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In eukaryotic cells, the genome is organized in the form of chromatin

composed of DNA and histones that organize and regulate gene expression.

The dysregulation of chromatin remodeling, including the aberrant

incorporation of histone variants and their consequent post-translational

modifications, is prevalent across cancers. Additionally, nuclear envelope

proteins are often deregulated in cancers, which impacts the 3D

organization of the genome. Altered nuclear morphology, genome

organization, and gene expression are defining features of cancers. With

advances in single-cell sequencing, imaging technologies, and high-end

data mining approaches, we are now at the forefront of designing

appropriate small molecules to selectively inhibit the growth and

proliferation of cancer cells in a genome- and epigenome-specific manner.

Here, we review recent advances and the emerging significance of aberrations

in nuclear envelope proteins, histone variants, and oncohistones in deregulating

chromatin organization and gene expression in oncogenesis.
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1 Introduction

Each chromosome occupies a unique sub-volume in the interphase nucleus, referred

to as a chromosome territory (Cremer and Cremer, 2001). A chromosome territory

encompasses intra- and inter-chromatin interactions, further fine-tuned by histone

modifications. Analyses of chromatin interactions have revealed the organization of

chromatin into two distinct compartments—A and B. Compartment A is composed of

gene-rich, open chromatin localized toward the nuclear interior. In contrast,

compartment B is gene-poor, has a compact conformation, and is localized toward

the nuclear periphery. Closer inspection using variants of chromosome conformation

capture assays, such as 3C, 4C, and Hi-C, reveals that the 3D genome architecture of a

nucleus is intricately organized into Topologically Associating Domains (TADs), where
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stretches of chromatin physically interact in a regulated manner

to modulate gene expression within the TAD (Figure 1) (Szabo

et al., 2019). The loop extrusion model of chromatin organization

forms the basis of TAD-mediated genome organization, where

chromatin loops are extruded by chromatin organizers and

cohesin complexes and are delimited by CCCTC-binding

factor (CTCF), another chromatin organizer (Fudenberg et al.,

2016; Nuebler et al., 2018). TADs organize looping-in of

sequences ~1 Mb (in mammals) apart within close proximity,

enabling enhancer-promoter contacts for the spatiotemporal

regulation of gene expression (Chetverina et al., 2017).

Interestingly, chromatin stretches with the same type of

histone modifications show a propensity to interact and

compartmentalize in the 3D space of the nucleus, thus

revealing CTCF-cohesin-independent chromatin folding

mechanisms. For instance, H3K27me3 histone modifications

function as a signal for long-range chromatin interactions

during hematopoietic stem cell differentiation (Zhang X et al.,

2020). Notably, in addition to CTCF, genome organizers such as

cohesin and condensin are required for the recruitment of

transcription cofactors. Cohesin and CTCF function as

boundary elements that collectively maintain genome

architecture, which is prudently rigid and guardedly dynamic

(Phillips-Cremins et al., 2013). Furthermore, chromatin

remodelers alter local chromatin dynamics in response to cell

signaling events. The maintenance of TADs is critical since

disruption of TAD organization is associated with

developmental diseases and cancers (Lupiáñez et al., 2015;

Akdemir et al., 2020). In cancers, the aberrant activation of

cell signaling pathways relays erratic signals to the nucleus,

which alters chromatin organization and transcriptional

outputs of the cell. It remains to be examined how chromatin

and its organizers respond to aberrant oncogenic signaling in

cancer cells.

