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Glaucoma is a common blinding eye disease characterized by progressive loss

of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field,

and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology

of glaucoma and is closely related to its pathogenesis. Targeting autophagy and

blocking the apoptosis of RGCs provides emerging guidance for the treatment

of glaucoma. Here, we provide a systematic review of the mechanisms and

targets of interventions related to autophagy in glaucoma and discuss the

outlook of emerging ideas, techniques, and multidisciplinary combinations to

provide a new basis for further research and the prevention of glaucomatous

visual impairment.
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1 Introduction

Glaucoma is the most common irreversible eye disease, the second leading cause of

blindness, and one of the four leading causes of moderate and severe vision impairment

(MSVI) GBD 2019 Blindness and Vision Impairment Collaborators;Vision Loss Expert

Group of the Global Burden of Disease Study, 2021. The number of people (aged
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40–80 years) with glaucoma worldwide is expected to reach

111.8 million by 2040 (Tham et al., 2014). Recently, attention

has been paid to the pathogenesis of glaucoma, providing novel

insight into therapeutic strategies. Glaucoma mainly affects the

retina and optic nerve. The optic nerve originates from the

diencephalon and is part of the central nervous system (CNS),

combined with the pathological characteristics of glaucoma,

which is classified as a neurodegenerative disease. Current

glaucoma treatments are based on lowering intraocular

pressure (IOP) through pharmacological and surgical control.

These treatments can prevent the loss of retinal ganglion cells

(RGCs) and visual impairment in the early stages of the disease to

some extent. Unfortunately, as visual impairment is a late

symptom of glaucomatous optic neuropathy (2021), most

patients with visual impairment have experienced significant

RGC loss by the time of diagnosis, rendering conventional

treatments futile at later stages of the disease.

Autophagy is a highly conserved catabolic pathway in

organisms that promotes the degradation and recycling of

cellular components and protects damaged cells by removing

excess/impaired organelles and metabolites from the cytoplasm,

regulating the constant renewal of peroxisomes, mitochondria,

and endoplasmic reticulum, and performing subcellular level

remodeling (He et al., 2019). Autophagy has recently attracted

considerable attention as a vital mechanism for maintaining

neuronal homeostasis, and defects in autophagy have been

implicated in various neurodegenerative disorders (Frake

et al., 2015; Menzies et al., 2017). Autophagy dysfunction has

been implicated in chronic neurodegenerative diseases such as

Alzheimer’s disease (Nixon et al., 2005), Parkinson’s disease (PD)

(Pan et al., 2008), and Huntington’s disease (Ravikumar et al.,

2004) and in acute diseases such as cerebral hypoxia/ischemia

and trauma (Wong and Cuervo, 2010). Autophagy plays a key

regulatory role in the development and progression of glaucoma

and is a potential new therapeutic target. In recent years,

numerous studies have demonstrated that autophagy plays an

important role in the development of glaucoma and that

dysfunctional autophagy is closely associated with this disease

(Villarejo-Zori et al., 2021). In addition, glaucoma is thought to

be associated with mutations in autophagy-related genes

(Mizushima and Levine, 2020). Autophagy is a particularly

crucial ’clean-up station’ in neurons efficiently removes

misfolded proteins and damaged or aged organelles to

safeguard cellular homeostasis (Chen et al., 2019); if not

removed effectively, these waste products can accumulate and

lead to neuronal degeneration and death (Chen et al., 2019),

causing permanent damage to the retina. Research on autophagy

in glaucomatous optic nerve injury mainly focuses on organismal

stress in response to high IOP (HIOP), optic nerve protection,

immune regulation, trabecular meshwork (TM) dysfunction, and

scar modulation (Ishikawa et al., 2021). These studies suggest

that autophagy is dysfunctional in glaucoma, i.e., impaired

autophagy is part of the pathogenesis.

Herein, this review focuses on the role of autophagy in the

pathogenesis of glaucoma and the therapeutic potential of

targeting the autophagy pathway. The normal function of

autophagy is first described first, followed by a discussion of

the major roles of autophagy in some of the pathogenic

mechanisms of glaucoma. Finally, the current and promising

approaches to modulating autophagy for glaucoma treatment are

highlighted, to provide a new basis for further investigation and

the prevention of glaucomatous visual impairment.

2 The function and mechanism of
autophagy

2.1 Classification and function of
autophagy

The word “autophagy” is derived from Greek, meaning “self-

eating” and refers to the metabolic process of cellular degradation

and the recycling of cellular components within lysosomes

(Galluzzi et al., 2017). There are three subtypes of autophagy,

macroautophagy, chaperone-mediated autophagy, and

microautophagy, which are divided depending on the

mechanism by which the material destined for degradation

enters the lysosome. Macroautophagy is accompanied by the

emergence of a phagophore (a small bilayer of membranes) in the

cytoplasm. Proteins and organelles are then encapsulated in a

bilayer membrane structure that closes to form an organelle

referred to as the autophagosome, which later fuses with the

lysosome to enable the degradation of the enclosed material by

lysosomal hydrolases (Figure 1). In chaperone-mediated

autophagy, heat shock cognate 70 and several accessory

chaperone proteins specifically recognize the KFERQ-like

region and are transported to the lysosome for degradation

(Kaushik and Cuervo, 2018). In microautophagy, the least

characterized form of autophagy, the cytoplasmic cargo is

destined for degradation through lysosomal or late endosomal

membranes that directly engulfs cytoplasmic cargo (Schuck,

2020). Macroautophagy (hereafter referred to as autophagy) is

the most widely studied of the three forms.

