution are prone to poor performance. Histogram specification (HS) has

been reported as an effective method for contrast enhancement and improving

model performance on images of different modalities. Additionally, contrast limited

adaptive histogram equalization (CLAHE) will be used as a preprocessingmethod to

enhance the contrast of MG images. In this study, we developed and evaluated the

automatic segmentationmethod of the eyelid area and theMG area based on CNN

and automatically calculated MG loss rate. This method is evaluated in the internal

and external testing sets from two meibography devices. In addition, to assess

whether HS and CLAHE improve segmentation results, we trained the network

model using images fromonedevice (internal testing set) and testedon images from

another device (external testing set). High DSC (0.84 for MG region, 0.92 for eyelid

region) for the internal test set was obtained, while for the external testing set, lower

DSC (0.69–0.71 for MG region, 0.89–0.91 for eyelid region) was obtained. Also, HS

and CLAHE were reported to have no statistical improvement in the segmentation

results of MG in this experiment.
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Introduction

Meibomian glands (MG) are special sebaceous gland located

on the tarsal plate of eye (Erich et al., 2011). They produce

meibum to prevent tear from over evaporation (Nichols et al.,

2011), maintain the surface tension of the tear film, and trap tears

between its oily edge and the eyeball. Healthy MG are elongated

in shape, arrange in parallel and throughout the entire tarsal plate

(Djalilian, 2018). Functional and/or structural problem of MG

may cause meibomian gland dysfunction (MGD) (Driver and

Lemp, 1996). MGD is a chronic, diffuse abnormality of the

meibomian glands, commonly characterized by terminal duct

obstruction and/or qualitative/quantitative changes in the

glandular secretion (Den et al., 2011; Nichols et al., 2011).

MGD often leads to tear film alteration, ocular surface

disease, and is the leading cause of evaporative dry eye

(Turgut et al., 2018), which can seriously affect the patient’s

life and increase the global public health and financial burden

(McDonald et al., 2016).

Meibomian gland area loss is an important index to evaluate

MGD (Arita et al., 2014). MGD can be directly observed using

meibography, which is an optical imaging technique allowing

visualizing MG morphology in vivo (Pult and Nichols, 2012).

Recently, many non-contact infrared meibography methods

were developed, making the MGD diagnosis process more

patient-friendly and less time-consuming (Pult and Riede-

Pult, 2012; Wong et al., 2019; Xiao et al., 2020; Hwang et al.,

2021). These devices allow users to capture high-resolution

images of meibomian glands in a short period of time, which

can provide sufficient experimental material for MG analysis.

Quantification of the area of meibomian glands loss is of

importance when assessing MGD. To date, automatic

methods based on image processing techniques have been

developed for the automated assessment and classification of

MGD (Arita et al., 2014; Celik et al., 2013; Koprowski et al., 2016;

Koprowski et al., 2017; Liang et al., 2017; Llorens-Quintana et al.,

2019; Pult and Riede-Pult, 2013; Xiao et al., 2021). In recent

years, MGD automatic analysis methods based on convolutional

neural network (CNN) have been developed rapidly. These

works automatically segment the eyelid and MG, and calculate

the loss rate and analyze the morphological parameters of MG

(Wang et al., 2019). In order to promote the segmentation

performance of MG, contrast limited adaptive histogram

equalization (CLAHE) will be used as an image preprocessing

step to enhance the contrast of MG images (Prabhu et al., 2020;

Dai et al., 2021).

However, the MG images used in these works were acquired

from a single device. The preset parameters of the method or the

trained model are for the specific data domain used in the

experiment. When testing these methods with images from

other distribution domains (such as different image

modalities, or different acquisition devices), a lower

performance is usually obtained (Yan et al., 2019). Such

problem is called “distribution shift” (Jo and Bengio, 2017).

To reduce the performance gap, an effective method is to

reduce the distribution domain distance of the data. Training

a generative adversarial network (GAN) to generate fake images

between two different domains is a common method to improve

the generalization of the model to data from different domains

(Perone et al., 2019; Yan et al., 2019); but it requires a large

number of training samples. In some medical image processing

tasks, histogram specification (HS) has been reported as an

effective method for contrast enhancement and improving

model performance on images of different modalities, such as

between MRI and CT images (Naseem et al., 2021).

In this study, we focus on two open questions in the field of

automated meibomian gland analysis:

1) In the CNN-based MG analysis method, does CLAHE

improve the network performance?

2) Can HS improve the performance of models trained with data

collected from a single device on cross-device data?