The double-membraned nucleus functions as the primary

protector of the genome. In metazoans, the nucleus not only

harbors the genome but also works in tandem with the

differentially-compacted chromatin to regulate its tissue-

specific spatial and functional organization. The nuclear

envelope comprises the nuclear lamina that maintains nuclear

integrity and regulates gene expression and is interspersed with

Nuclear Pore Complexes (NPCs), whose primary function is to

regulate nuclear transport (Lin et al., 2018). Though the

chromatin in contact with the nuclear lamina is frequently

repressed, NPCs additionally contribute to the regulation of

gene expression. Furthermore, owing to the role of NPCs in

chromatin organization and function, Nucleoporins (Nups), the

class of proteins that comprise the NPC, are also involved in

FIGURE 1
Hierarchy of genome organization. The involvement of lamins facilitates LAD organization at the nuclear periphery. Lamins organize the
transcriptionally inactive B compartment of the TADs proximal to the nuclear envelope, while the transcriptionally active A compartment is
maintained relatively toward the nuclear interior. The promoter-enhancer contacts are maintained by genome organizers such as cohesin,
condensin, and CTCF. The presence of multiple such contacts within a TAD allows the formation of splicing condensates.
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regulating stemness and cell fate determination (D’Angelo et al.,

2012). Interestingly, nucleoporins crosstalk with the chromatin

organizer CTCF, which functions as a boundary element between

TADs, while facilitating intra-TAD interaction. For instance, the

nucleoporins Nup153 and Nup93, along with CTCF, regulate the

transcriptional activity of the HOX gene cluster during early

development and differentiation (Kadota et al., 2020; Labade

et al., 2021).

In metazoans, type V intermediate filament proteins, the

lamins, maintain the structural and functional integrity of the

nucleus (Aebi et al., 1986; Gruenbaum and Foisner, 2015). The

nuclear lamina is predominantly composed of two lamin sub-

types—the A-type lamins that include lamins A and C (a spliced

variant of lamin A), and the B-type lamins that comprise

separately-encoded lamins B1 and B2 (in vertebrates). Each

lamin sub-type harbors post-translational modifications

(PTMs), exponentially increasing the functional diversity of

lamins. Nuclear lamins regulate replication-dependent cell

cycle progression, DNA damage repair, genome stability, and

3D organization of the genome (Moir et al., 2000; Bronshtein

et al., 2015; Earle et al., 2020). Nuclear lamina interacts with

stretches of chromatin that are in proximity to the nuclear

periphery, referred to as Lamina-Associated Domains (LADs).

LADs are typically repressed, barring exceptions where a subset

of euchromatin interacts with lamin B1 and are categorized as

euchromatic LADs (eLADs) (Guelen et al., 2008; Pascual-

Reguant et al., 2018).

Chromatin in eukaryotes is organized as DNA wrapped

around histone octamers, forming nucleosomes. Further, the

linker histone H1 is incorporated with the nucleosomes

constituting the fundamental units of the chromatin fiber—the

chromatosomes (Zhang and Li, 2017). Histones are among the

most widely modified proteins, and each modification has the

unique ability to regulate gene expression (Turner, 1993; Millán-

Zambrano et al., 2022). Actively transcribing genomic regions

localized away from the nuclear periphery are often associated

with active histone marks such as H3K4me3, H3K9ac, and

H3K27ac, deposited by histone remodelers such as KMT2,

CBP, and p300, respectively (Ogryzko et al., 1996; Rao and

Dou, 2015). On the other hand, histone modifications such as

H3K9me2/3, H3K27me3, and H4K20me1 are associated with

transcriptional repression. The combination of active and

inactive marks fine-tunes transcriptional output (Kimura,

2013; Talbert and Henikoff, 2021). Of note, repressive histone

marks such as H3K9me2/3 and H3K27me3, deposited by INM-

interacting histone-remodeling complexes such as SUV39H1/

2 and the Polycomb Repressor Complex 2 (PRC2) complex, are

often enriched on LADs (Shumaker et al., 2006; Cesarini et al.,

2015; Harr et al., 2015). These histone-remodeling complexes

interact with lamins and maintain the associated chromatin in a

state of repression (Marullo et al., 2016; Salvarani et al., 2019;

Bianchi et al., 2020; Siegenfeld et al., 2022).