Although autophagy was originally thought to be a

nonselective process, recent evidence suggests that it is highly

selective (Villarejo-Zori et al., 2021). This selectivity means that

specific types of cytoplasmic cargos have been identified

(Johansen and Lamark, 2020) that are transported to the

autophagosome for degradation, where they bind LC3 (light

chain 3 protein) via LC3-interacting regions. Depending on

the nature of the specific cargo, selective autophagy can be

classified as heterogeneous phagocytosis (pathogen

degradation), lipophagy (lipid droplet degradation), or

aggregative phagocytosis (protein aggregate degradation)

(Johansen and Lamark, 2020). Similarly, organelle-specific

autophagy can be divided into endoplasmic reticulum,
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peroxisomal, mitochondrial and lysosomal autophagy (Johansen

and Lamark, 2020). Recent studies have shown that the Golgi

apparatus may degrade proteins by retrograde trafficking to the

ER, suggesting Golgi might be a target for selective autophagy

degradation (Benyair et al., 2022) (Nthiga et al., 2021).

2.2 Regulatory mechanisms of autophagy

Autophagy is primarily a cellular stress response and plays an

important role in biological cells. Depending on the autophagy

state, theprocess can be divided into several sequential stages:

induction, initiation/vesicle nucleation, phagophore formation,

elongation, autophagosome formation, maturation/fusion, and

degradation (Kiriyama and Nochi, 2015).

Autophagy regulation is dependent on all phases. Autophagy

occurs at a low basal level under physiological conditions, but it

can be rapidly induced in certain states of cellular stress, such as

hypoxia, glucose deficiency (Kim et al., 2011), starvation (Kuma

et al., 2004) protein aggregates (Kraft et al., 2010), damaged

organelles (e.g. mitochondria, endoplasmic reticulum, and

peroxisomes) and intracellular pathogens infections (Glick

et al., 2010). Autophagy is induced by these stresses and is

regulated extensively by posttranslational mechanisms. Among

all stresses, a lack of nutrients (especially amino acids) is the most

important factor in the induction of autophagy. This process is

mediated by upstream regulators of autophagy including mTOR

and AMPK, which are responsible for monitoring nutritional

status (Wong et al., 2013; Parzych and Klionsky, 2014).

Phagophore formation is a key step that follows autophagy

induction and is important for all phases. Autophagy

initiation is controlled in part by the ULK complex

(autophagy related gene (ATG)13, ULK1, FIP200), which is

regulated by cellular energy sensors (AMPK and mTOR)

(Bressan and Saghatelyan, 2020). After the autophagy-

initiating kinase ULK1 is phosphorylated, a phagophore forms

via phosphatidylinositol 3-phosphate (PI3P) generation

(Metaxakis et al., 2018). Elongation is a crucial step in the

FIGURE 1
Molecular mechanisms during macroautophagy processes. Autophagy is a multistep process that includes induction, initiation, elongation,
maturation, fusion with lysosomes, and degradation. The autophagy process is regulated by the mTOR and AMPK signaling pathways, which are
responsible for monitoring the nutritional status of the cell. AMPK is an activator and mTOR acts as an inhibitor through the phosphorylation of
ULK1 at distinct residues. The ULK1-containing initiation complex triggers phagophore formation by phosphorylating components of the class
III Ptdlns3K nucleation complex. During autophagosome biogenesis, after ATG5 binds ATG12, the ATG5-ATG12 conjugate binds to ATG16L1 to
generate the autophagy elongation complex (ATG5-12/16L1), which regulates lipidation of LC3. LC3, a ubiquitin-like modifier, is cleaved by the
protease ATG4 to form LC3-I. LC3-I conjugates with PE to form LC3-II, which incorporates into autophagosomal membranes and is critical for the
formation of autophagosomes. Autophagy receptor (e.g., P62, OPTN) serves as a link between LC3 and ubiquitinated proteins or organelles targeted
for degradation. Autophagosomes are eventually fused with lysosomes to form autolysosomes. The cargos in autolysosomes are degraded by
lysosomal enzymes, and nutrients and metabolites are recycled. Metformin induces autophagy by targeting AMPK. MTOR signals can be inhibited
directly by rapamycin. PI3K and AKT are elevated by acteoside. 3-Methyladenine(3-MA) can specifically block autophagosome formation.
BAFA1 inhibits the acidification of the autolysosome by blocking the V-ATPase while chloroquine (CQ) and 3-hydroxychloroquine (HCQ) impair the
maturation of autolysosomes. Drugs are depicted in red font.
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complete autophagosomes (Ebrahimi-Fakhari et al., 2012). Tow

ATG 7-catalyzed ubiquitin-like reactions control the elongation,

one is to form autophagy elongation complex (ATG5-12/16L1),

and the other is phosphatidylethanolamine (PE) -LC3I

conjugated to form LC3-II, (Ebrahimi-Fakhari et al., 2012).

Membrane elongation closure to maturation, which fuse with

lysosomes to form autolysosomes and degrade proteins and

organelles (Yim and Mizushima, 2020). Molecular

mechanisms during macroautophagic processes are shown in

Figure 1.

Autophagy is primarily regulated at the posttranslational

level; various stressors can induce autophagy, and stress can

also stimulate the upregulation of autophagy genes (Feng et al.,

2015). The transcription factor EB (TFEB) is the main regulator

of autophagy genes (Puertollano et al., 2018). Phosphorylation

retains TFEB in the cytoplasm, but when dephosphorylated by

stress, TFEB translocates to the nucleus where it promotes the

transcription of its target genes (Puertollano et al., 2018).

Optineurin (OPTN) is a gene linked to glaucoma (Shen et al.,

2011), and its encoded protein is an autophagy receptor, which

targets specific cargo for degradation and is itself degraded by

autophagy (Mijaljica et al., 2012; Klionsky et al., 2021). Recently,

at least 42 genes associated with the autophagy pathway

(Mizushima, 2020), and more genes will be identified as

research progresses.