This study aims at developing and validating an MG

segmentation method based on CNN. Whether HS and

CLAHE as preprocessing methods can effectively improve the

segmentation performance of the CNN model was also

investigated in this study. MG images captured from different

devices were divided into different testing sets based on different

preprocessing methods, and then segmented by CNN model to

calculate MG loss rate. All the results will be compared with the

ground-truth by the clinicians.

Related works

Histogram specification (HS) enhances the brightness and

contrast of the input image and transforms the input image into

an image with a similar shape to the template histogram. HS has

the advantage of simplicity and low computational cost (Xiao

et al., 2018). HS is very common in the preprocessing stage of

medical images. HS is used to match the histogram of the input

image to the template image to initialize and avoid gradient

explosion before using CNN to segment the kidney based on CT

images (da Cruz et al., 2020). Naseem et al. (2021) based on HS to

enhance images of different modalities. They enhance low-

contrast CT images based on MRI images based on the

second-order distribution.

The rawMG image often has low contrast. In other word, the

pixel intensity of glands and background have little difference, as

a result, it is difficult for the observer to separate the glands from

background, especially when the image is blur. CLAHE is applied

for the meibography image enhancement. CLAHE enhances an

image by limiting the height of the local region histogram, such as

a 64 pixels neighborhood block, thereby overcome the global

uneven illumination and noise amplification problem. CLAHE is
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often used as a preprocessing method to enhance the

performance of MG segmentation (Prabhu et al., 2020; Dai

et al., 2021).

Materials

This study involves 287 subjects (age: 56.1 ± 17.2 years old,

83men and 204 women) collected by Beijing TongrenHospital. The

purpose and possible consequences of the studywere explained to all

involved subjects. Exclusion criteria included 1) ocular allergies, 2)

history of ocular surgery, 3) history of ocular trauma, 4) other eye

diseases, 5) long term or frequent contact lens use and 6) Any other

eye or systemic disease known to affect the tear film. Excluded

images include: 1) Images included something other than the eyelids

and their surrounding tissueswere, 2) Images were not sufficiently

clear for automatic analysis were excluded. 3) Patients’ eyes

exhibited excessive meibomian lipid secretion. The study was

approved by the Ethical Committee of the Beijing Tongren

Hospital and was conducted in accordance with the tenets of the

Declaration of Helsinki. A total of 1,074 images were collected by

professional clinicians, including 888MG images collected from

Keratograph 5M (K5M; OCULUS Optikgeräte GmbH, Wetzlar,

Germany) and 186 fromKANGHUADED-1L (KH).Note that Ik5m
is used to represent the image set collected from K5M, and Ikh is

used to represent the image collected from KH. Then, Ik5m was

divided into two sets, 648 for training set used for neural networks

training, and 240 for testing set to appraise the algorithm

performance. And Ikh is used as an external testing set to test

the performance of our models on data from different device. It

should be noted that as a retrospective study, some of the

287 patients have received treatment and collected follow-up data

at different times, therefore there are more meibomian gland images

than the subject number.

The ground-truth annotation was completed by a senior

clinician using imageLabeler application in MATLAB

(9.5.0.944444, R2018b, Java 1.8.0_152-b16). For labeling the

eyelid region, the upper edge is defined at the opening of the

gland, the lower edge is defined at the edge of proximal tarsal

plate, and the horizontal borders is defined at the top and bottom

borders intersected (Wang et al., 2019). Value 1 and 2 are used to

denote the eyelid region and the MG region, respectively.

Examples are shown in Figure 1.

Methods

Image preprocessing

Images Ikh and Ik5m acquired by two different devices are

involved in this study. The grayscale histograms of the two image

sets are significantly different, as shown in the figure. HS is applied to

convert the grayscale density so that Ikh can be matched to the

histogram of Ik5m. Specifically, the brightness distribution of each

image in Ik5m is counted, and the results are averaged to obtain an

average histogramHk5m representing Ik5m. Then, each image of Ikh
is matched toHk5m usingHS, resulting in a similar pixel distribution

to Ik5m, as shown. Ikh−HS is used to represent Ikh after HS

preprocessing. To explore the effect of CLAHE on segmentation

performance, Ik5m, Ikh and Ikh−HS were preprocessed with CLAHE.

Ik5m−CLAHE, Ikh−CLAHE and Ikh−HS−CLAHE are used to represent each

set of images processed using CLAHE.