Cancer cells exhibit a remarkable interplay between aberrant

genome organization and deregulated transcription. The cancer

genome harbors mutations in both coding and non-coding

regions, selectively providing tumorigenic cells with a proliferative

advantage to outcompete normal cells (Moreno and Basler, 2004;

Pon andMarra, 2015; Bailey et al., 2021). For instance, incorporating

non-canonical histone variants alters nucleosome stability, often

resulting in altered replication and transcription (Bönisch et al.,

2012; Henikoff and Smith, 2015; Buschbeck and Hake, 2017). In

solid tumors, mutant chromatin remodelers differentially recruit

histone modifiers that confer chemoresistance (Drosos et al., 2022).

These cancer-associated mutant histones are referred to as

oncohistones, which are now emerging as a class of prominent

biomarkers of cancers (Bočkaj et al., 2021). In this review, we address

the molecular and mechanistic underpinnings of nuclear envelope

factors, their crosstalk with chromatin, and their pivotal role in

cancer initiation and progression.

2 Nuclear envelope and lamins

The nuclear envelope is a crucial barrier between the cytoplasm

and the nucleus and functions as a protector of the genome. The

nuclear envelope consists of an outer and inner nuclear membrane

(ONM and INM, respectively) and NPCs. The INM is lined on the

inner side by a protein meshwork referred to as the nuclear lamina,

which is composed of typeV intermediate filament proteins—the A-

and B-type lamins. The A-type lamins, lamin A/C, are produced as

two somatic isoforms of prelaminA by alternativemRNA splicing at

exon 10 of the LMNA gene (Machiels et al., 1996). Lamin A bears a

CaaX motif at its C-terminal end, which is farnesylated, in contrast

to lamin C, which does not contain the CaaX motif or undergo

farnesylation (Vorburger et al., 1989). Notably, mature lamin A is

formed by the loss of farnesylation inside the nucleus. On the other

hand, the predominant B-type lamins—lamins B1 and B2 are

permanently-farnesylated products of two separate

genes—LMNB1 and LMNB2. Lamins interact with chromatin,

either directly or through transmembrane proteins of the

INM—lamin B receptor (LBR), MAN1, and Emerin (Ye and

Worman, 1996; Holaska and Wilson, 2007; Demmerle et al.,

2012). Apart from biochemical cues, the nucleus directly

perceives mechanical signals through the LINC complex,

involving Nesprin and SUN proteins (Figure 2). Nesprins, which

extend from theONM to the perinuclear space, directly interact with

cytoskeletal proteins such as vimentin, actin, and microtubules

(Ketema et al., 2013; Gimpel et al., 2017; Li et al., 2021).

Mechanical cues are subsequently propagated via the interaction

with the SUN and KASH domain proteins (Starr and Fischer, 2005;

Tzur et al., 2006). These lines of evidence suggest that the

coordinated functioning of nuclear lamins, nucleoporins, and

LINC complex factors is central to the functional organization of

the nucleus and the genome.
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Aberrations in nuclear morphology, such as invaginations,

blebs, and micronuclei, serve as histological markers for grading

tumor progression and often correlate with carcinogenesis. For

instance, Haematoxylin-Eosin (HE) staining of papillary thyroid

carcinoma cells and colon adenocarcinoma revealed enlarged

nuclei with irregular morphology compared to normal cells with

smaller and spherical nuclei (Fischer, 2020). Furthermore, nearly

90% of solid tumors are characterized by aneuploidy, which

predominantly involves deletions and amplifications at the whole

chromosomal and sub-chromosomal levels (Holland and

Cleveland, 2012). CIN leads to transcriptional imbalances in a

cell- and tissue-specific manner (Bakhoum et al., 2018; Benhra

et al., 2018). Here, we focus on the mechanisms by which defects

in the nuclear envelope manifest themselves, resulting in

genomic instability and thereby contributing to cancer

progression.