2.3 Characteristics of autophagy in
neurodegenerative diseases

Autophagy levels decline during normal human aging in all

tissues examined to date, including the brain and retina, which

contributes to the pathogenesis of several neurodegenerative

diseases, such as glaucoma (Boya, 2017; Wong et al., 2020).

Altered selective autophagy also has important pathological

implications in the pathogenesis of neurodegenerative diseases.

For example, inadequate removal of pathogenic protein

aggregates is associated with neurodegenerative diseases

(Conway et al., 2020), and dysregulation of mitochondrial

autophagy, i.e., the selective removal of unnecessary or

damaged mitochondria is impaired, constitutes a severe redox

imbalance that is detrimental to neurons (Teodorof-Diedrich

and Spector, 2018) and is common in neurodegenerative

diseases.

3 Glaucoma pathogenesis and
autophagy regulation

Glaucoma is a multifactorial progressive optic neuropathy

characterized by axonal degeneration and loss of RGCs,

leading to severe and irreversible blindness (Gupta and

Yücel, 2007; Tham et al., 2014). Studies have shown that

the underlying mechanisms of glaucomatous

neurodegeneration are not the result of a single factor, but

rather a causal and interactive effect of various factors,

including HIOP (mean IOP increases with age) (Bonomi

et al., 1998), oxidative stress (Kimura et al., 2017),

neurotrophic factor deprivation (Harvey et al., 2012),

mitochondrial dysfunction (Ito and Di Polo, 2017),

autoimmune dysregulation (Ito and Di Polo, 2017), age (Ko

et al., 2016), and gene mutation. HIOP and aging are

considered the main risk factors for glaucoma (Chang and

Goldberg, 2012) (Weinreb and Khaw, 2004). Previous studies

have suggested that autophagy is involved in the

pathophysiology of glaucoma along with these key

pathogenic triggers and is closely related to glaucoma

pathogenesis. We next elaborate on the pathological

mechanisms of autophagy and HIOP, mitochondrial

dysfunction, oxidative stress, aging, and neuroinflammation

in glaucoma (key molecules are depicted in Table 1 and

Figure 2).

3.1 Pathological IOP elevation and
autophagy in glaucoma

Autophagy activation in HIOP (acute or chronic) has been

observed in different experimental models of glaucoma (Piras

et al., 2011; Hirt et al., 2018). IOP is exerted by the aqueous

humor (AH) on the inner surface of the anterior segment of the

eye; normal is approximately 16 mmHg (Carreon et al., 2017).

AH is a clear fluid produced by filtering blood through the ciliary

body, which enters the anterior chamber of the eye at a relatively

constant rate. AH nourishes the cornea, lens, and TM in the

anterior chamber and exits mainly through the TM/Schlemm’s

canal (SC). Elevated IOP is caused by the failure of the TM/SC, a

conventional outflow tract, leading to an inability to maintain an

adequate level of AH outflow resistance (i.e., impaired outflow)

(Stamer and Acott, 2012). Thus, the TM is therefore particularly

important for maintaining normal IOP as it is the main outflow

pathway for AH. Dysregulation of autophagy in the retina and

TM has been demonstrated in the HIOP model of glaucoma

(Nettesheim et al., 2020).

Numerous studies have demonstrated that cells in the

outflow pathway are subjected and responsive to fluctuating

IOP and mechanical loads (Hirt and Liton, 2017). Eleven

known mechanotransduction channel proteins were detected

in TM tissue and isolated TM cell cultures (Tran et al., 2014).

Experiments conducted in in vitro perfusion eyes have

demonstrated the presence of a mechanism regulating IOP

homeostasis in TM/SC outflow pathway tissues (Acott et al.,

2014). After the perfusion rate increased, resulting in a short

IOP increase, even if the inflow was maintained at high

pressure, the IOP gradually returned to the baseline level in

a few days (Bradley et al., 2001). This observation has been
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confirmed by various researchers, suggesting that a

compensatory mechanism helps the maintenance of IOP

homeostasis (Borrás, 2003; Baetz et al., 2009; Porter et al.,

2014). Cells in the outflow channel sense pressure imbalance

in the form of mechanical stretching, which is thought to trigger

a response (Hirt and Liton, 2017). TM cells are prone to stretch

injury after long-term exposure to tension; thus, they must be

guided to adapt to this mechanical force and repair the damage

caused by potential stretching. One study suggested that

autophagy may be a possible cellular adaptation mechanism

in response to this stretch (Shim et al., 2020). A recent study has

shown that primary cilia (PC) are mechanosensory for stretch-

induced autophagy in TM cells, and PC-mediated autophagy is

critical for IOP homeostasis (Shim et al., 2021). Stretch-induced

autophagy under normal physiological forces is helpful to

eliminate damaged components and accelerate the renewal of

proteins and organelles, resulting in increased cytoskeletal and

cortical stiffness in TM cells (Liton, 2016), maintaining cellular

homeostasis, and inhibiting cell death (Porter et al., 2014).

Conversely, autophagy dysregulation may trigger cell death

and lead to disease if the mechanical forces exceed the

physiological limits or if the conditions are pathological

(Hirt and Liton, 2017). Overactivation of autophagy is a

potential cellular mechanism leading to optic nerve

degeneration in DBA/2J mice (Hirt et al., 2018).

3.2 Mitochondrial dysfunction, oxidative
stress, and autophagy

Mitochondria are exquisitely dynamic organelles that move

along axons and dendrites in neurons and constantly respond to

endogenous and exogenous stimuli, to satisfy the energy

requirements of neuronal networks and to maintain neuronal

Ca2+ homeostasis and synaptic plasticity (Mattson et al., 2008).