FIGURE 1
Examples of upper and lower eyelids and MG, and ground-truth for segmentationmask. Black, gray, and white pixel represent the background,
eyelid region and MG region, respectively.
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MG segmentation network

To segment the eyelid region andMG region, we constructed

a compact CNN based on U-Net architecture (Ronneberger et al.,

2015). The segmentation network contains an encoder and a

decoder, as shown in Figure. Specifically, we use ResNet-34 and

remove its fully connection layers as the backbone of our network

(He et al., 2016). Residual blocks in ResNet-34 use shortcuts to

extract features more efficiently, transfer gradients and prevent

gradients vanishing in deep layers. A residual block is consisted

of convolution layers, batch normalization layers and rectified

linear unit (ReLU), as shown in Figure 2.

Inspired by CE-Net (Zaiwang et al., 2019), we add a multi-

scale perception block (MSP) between encoder and decoder, as

shown in Figure 3. In order to save calculation cost, MSP realizes

multi-scale convolution operation through dilated convolution,

as shown in Figure 3. Convolution kernels of different sizes have

different receptive fields, allowing more features to be captured.

In this study, MSP contains 3 × 3, 5 × 5, and 7 × 7 convolution

layers, which are realized by 3 × 3 dilatation convolution with

dilated rate 1, 2, and 3, respectively. Finally, the feature graph is

integrated by 1 × 1 convolution. After each convolutional layer,

ReLU is added as activation function to increase the nonlinearity

of the network.

In the decoder, each step consists of a bilinear

interpolation operation, which is responsible for upscaling

the feature map resolution by four times, followed by two

convolutional blocks (Figure 2) and a concatenation with the

corresponding feature maps from the encoder. At the final

layer, a 1 × 1 padded convolutional layer was used to map the

multi-channel feature maps to three classes that are belonged

to eyelid region, MG region, and background region. The

output of network was converted to a grayscale segmentation

map, in which value 0, 1, and 2 are responding to background

pixel, eyelid pixel, and MG region pixel, respectively.

MG loss rate calculation

MG loss rate is the ratio of the area of meibomian gland loss

to the total eyelid area. Therefore, the MG loss rate is a positive

real number in the range [0,1]. The loss rate can be expressed by

Eq. 1.

MGatrophy rate � 1 − MGarea

Eyelid area
(1)

MG loss rate is a parameter directly related to the severity of

MGD and is the most used in clinic. When the meibomian gland

FIGURE 2
Network architecture for the segmentation of tear meniscus. The network (A) is a U-Net-like architecture with a modified ResNet-34 as
encoder. The bottom of the network is multi-scale perception block (MSP). (B) and (C) are the illustrations of the residual block and convolution
block, respectively.
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atrophied by 33%, the severity of MGD increased by one grade,

which is known as meiboscore (Arita et al., 2014; Arita et al.,

2008).

Results

Two models were trained with the training set, including: 1)

the model was trained with the k5m generation graph; 2) K5M

images enhanced by CLAHE were used for training. Each

training image and its corresponding mask were resized to

256 × 256 and augmented by gamma transformation,

rotation, blur, noise addition, and image flip. The data

augmentation increased the training images by 12 times.

Training and evaluating of the proposed models were

performed on a computer with an Nvidia GeForce GTX

3090 GPU. The deep learning models were implemented

based on PyTorch (version 1.1.0) package in Python. All

models were trained using the Adam optimizer (α = 0.9, β =

0.999), with an initial learning rate of 0.0003 and decays 0.8 times

every five epochs. The batch size is set to 32 and the maximum

epoch number of 50. L1 regulation was applied to prevent over-

fitting (Hawkins, 2004). The loss function used in the experiment

is Dice loss function (Jadon, 2020), which is represented by Eq. 2.

LDice � 1 − 2 · ∣∣∣∣y ∩ y′
∣
∣
∣
∣

∣
∣
∣
∣y
∣
∣
∣
∣ + ∣

∣
∣
∣y′

∣
∣
∣
∣

(2)

To explore the influence of HS and CLAHE on model

performance, k5m images and KH images were divided into

different testing sets, which were: 1) Ik5m and Ikh; 2) apply HS

to KH image with Ik5m as the guide images; 3) preprocessed

Ik5m and Ikh using CLAHE. The specific division is shown in

Table 1.

The performance of the MG segmentation models was

assessed by dice similarity coefficient (DSC), recall, and

precision. These results were reported in Table 1 and

Table 2. The results in Table 1 show that all images have

close results. The maximum value of each indicator is marked

in bold. Table 3 shows the comparison between segmentation

results of different preprocessing methods on two image set.