2.1 Role of aberrant nuclear envelope
factors in cancers

The stability and integrity of LINC complex proteins and

nuclear lamins are crucial for maintaining chromatin

organization and genome stability, aberrations of which are

associated with various cancers (Sur et al., 2014). For instance,

immunohistochemistry showed decreased expression of LMNA

and LMNB1 in 7/8 primary gastric cancers and 6/8 gastric

cancers, respectively (Moss et al., 1999). In addition, nuclear

envelope proteins regulate chromosomal stability as they

participate in cell cycle progression, chromosome segregation,

and nuclear envelope assembly post-mitosis (Dechat et al., 2007;

Kuga et al., 2014; Dubińska-Magiera et al., 2019).

Remarkably, nuclear morphology plays a vital role in

modulating cell fate in the continuum of cancer progression

(Capo-Chichi et al., 2016; Smith et al., 2018; Fischer, 2020). In

particular, the loss of emerin and lamin A show aberrations in

nuclear morphology, accompanied by an increased

aggressiveness of cancer cells (Reis-Sobreiro et al., 2018; Bell

et al., 2022). Consistent with this finding, ovarian cancers show

decreased emerin and lamin A/C levels, accompanied by a

progressive destabilization of the nuclear envelope (Capo-

chichi et al., 2011). Lamin A/C-emerin co-depletion alters

chromatin mobility, suggestive of their role in the

maintenance of genome organization and function (Ranade

et al., 2019). Intriguingly, depletion of lamin A/C mislocalized

emerin, resulting in altered nuclear morphology and increased

invasiveness of DU145 prostate cancer cells (Kong et al., 2012;

Reis-Sobreiro et al., 2018).

FIGURE 2
Nuclear envelope architecture and its role in genome organization. A schematic model showing the INM proteome involved in maintaining
genome organization. Nesprins communicate external mechanical cues to the nucleus via the SUN1/2 complex. The regions of the genome
contacting the nuclear lamina, the LADs, are maintained in a heterochromatic state. Phosphorylated lamin A binds to active enhancers in the nuclear
interior. LAP2α interacts with intra-nuclear lamin A/C and could be regulating its functioning. Chromatin remodelers such as HDACs and sirtuins
are often associated with the INM proteins such as emerin, MAN1, LAP2β, lamins, and LBR. NPCs are also associated with chromatin. LAP2α - lamina
Associated Peptide 2α, LBR - lamin B receptor, BE - Barrier Element, HP1—Heterochromatin Protein 1, HDAC—histone deacetylase, SUN1/2—Sad1/
unc-84 protein-like 1/2 and MeCP2—methyl CpG-binding protein 2.
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The nuclear lamina is composed of three lamin sub-types and

interacts with the LINC complex genes, and this confers a

molecular redundancy on lamin function, which counters

abrupt alterations in the lamina—predominantly in response

to external cues. For instance, keratinocytes and fibroblasts of the

skin derived from lamin A/C-knockout mice showed prolonged

expression of LBR as compared to wild-type cells (Solovei et al.,

2013). Similar buffering mechanisms were uncovered in EMD-

and LMNA-null mice during development. While LAP2α was

upregulated in myogenic cells derived from LMNA−/− mice, cells

derived from EMD-null mice showed a compensatory increase in

lamin A expression (Melcon et al., 2006). However, the

mechanistic basis of the transcriptional feedback circuits

between lamin A/C and the nuclear envelope factors remains

to be examined in greater detail.

The nuclear lamina functions as a docking site for anchoring

LADs enriched in heterochromatin. For example, LBR tethers

heterochromatin to the nuclear envelope in actively proliferating

cancer cells during the early stages of mammalian development,

while lamin A/C is a chromatin anchor in differentiated cells

(Solovei et al., 2013; Lukášová et al., 2017). It is interesting to note

that the loss of both LBR and lamin A/C results in the inversion

of chromatin with heterochromatin toward the nuclear interior

(Solovei et al., 2013), reiterating the significance of the nuclear

lamina in chromatin organization and function. Furthermore,

lamin B1 loss significantly increases nuclear bleb formation,

while the depletion of lamin A/C shows morphological

aberrations such as nuclear atypia, in addition to aneuploidy

and CIN (Lammerding et al., 2006; Capo-chichi et al., 2011).