The highly coordinated regulation of mitochondria is essential

for maintaining the energy in RGC dendrites and axon terminals

for optimal neurotransmission (Ito and Di Polo, 2017). To date,

several studies have shown that oxidative stress damage and

mitochondrial dysfunction are involved in the pathogenesis of

glaucoma and are tightly linked to autophagy pathways (Chang

et al., 2022).

Studies have shown that overexpression of oxidative stress

markers including lipid peroxidation, and oxidative DNA

damage is present in various ocular tissues in glaucoma

patients (Fernández-Durango et al., 2008). Oxidative stress

results from the overproduction of reactive oxygen species

(ROS) (·O2−, ·OH, and H2O2), which are byproducts of

cellular respiration, particularly during mitochondrial

oxidative phosphorylation, and are produced by the electron

transport chain in the inner mitochondrial membrane (Shadel

and Horvath, 2015). Although low ROS at physiological

TABLE 1 Glaucoma pathogenesis and autophagy regulation.

Patterns Key molecules/pathways of
pathogenesis

The role of autophagy Regulation of autophagy
pathways

Ref

HIOP Distention, stretching, and finally
malfunction of the TM cells, resulting in
persistent HIOP.

Maintaining IOP homeostasis HIOP --- Sensing PC of TM cells
---Transduction of AKT1 and SMAD2/
3 signaling --- Autophagy induction
---Maintain IOP homeostasis

Shim et al.
(2021)

Mitochondrial
dysfunction, oxidative
stress

Excessive production and accumulation of
ROS, resulting in oxidative damage, which
leads to mitochondrial dysfunction and
injury of RGCs which have a high density
of mitochondria

Eliminating oxidized cellular
components and regulating
cellular ROS levels to maintain
cell health

ROS --- Activation of transcription
factors (HIE-1α, NRF2, P53, and
FOXO3) --- Post translational regulation
(oxidation, phosphorylation) --- Gene
expression required for autophagy
induction (BECN1, LC3, SQSTM1, etc.)
--- Autophagy induction

Chang et al.
(2022)

Immune-mediated
neuroinflammatory
responses

Chronic inflammation may translate into
RGC degeneration (common mediators of
neuroinflammation in glaucoma including
TNF-α, IL-1 β/IL-6, TGF-β, MMP-2/
MMP-9, C1q)

Guiding microglia activation
toward the anti-inflammatory
M2 phenotype

Pro-inflammatory cytokine TNF-α
---Activation of AKT/mTOR signaling
---Inhibition of autophagy flux and
driving microglia shift toward the
M1 phenotype

Quaranta et al.
(2021)

Aging Glaucoma is a disease of the aging eye, and
its prevalence increases with age

Autophagy declines with age,
which can be detrimental to cells

Aging --- Dampened AMPK, enhanced
mTOR signaling, and decreased Beclin
1 expression --- The extent of autophagy
decreases

(Bell et al.,
2020) (Madhu
et al., 2022)

Gene mutation The gene mutation of OPTN, TBK1, and
MYOC.

Autophagy removes beneficial
content or fails to remove
harmful one

Gene mutation --- Impaired autophagy
--- TFRC degradation or the disruption
of molecules degradation (e.g., TDP43)

Zhang et al.
(2021b)

HIOP, high intraocular pressure; TM, trabecular meshwork; PC, primary cilia; IOP, intraocular pressure; ROS, reactive oxygen species; RGCs, retinal ganglion cells; HIF-1α, hypoxia-
inducible factor-1α, NRF2, nuclear factor erythroid 2–related factor 2, FoxO3, forkhead box O-3, LC3, light chain 3 protein; TNF-α, tumor necrosis factor-alpha; IL-1β, interleukin-1 beta;
IL-6, interleukin-6; TGF-β, transforming growth factor-β; MMP, matrix metalloproteinase; AMPK, AMP-activated protein kinase; OPTN, optineurin; TBK1, TANK binding kinase 1;

MYOC, myocilin; TFRC, transferrin receptor.
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functions in redox signaling, excessive ROS produced by

mitochondrial malfunction can lead to the oxidative damage

of cellular components, comprising lipids, proteins, and DNA

(Shim and Liton, 2022). One is in the mitochondria ROS in the

form of superoxide and H2O2 mediates the sustained activation

of nuclear factor kappa-B (NF-κB) and the upregulation of

inflammatory markers like interleukin-1α (IL-1α) and

endothelial leukocyte adhesion molecule-1 (ELAM-1) (Li

et al., 2007). Another crucial source is the production of ROS

through the iron-catalyzed Fenton/Haber-Weiss reaction

(Kruszewski, 2003; Yauger et al., 2019). The Fenton/Haber-

Weiss reaction results in the production of highly oxidized

hydroxyl radicals, which induce lipid and protein peroxidation

and cause oxidative damage to DNA (Kruszewski, 2003). Among

other things, the increase in lipid peroxidation may be attributed

to a deficiency in the antioxidant system (Fernández-Durango

FIGURE 2
Timeline of autophagy regulation in glaucoma pathogenesis and treatment. The underlying mechanisms of glaucomatous neurodegeneration
involve multiple factors, including HIOP, mitochondrial dysfunction, oxidative stress, immune-mediated neuroinflammatory responses, aging, and
gene mutation. Strategies targeting the known mechanisms of autophagy might be neuroprotective and, thus, work for treating glaucoma.
Abbreviations: HIOP, high intraocular pressure; TNF-α, tumor necrosis factor-alpha; IL-1β, interleukin-1 beta; IL-6, interleukin-6; TGF-β,
transforming growth factor-β; MMP, matrix metalloproteinase.
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et al., 2008). ROS exert two regulatory effects on autophagy,

inducing autophagy through the activation of transcription

factors (HIF-1α, NRF2, P53, and FOXO3) and by driving the

expression of genes required for autophagy induction (including

BECN1, LC3, SQSTM1) via posttranslational regulation (Chang

et al., 2022). Autophagy can also be inhibited by the oxidation of

ATG proteins (ATG7 and ATG10) or by the inactivation of

autophagy regulators (TFEB and PTEN) (Su et al., 2018; Chang

et al., 2022). In turn, autophagy can reduce ROS levels and

alleviate oxidative damage by eliminating damaged molecules

(e.g., protein aggregates) and damaged organelles (e.g.,

mitochondrial cartilage), thus maintaining proper redox

signaling and DNA damage repair systems (Li et al., 2015).