Note that there is no statistical difference in all different

testing sets, except that the precision between the Ikh−CLAHE

and Ikh−HS−CLAHE is statistically different. Similar results can

also be found in the Ik5m and Ik5m−CLAHE, with no statistically

significant difference between the evaluation results of the

segmentation model regardless of whether the images were

processed with CLAHE or not.

Figure 4 shows some visualization of MG segmentation

results. Most of the images in both the internal testing set and

the external testing set have segmentation results with high DSC

score, and the network predicted segmentation masks and

ground-truth masks have high similarity and coincidence. But

some images in the external testing set have very low

segmentation results, as shown in Figure 5, both the eyelid

region and the MG region are under-segmented, with rough

edges and anomalous masks. These under-segmented images

have dissimilar features when compared with the predicted

results on average level.

Figure 6 and Figure 7 show the direct comparison results

between the MG loss rate and GT for the external and internal

testing sets. Most of the predicted MG loss rates are distributed

near the ideal line (predicted MG loss rate equals to ground-truth

MG loss rate), which indicates that the MG loss rates calculated

according to the predicted segmentation results of the network

are relatively close to the ground-truth. RootMean Squared Error

(RMSE) in Table 4 was used to quantify and compare the MG

loss rate with the ground-truth. Testing set Ik5m−CLAHE has the

smallest RMSE when compared with ground-truth

(RMSE = 0.09).

Discussion

Meibomian glandmorphology analysis is an important index to

evaluateMGD. However, the current manual gradingmethods have

FIGURE 3
Illustration of multi-scale perception block (MSP). The 3 × 3,
5 × 5, and 7 × 7 convolution layers are realized by 3 × 3 dilatation
convolution with dilated rate 1, 2, and 3, respectively.
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the problems of heavy workload, low efficiency and large error,

which is not conducive to the standardized diagnosis and treatment

of MGD and dry eye. In this study, we developed and evaluated the

automatic segmentation method of the eyelid area and the MG area

based on CNN and automatically calculated MG loss rate. This

method is evaluated in the internal and external testing sets from the

two meibography devices. In addition, we also tested that the pre-

processing method of HS and CLAHE as MG images has not

improved significantly.

In this experiment, the segmentation results of the

external testing set (Ikh, Ikh−HS, Ikh−CLAHE, and

Ikh−HS−CLAHE) from another device are lower than the

internal testing set (Ik5m and Ik5m−CLAHE). Such

performance gap is common in segmentation tasks based

on CNN. Even though data augmentation was used in the

training phase, data augmentation in the distribution domain

of the training set (Ik5m and Ik5m−CLAHE) cannot close the

distribution gap, because domain shift is systematic. As shown

in the histogram in Figure 8, Ikh and Ik5m have very different

pixel distributions. These image differences lead to a

performance gap in the segmentation performance of the

model between the two different testing sets. We used HS

TABLE 1 Segmentation results of testing images from KH.

MG region Eyelid region

DSC Recall Precision DSC Recall Precision

Ikh 0.70 ± 0.26 0.75 ± 0.29 0.67 ± 0.27 0.90 ± 0.10 0.89 ± 0.12 0.92 ± 0.07

Ikh−HS 0.69 ± 0.27 0.73 ± 0.29 0.67 ± 0.27 0.89 ± 0.10 0.88 ± 0.12 0.92 ± 0.08

Ikh−CLAHE 0.71 ± 0.26 0.75 ± 0.27 0.69 ± 0.26 0.90 ± 0.06 0.89 ± 0.10 0.92 ± 0.07

Ikh−HS−CLAHE 0.70 ± 0.25 0.72 ± 0.27 0.71 ± 0.27 0.91 ± 0.05 0.91 ± 0.08 0.91 ± 0.07

Ikh : Testing images from KH without any preprocessing.

Ikh−HS : Testing images from KH with HS.

Ikh−CLAHE : Testing images from KH with CLAHE.

Ikh−HS−CLAHE : Testing images from KH with HS and CLAHE.

Bold values are indicates the best performance.

TABLE 2 Segmentation results of testing images from K5M.

MG region Eyelid region

DSC Recall Precision DSC Recall Precision

Ik5m 0.84 ± 0.11 0.79 ± 0.15 0.93 ± 0.07 0.92 ± 0.05 0.87 ± 0.08 0.97 ± 0.08

Ik5m−CLAHE 0.84 ± 0.11 0.79 ± 0.15 0.92 ± 0.07 0.92 ± 0.05 0.87 ± 0.08 0.98 ± 0.03

Ik5m : Testing images from K5M without any preprocessing.