Furthermore, destabilization of the nuclear envelope shows

enhanced nuclear blebbing and micronuclei formation, which

contribute to chromosomal losses and aneuploidy (Capo-Chichi

et al., 2016). In addition to A and B-type lamins, peripheral

heterochromatin provides additional stiffness, and its

deregulation foreseeably weakens the nuclear envelope,

contributing to the formation of nuclear blebs (Stephens et al.,

2018). In summary, a stable nuclear envelope composition is

required for genome organization facilitated by the maintenance

of nuclear integrity by reinforcing nuclear stiffness.

Interestingly, the loss of lamin B1 shows CIN and DNA

damage by destabilizing key Homologous Recombination (HR)

pathway proteins such as Rad51 in U2OS cells (Liu et al., 2015).

Correspondingly, A-type lamins regulate HR through

transcriptional co-regulation of RAD51 and BRCA1 while

modulating Non-Homologous End Joining (NHEJ) through

53BP1 in breast cancer cells (Redwood et al., 2011). Lamin A

also regulates DNA damage repair (DDR) via its direct

interaction with Hsp90—a molecular chaperone involved in

protein folding and stability in ovarian cancer cells (Wang

et al., 2021). Furthermore, whether the differential

stoichiometry of the A and B-type lamins modulates NHEJ or

HR pathways to repair damaged DNA in a cell-type- and cancer-

specific manner remains an open question.

2.2 Role of nucleoporins in genome
organization and cancers

Nuclear pore complexes (NPCs) are ~120 nm-wide

structures in the nuclear envelope, which mediate selective

transport in and out of the nucleus. In vertebrates, NPCs

comprise nucleoporins (Nups), a group of ~30 proteins, to

form a ~125MDa protein complex (Cronshaw et al., 2002;

Cohen et al., 2012). In addition to nuclear transport, the

NPCs regulate chromatin interaction and function (Zhou and

Panté, 2010; Kadota et al., 2020). Further, Nups are classified into

1) on-pore Nups that are associated with the NPC and 2) off-pore

Nups that exist both in the NPC and nucleoplasm. Nups that

interact with and regulate essential genes in the genome include

Nup93 (on-pore) and Nup153 (off-pore), which interact with

super-enhancers, and function as major chromatin regulators

(Baumann, 2016; Ibarra et al., 2016). Nup153 and Nup98, present

near the nuclear basket of the NPC, communicate with a wide

range of poised genes through interactions with CTCF (Pascual-

Garcia et al., 2017). Certain on-pore Nups, such as Nup93,

interact with and repress HOXA genes which are essential for

early development (Labade et al., 2016). In the context of cancer

progression, Nup93 facilitates metastasis by enhancing β-catenin
import and upregulating EMT target genes, thus inducing

epithelial-to-mesenchymal transition (EMT) in breast and

hepatocellular cancers (Lin et al., 2022; Nataraj et al., 2022).

The on-pore Nup210 interacts with SUN2 to regulate the

expression of prometastatic mechanosensitive genes by

impeding the spread of heterochromatin (Amin et al., 2021).

Intriguingly, a non-canonical extranuclear function of the

Nup107-160 complex is to stabilize bipolar spindle

arrangement and prevent aneuploidy during each cell division,

thus maintaining genome integrity (Orjalo et al., 2006).

Nups contribute to cancer progression by forming fusion

proteins. For instance, the off-pore Nup98 is involved in multiple

fusion proteins with transcriptional coactivators, histone

methyltransferases, helicases, and in some instances, even

orphan proteins (Wang et al., 2007; Yassin et al., 2010; Gough

et al., 2011). During hematopoietic stem cell differentiation,

HoxA7, HoxA9, and HoxA10 levels are upregulated, which

progressively decrease as the hematopoietic cells differentiate

further into various lineages. The Nup98 fusion protein alters

gene expression resulting in Acute Myeloid Leukemia (AML).