These findings suggests that mitochondrial autophagy

induction may improve the pathogenesis of glaucoma.

3.3 Immune-mediated
neuroinflammatory responses and
autophagy

The main neuroglia present in the retina are microglia,

astrocytes, and Müller cells (Vecino et al., 2016). Of these,

microglia play a crucial role in neuroinflammation (Zhang W.

et al., 2021), which is a critical process in glaucoma (Guzman-

Martinez et al., 2019). Microglia in the retina are resident innate

immune cells in neural tissue that perform as neuropathological

receptors and are also the primary immune defense against retinal

damage (Chen et al., 2022). Under physiological conditions, glial

cells secrete neurotrophic factors to promote nerve cell survival and

tissue regeneration and perform phagocytosis to eliminate foreign

components (Campagno et al., 2021). Microglia activated by

stimulation [such as HIOP (Campagno et al., 2021)] secrete

inflammatory cytokines to induce neuronal apoptosis, which

further contributes to neuroinflammation. Activated microglia

can be polarized into either an M1 proinflammatory phenotype

or an M2 anti-inflammatory phenotype, and the two can switch

between each other in response to different microenvironmental

disorders, known as classical activation and alternative activation

respectively (Lan et al., 2017). M1 polarized microglia activate the

neuroinflammatory response and exacerbate neuronal damage via

the synthesis and release of injury-mediating cytokines (TNFα, IL-
1β, IL-6, IL-12), protein hydrolases (MMPs), and the expression of

MHC-II (Ramirez et al., 2017). M2 polarized microglia, secrete anti-

inflammatory cytokines and growth factors and play the opposite

role of M1 microglia (Lan et al., 2017), promoting phagocytosis and

waste removal, neurogenesis, axonal remodeling, or myelin

regeneration after injury (Liu et al., 2018). Activated

neuroinflammatory pathways may initially restore homeostasis

between RGCs and the extracellular environment, with protective

effects. However, the overproduction of chemokines, and cytokines

and the excessive activation of retina-resident microglia and other

innate immune cells, may prompt RGC degeneration (Quaranta

et al., 2021). Neuroinflammationmay be an important cause of RGC

degeneration and targeting M2 microglial polarization could be a

potential therapeutic option to treat glaucoma (Cherry et al., 2014;

Reboussin et al., 2022).

The proinflammatory cytokine TNF-α produced by

M1 microglia was demonstrated to inhibit autophagic flux in

neurons and microglia, which further drives M1 polarization in

microglia via activation of the Akt/mTOR pathway (Jin et al., 2018).

Conversely, IL-4, which promotes microglial polarization to the

M2 subtype, activates autophagic flux and exerts a protective effect

(Tang et al., 2019). Autophagy has been reported to direct microglial

activation to theM2 subtype, and consistently, autophagy inhibition

promotes polarization toward the proinflammatoryM1 subtype (Jin

et al., 2018). The M2 subtype is maintained by high autophagic flux,

and disruption of autophagic flux results in a shift in the M1-related

subtype (Zubova et al., 2022). In conclusion, autophagy degrades

proinflammatory proteins, limits the inflammatory process, and

exerts a protective effect.

3.4 Aging and autophagy

In most tissues, autophagy declines with age, which can lead to

the accumulation of certain types of cellular components at

potentially toxic levels that can be harmful to cells (Hansen et al.,

2018). Dysregulation of autophagy, a cellular catabolic mechanism

that removes misfolded proteins, is responsible for a range of

neurodegenerative diseases (Lipinski et al., 2010). Autophagy

activity is impaired as the brain ages in different species (Hansen

et al., 2018). For example, autophagy is reduced in mouse

hypothalamic neurons (Kaushik et al., 2012) and the mRNA

levels of many ATG are reduced in the aging human brain

(Lipinski et al., 2010). Studies on the retina have determined that

glaucoma is also a neurodegenerative disease, and the mRNA

expression of autophagy regulators (e.g., ATG and Beclin) is

reduced (Rodríguez-Muela et al., 2013). In an optic nerve crush

model, autophagy-deficiency in aged mice (Ambra1+/gt) increases

axonal damage susceptibility (Bell et al., 2020). Autophagy in the

retina decreases with age and activation of autophagy shows

neuroprotective effects in vivo experimental of glaucoma (Bell

et al., 2020). Dysregulation of TM autophagy associated with

elevated IOP also occurs during aging (Hirt et al., 2018). Overall,

there is growing evidence to support the beneficial role of autophagy

in the fight against aging and age-related diseases.

3.5 Gene mutation and autophagy

OPTN, TANK binding kinase 1 (TBK1), and Myocilin

(MYOC) are genes linked to glaucoma (Sears et al., 2019).