Ik5m−CLAHE : Testing images from K5M with CLAHE.

Bold values are indicates the best performance.

TABLE 3 Comparison between segmentation results of different preprocessing methods.

MG region Eyelid region

DSC Recall Precision DSC Recall Precision

p-value p-value p-value p-value p-value p-value

Ikh-Ikh−HS 0.36 0.12 0.16 0.42 0.16 0.41

Ikh-Ikh−CLAHE 0.38 0.20 0.16 0.39 0.17 0.0004

Ik5m-Ik5m−CLAHE 0.40 0.38 0.43 0.37 0.40 0.34

p < 0.01 is considered a statistical difference (Mann-Whitney U test).

The bold value here means that the p value less that 0.05 which indicates a statistical difference.
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to make the histograms much more similar, but the obtained

network segmentation results did not improve significantly.

t-SNE (Van der Maaten and Hinton, 2008) was used to gain

insight into the difference between the two sets of images

before and after using HS, as shown in Figure 9A. The images

are applied dimensionality reduction and projected onto a 2D

FIGURE 4
Examples of segmentation results for external and internal testing images. Img, GT, and pred represent input images, ground-truth masks, and
predicted segmentation masks, respectively.

FIGURE 5
Some under-segmented examples in the external testing set due to the distribution gap. Img, GT, and pred represent input images, ground-
truth masks, and predicted segmentation masks, respectively.
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FIGURE 6
(A–D) represent the direct comparison of the ground truth and predicted MG atrophy rates of the unprocessed image set Ikh, image set Ikh-
CLAHE processed with CLAHE, image set Ikh-HS processed with HS, and image set Ikh-HS-CLAHE processed with HS and CLAHE, respectively.

FIGURE 7
(A) and (B) represent the direct comparison of the ground real and predicted MG atrophy rates of the unprocessed image set Ik5m, image set
I5m-CLAHE processed with CLAHE, respectively.
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TABLE 4 RMSE of internal and external testing set compared with ground-truth.

Ikh Ikh−HS Ikh−CLAHE Ikh−HS−CLAHE Ik5m Ik5m−CLAHE

RMSE 0.12 0.12 0.13 0.11 0.10 0.09

The bold value here means the smallest RMSE and the best performance.

FIGURE 8
Histogram comparison of internal and external test sets. (A) Shows the histograms of Ikh and Ik5m; (B) Shows the histograms of Ik5m and Ikh−HS.

FIGURE 9
Execution of t-SNE algorithm for images from two different devices. Colors represent data from different devices. (A) A visualization of the
t-SNE 2D non-linear embedding projection for the images without CLAHE. (B) A visualization of the t-SNE 2D non-linear embedding projection for
the images with CLAHE for contrast enhancement.
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plane. There is a large gap between the distributions of Ik5m
and Ikh. Also, HS does not effectively reduce the distribution

gap, although the histograms had been matched. Changing the

low-dimensional image feature of gray distribution will not

affect CNN to extract and learn the high-dimensional

semantic information of the image.

CLAHE can effectively enhance the visual effect of MG

images, which is beneficial for doctors to read and measure

MG images manually. However, CLAHE does not significantly

improve the segmentation results of neural networks, because

CLAHE also fails to close the distribution gap between the

distributions of Ik5m and Ikh, as shown in Figure 9B. CNN have

been shown to be feasible in medical image segmentation

tasks, but when used in practice, network models can suffer

huge performance degradations if image data from other

distributed domains are involved. Such performance gap

can be explained using the independent and identically

distributed (i.i.d.) assumption of statistical learning: a

network model that is well-trained in the source

distribution domain does not necessarily achieve similar

high performance on datasets with the same distribution as

the source distribution domain performance (Zhu et al.,

2017). Adjusting the pixel distribution of images by HS and

CLAHE did not improve the prediction results of the network

model, although the images were visually very similar to the

source distribution domain. Through tsne-2D visualization, it

can be found that HS and CLAHE do not close the

distribution gap.

Conclusion

In this study, we developed and validated a CNN-based

automatic MG analysis method based on MG images acquired

by two different devices, K5M and KH. Predictions of MG loss

rates were in high agreement with the gold standard obtained

by physicians. We also found that in this study HS and

CLAHE do not significantly improve the performance of

CNN for segmenting MG, which may indicate that in

future deep learning-based MG analysis tasks, no

additional computational cost is required for image

preprocessing phase.
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