Mutation in each of these genes may cause this major
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blinding disease (Sears et al., 2019). E50K and M98K mutants

induced excess cell death than wild-type OPTN (Sirohi et al.,

2013; Sirohi and Swarup, 2016). E50K mutation causes retinal

cell death in the cell culture model and transgenic mouse model

by inhibition of autophagy (Chalasani et al., 2014; Zhang S. et al.,

2021). M98K is a gain-of-function mutation, overexpression of

M98K shows enhanced autophagic signaling leading to endocytic

recycling of transferrin receptor (TFRC) degradation and causing

cell death (Sirohi et al., 2013). Uncontrolled activation of

TBK1 by the mutation that A 2-bp insertion in OPTN leads

to impaired autophagy that results in the accumulation of LC3-

positive aggregates, which induces ER stress and a retinal cell line,

661 W, cell death (Medchalmi et al., 2021). In addition,

duplication of TBK1 can cause glaucoma, for the reason that

increased transcription of TBK1 encodes a kinase that

phosphorylates OPTN, which recruits LC3B and initiates

autophagy (Tucker et al., 2014). The mutant MYOC-induced

impaired autophagy leads to TM cell death and HIOP, which is

associated with the induction of transcription factor, CCAAT/

enhancer-binding protein homologous protein (Stothert et al.,

2016; Kasetti et al., 2021; Yan et al., 2022). These evidences

indicated that some glaucoma caused by gene mutation is related

to impaired autophagy.

4 Progress and prospects for research
on glaucoma treatment targeting
autophagy

Glaucoma is a complex disease with no effective cure.

Glaucoma is usually treated with prescription eye drops that

function via different molecular mechanisms, including

prostaglandin analogs (latanoprost, travoprost, bimatoprost,

and tafluprost) (Aihara, 2021), β-blockers (Skov et al., 2021),

α-adrenergic agonists (Nocentini and Supuran, 2019),

cholinergic inhibitors, carbonic anhydrase inhibitors

(Jansook et al., 2021) and cholinergic drugs (Faiq et al.,

2019). These eye drops reduce IOP by improving the outflow

of AH through the trabecular drainage system or by reducing

the volume of AH produced by the eye. However, the

absorption of eye drop molecules into the bloodstream can

result in side effects (Xu et al., 2017). By way of explanation,

beta-blockers are connected with cardiac arrhythmia,

congestive heart failure, and airway obstruction (Argulian

et al., 2019), and carbonic anhydrase inhibitors may provoke

thrombocytopenia (Xu et al., 2017). In some patients with

advanced glaucoma, eye drops cannot lower the IOP to the

required level and surgery or alternative treatment is needed.

Surgical treatment to increase AH flow is currently the main

method used to reduce IOP. The first laser treatment to enhance

the outflow system was performed approximately 50 years ago

(Wise and Witter, 1979). At present, the main types of surgery

are selective laser trabeculoplasty (Töteberg-Harms and Meier-

Gibbons, 2021), glaucoma filtration surgery(Wolters et al.,

2021), Ahmed glaucoma valve implantation(a popular

glaucoma drainage implant) (Riva et al., 2017), or minimally

invasive glaucoma surgery (Kan et al., 2021).

Therapy to lower IOP has proven successful in preserving

vision in some glaucoma patients (Heijl et al., 2002; Lichter,

2002), but not all. There is growing evidence that regulation of

autophagy to degrade misfolded proteins and remove damaged

organelles may be an ideal option for glaucoma treatment (Tsai

et al., 2022). However, autophagy can be a "double-edged sword"

in various animal models and experimental approaches and

requires to be precisely regulated; thus, it is particularly

crucial to better perceive the molecular pathways and targeted

regulation of autophagy (Park et al., 2018; Ishikawa et al., 2021).

Autophagy is a highly conservative, highly dynamic, and

complex regulatory process, which can theoretically be

stimulated at multiple levels, providing a variety of

pharmacological targets for the development of corresponding

agonists or antagonists (Zhang Z. et al., 2021). Below, we will

discuss the potential mechanisms of various Western and

Chinese therapies, emerging biological agents, and stem cell

interventions for autophagy in glaucoma treatment as well as

their effectiveness in animal models and clinical trials.

4.1 Chinese autophagy-targeting
therapies for glaucoma

In recent years, Chinese medicine has been effective for

treating glaucoma in combination with Western medicine or

surgery (Wen-bo et al., 2020; Xirui et al., 2021). In Chinese

medicine, it is considered that the pathogenesis of glaucoma is

based on “stasis” and “deficiency”, and treatment should be based

on activating blood circulation, removing blood stasis, moving qi,

and opening depression, which corresponds to the “clearing”

effect of autophagy. Autophagy, a current research hotspot, is

closely related to glaucomatous optic neuropathy in many ways

and has led to initial research progress in using Chinese medicine

therapies to regulate autophagy to protect the optic nerve.

In research on Chinese medicine/Chinese herbal extracts, in

a rat model of chronic hypertensive glaucoma established by the

extrascleral vein cautery (EVC) method, autophagy was

significantly activated in retinal cells and the number of

autophagic vesicles increased, while chuanxiongzin completely

reversed this change in rats by activating the PI3K-Akt/mTOR

pathway to inhibit autophagy, acting as a protective agent (Du

et al., 2021). The possible signaling pathways through which each

herbal medicine/Chinese medicine extract exerts its protective

effect by regulating autophagy are shown in Table 2.

Clinical data show that acupuncture combined with

conventional Western medicine can effectively reduce

intraocular pressure and significantly improve the degree of

optic nerve atrophy in patients with glaucoma (Wang, 2017).
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Acupuncture also reduces visual field defects and improves

ocular artery hemodynamics and visual acuity (Leszczynska

et al., 2018; Lan and Xiaojie, 2020). At present, studies

involving the optic neuroprotective effects of acupuncture

therapy have been limited to clinical data analysis, but in the

neuroprotective effect of cranial nerves, acupuncture can play a

protective role by inhibiting autophagy through the

mTORC1–ULK complex–Beclin1pathway (Liu et al., 2016).

4.2 Western autophagy-targeted medical
therapy for glaucoma

Enhanced autophagy efficacy may reduce the number of

toxic protein aggregates, provide an effective stress response,

and prevent or reduce cell death by degrading inessential

components for energy and supporting adaptive protein

synthesis. Allogeneic progesterone (Allop) increases autophagy

vesicles, activates autophagy, and protects RGCs via GABR/

GABAA receptors (Ishikawa et al., 2021). Rapamycin inhibits

mTOR and therefore induces autophagy in peripheral organs and

the CNS. Using an optic nerve transection model, rapamycin-

treated mice showed a 40% improvement in RGC survival

10 days after axotomy, exerting a beneficial effect (Rodríguez-

Muela et al., 2012). Rapamycin can also increase the RGC

number and visual function, and reduce apoptosis of E50K-

OPTN mice (Shen et al., 2011; Zhang S. et al., 2021). Stimulation

of autophagy via tat-beclin 1 peptide or Torin 2 rescued MYOC-

associated transgenic mice model (Kasetti et al., 2021). In various

in vivo experimental models of glaucoma, the induction of

TABLE 2 Strategies for glaucoma treatment involving autophagy.

Effect Strategy Experimental model Molecular signaling
pathway/autophagy
markers

Effects of autophagy
modulators

Ref

Autophagy
induction

The neurosteroid
AlloP

To generate an OH model, male SD
rats were intracamerally injected with
polystyrene microbeads

LC3B-II↑, SQSTM1↓ Prevented apoptosis and protected
RGCs with autophagy activation

Ishikawa
et al.
(2021)

Rapamycin Male C57BL/6 J mice were subjected to
acute HIOP (90–100 mmHg) for
60 min

mTOR inhibition Prolonged autophagy activation and
improved RGC survival

Russo
et al.
(2018)

Tat-beclin 1 peptide
or Torin 2

Tg-MYOCY437H mice Mutant myocilin↓, LC3BII,
ATG5, and beclin1↑, p62↓

Tat-beclin 1 peptide and Torin
2 significantly reduced IOP in Tg-
MYOCY437H mice

Kasetti
et al.
(2021)

Metformin SD rats of GFS AMPK/Nrf2 axis ↑,
profibrogenic and
inflammatory biomarkers↓

Protect against filtrating blebs scar
formation in SD rats of GFS.

Li et al.
(2020)

Rapamycin E50K-OPTN mice LC3-II, p62↓, TDP-43
aggregation↓

Rapamycin reduce TDP-43 could
suppress E50K-mediated apoptosis

Zhang
et al.
(2021b)

Autophagy
inhibition

Blocker of lysosomal
degradation (Baf-A1)

For COH, a dose of micromagnetic
beads (2 μL) was injected into the
anterior chamber of the right eye only
once

Autolysosomes↑, p62↑ Biphasic autophagy in RGCs functioned
dynamically during cell injury:
promoting RGC apoptosis in the early
stages (G4d) and resulting in RGC death
in the second stage (G3w)

Zhang
et al.
(2020)

Rac1 cKO RGC Rac1 conditional knockout
(Rac1 cKO) mice

mTOR↑, Beclin1, LC3,
and Bak↓

Activated Rac1 exacerbated RGC injury
in COH retinas, and Rac1 cKO
significantly reduced apoptotic RGCs

Zhang
et al.
(2020)

Overexpression of
miR-708 and miR-
335-3p

Chronic glaucoma mice were
established by laser photocoagulation

ATG3↓, LC3II/I↓, P62↑ Overexpression of miR-708/miR-335-3p
alleviated RGC apoptosis

Zhang
et al.
(2021a)

Chloroquine M98K-OPTN mice TFRC↑ Chloroquine inhibited CASP3 and
PARP1 cleavage, increase TFRC.

Sirohi
et al.
(2013)

Ligustrazine (TMP) A rat chronic hypertensive glaucoma
model was induced by EVC.

p-PI3K, protein kinase B
(p-Akt), and mTOR
(p-mTOR)↑

Ligustrazine was neuroprotective in
experimental glaucoma by inhibiting
autophagy in RGCs

Du et al.
(2021)

AlloP, allopregnanolone; SD, Sprague–Dawley; OH: ocular hypertension; LC3, light chain 3 protein; ATG, autophagy-related genes; GFS, glaucoma filtrating surgery; AMPK, AMP-

activated protein kinase; Nrf2, nuclear factor erythroid 2-related factor 2; COH, chronic ocular hypertension; Rac1 cKO, Rac1 conditional knockout; OPTN, optineurin; PI3K,

phosphatidylinositol 3-kinase; TFRC, transferrin receptor; EVC, episcleral vein cauterization; p-PI3K, phosphorylated.
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autophagy by pharmacological or genetic manipulation can

improve RGC survival (Table 2).

Evidence suggests that autophagy induction has a

neuroprotective effect on glaucoma-damaged RGCs; however,

autophagy induction cannot be directly said to be a panacea for

neurodegenerative disease, and the induction of autophagosome

biogenesis may be harmful if autophagosome accumulation is

not effectively cleared. It has been shown that autophagy

inhibition also has neuroprotective effect on glaucoma-

damaged RGCs. In a rat model of chronic HIOP glaucoma,

autophagy was significantly activated in RGCs (Deng et al.,

2013). The number of TUNEL-positive cells was reduced in

the GCL since autophagy inhibition by the autophagy inhibitor

3-Methyladenine (3-MA), indicating that apoptosis occurred in

RGCs after autophagy-induced chronic IOP elevation (Park

et al., 2012). M98K-OPTN potentiates the degradation of

TFRC by autophagy and contributes to the death of RGCs;

chloroquine (CQ) or the knockdown of Atg5 by shRNA

significantly reduced cell death mediated by M98K (Sirohi

et al., 2013; Swarup and Sayyad, 2018). The possible signaling

pathways through which each Western drug exerts its protective

effects by modulating autophagy are shown in Table 2.

Currently the role of autophagy in glaucoma is still controversial;

it relies on the type of glaucomamodel, the target of pharmacological

treatment, and the period of drug administration (Wang et al., 2015;

Russo et al., 2018). Studies have shown that is chemic/reperfusion can

trigger autophagy in the first few hours; although RGC loss at this

time, autophagy as the mechanism of self-adaptation under stress

conditions might maintain cellular homeostasis and reduce the harm

(Russo et al., 2018). The subsequent protective effect of rapamycin

also confirmed this point (Russo et al., 2018). However, it is

demonstrated that rapamycin aggravated RGC loss and axon

demyelination at day 14 of reperfusion, as mTOR activity plays a

crucial role in determining neuronal survival (Chen et al., 2016). The

role of autophagy in glaucoma is multifunctional and dynamic.

Consequently, a better comprehension of the underlying

mechanisms of autophagy dysfunction in glaucoma is essential for

developing therapeutic approaches.

4.3 Emerging therapies (biologics/stem
cells) and autophagy

RGCs degenerate in glaucoma, resulting in permanent vision

loss. Cell replacement strategies are considered potential

therapies for RGC loss. Researchers have recently explored a

potential replacement therapy based on human stem cells that

can differentiate into RGC cells (Nuzzi and Tridico, 2017; Chang

et al., 2019). However, scaling up donor cells, advancing cell

differentiation, and promoting cell durability remain challenges

in replacement therapies.

Elaborate mechanisms render mesenchymal stem cells

(MSCs) neuroprotective, including modulating

neuroinflammation, enhancing cell survival, increasing

neurogenesis, and regulating ubiquitinated proteins (Shin

et al., 2014). It has been documented that hUC-MSCs have a

protective effect on retinal neurons (Wang et al., 2021), and

MSC-EVs also exert a neuroprotective effect on the retina by

reducing neuroinflammation and neuronal apoptosis (Mathew

et al., 2019). At present, studies involving the optic

neuroprotective effects of MSCs and MSC-EVs are more

limited to phenotypic analysis, and in the brain, MSCs can

improve neuronal survival by activating autophagy (Shin

et al., 2014; Ceccariglia et al., 2020).

5 Conclusion and future perspectives

In summary, autophagy is an important metabolic process that

maintains cellular homeostasis and autophagy dysfunction

influences in the pathogenesis of glaucoma. Although the

relationship between autophagy and glaucoma remains

controversial and it is uncertain whether autophagy dysfunction

plays a determinant role in disease progression, increasing evidence

suggests that autophagy induction has a neuroprotective effect in

glaucoma (Russo et al., 2018). Overactivated autophagy may also

cause the development of autophagic cell death (Shi et al., 2012). In

any case, since autophagy has a waste-disposal function, its

activation and inhibition may be a novel therapeutic strategy in

the context of glaucoma.

It has been shown that autophagy activity may not be simply

positive or negative for cell survival, but that its effects depend on the

timing, amplitude and target of autophagy activation (Ferrucci et al.,

2018). Thus, more detailed studies are required to determine the

timing and dosage of autophagy modulators that moderately

activate autophagy and maintain it at relatively normal metabolic

levels. It has been found that the induction of acute autophagy in a

retinal ischemia-reperfusion model continues for the first few hours

and then declines (Russo et al., 2018; Tang et al., 2021). While the

activation of autophagy has been mentioned as having a protective

effect, inhibition of autophagy has also exhibited a protective effect.

The initial increase in autophagy may be compensatory effect, while

activating autophagy with drugs can only have protective effect after

autophagy subsequently decreases. Thus, it is necessary to perform a

precise assessment of autophagy at various time points in the disease

model and make minor adjustments to drug concentrations to

characterize the potential time-dependent changes in autophagy and

the optimal concentration of drugs for obtaining accurate data on

the protective effects of modulating autophagy.

There have been many studies on the role of autophagy in the

pathogenesis and treatment of glaucoma in the experiment. HIOP,

oxidative stress, neuroinflammation, aging and gene mutation may

all lead to the dysregulation of autophagy, and regulating autophagy

is also a target for the treatment of glaucoma. However, progress in

evaluating the characteristics of autophagy in the pathogenesis of

human glaucoma and therapeutic options depend heavily on the
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advancement of methods to monitor autophagy activity in humans.

For retina, it is not as easy to obtain human fresh biopsies as blood,

muscle, and adipose. Autopsy materials are heterogeneity and can

only be measured statically (Klionsky et al., 2021). Monitoring

autophagy dynamic activity in glaucoma and truly autophagy

fluxes of some human tissues remain relatively challenging. For

example, it is not rigorous to simply assay levels of endogenous LC3-

II in retinal tissue samples and use this as a proxy for autophagy flux.

Because there is no real effective degradation of LC3II, if there is an

impaired fusion of autophagosomes with lysosomes or impaired

lysosomal activity late in the autophagy pathway, an increase in

LC3II does not represent increased autophagy activity (Mizushima

et al., 2010). There are studies suggest that the total cellular

expression level of p62 is generally considered inversely

proportional to autophagy activity (Klionsky et al., 2021), but it

is unclear whether p62 is degraded only or partially by the ubiquitin-

proteasome pathway of autophagy (Mizushima et al., 2010). This

alsomeans that most experts in the field do not consider some of the

methods used in the literature to be appropriate measures of

autophagic flux (or autophagic activity). It is essential to develop

real-time monitoring methods for autophagy and measurement of

biomarkers that can be applied in clinical practice.

Autophagy-oriented strategies may offer a new and

promising alternative for the development of drugs for

glaucoma. In addition, it would be interesting to investigate

emerging targeted delivery molecules to modulate autophagy

and reduce side effects, and to investigate the use of biological

agents such as stem cell extracellular vesicles or engineered

exosomes to modulate autophagy and achieve a protective

effect consistent with that of stem cells.
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