Intriguingly, in Nup98-NSD1 fusion protein-mediated AML, the

fusion protein is recruited to the HoxA7, HoxA9, and

HoxA10 gene loci. The FG-repeat (originating from Nup98)

of the fusion protein interacts with HAT CBP/p300, leading to

overexpression of the aforementioned Hox genes, contributing to

AML. Nup98-PHD fusion proteins also promote AML

progression via a similar mechanism (Wang et al., 2007,

2009). Thus, the aberrant localization and expression of Nups

impact genome organization, contributing to oncogenesis. Taken

together, the cellular machinery effectively copes with aberrant
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gene expression—a major target for future therapeutic

approaches.

2.3 Lamins modulate copy number
alterations in cancers

Assessing alterations in chromosome numbers is a key

method for cancer diagnostics. Tumorigenesis often involves

the progressive acquisition of genetic alterations in specific

genes. Copy Number Alterations (CNAs) have been

identified and characterized across a wide range of cancer

types using high-density single nucleotide polymorphism

(SNP) arrays (Chen et al., 2013). Determining therapeutic

strategies in the case of deep deletions becomes especially

difficult owing to the absence of the gene in the cancer cell

genome, with its functional redundancy prepending an

added layer of complexity. Teasing apart whether CNAs

serve as drivers of cancers or silent passengers of its

effects remains an area of active investigation. Here, we

review the most recent advances in our understanding of

the interplay between CNAs and cancer progression through

data curated from cBioportal Figure 3 (Cerami et al., 2012;

Gao et al., 2013).

FIGURE 3
Analysis of genetic alterations in nuclear envelope genes in cancer patients using cBioPortal data (ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium 2020) CNAs in (A) LMNA (B) LMNB (B1 and B2) (C) Oncoprint of 10 nuclear envelope genes across 10967 cancer patient
samples arranged in descending order based on the frequency of missense mutations (D) Localization and frequency of SYNE1 mutations in cancer
patients using lollipop plot of cBioPortal (Cerami et al., 2012; Gao et al., 2013).
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2.3.1 Amplifications
It is well established that CIN and aneuploidy involving

whole chromosomal and focal amplifications and deletions in

the genome are defining features of cancer initiation and

progression (Watanabe et al., 2001; Zhou et al., 2002; Kops

et al., 2004). Interestingly, genes that encode for lamins are

strikingly amplified as compared to the other nuclear envelope

genes, implying that the very mechanisms that protect genomic

integrity aberrate in cancers. TCGA analyses of nuclear envelope

genes across patient samples revealed CNAs of the LMNA-

coding sequence in ~13% of cancers. Breast cancer patient

samples show the maximum extent of CNAs in LMNA in

~40% of the 211 patient samples (Figure 3A). However, the

extent to which gene amplifications in LMNA correlate with

changes in its transcript level remains unclear. An intriguing

possibility is that transcriptional deregulation of lamin A/C

potentially impacts expression levels of B-type lamins or LINC

genes as a consequence of copy number amplifications of lamins

and the stability of their interacting partners in a cell-type-

specific manner.

2.3.2 Deletions
Interestingly, the LMNB1 gene shows a significant number of

deletions across cancers. It is unique that LMNB1 and

LMNB2 genes showed only deep deletions in ovarian cancers

(Figures 3B,C). In ovarian cancer cells (HO-8910PM), decreased

expression levels of lamin A/C correlate with increased cell

migration and poor prognosis (Wang et al., 2019). Moreover,

the lamin A:B stoichiometric ratio shows a dominance of A-type

lamins in stiffer cartilaginous tissues, while B-type lamins are

more prominent in softer tissues such as the brain (Swift et al.,

2013). Nevertheless, if lamin A:B stoichiometry does modulate

the malignant potential of cancer cells, the extent of

complementation and the mechanisms that regulate the

altered sub-interactome of the A- and B-type lamins remain

to be uncovered.

2.3.3 Mutations in nuclear envelope
genes—Nesprin (SYNE1)

We examined the status of mutations in genes that encode

the nuclear envelope proteins across cancers using cBioPortal.

This analysis revealed recurrent mutations in the Nesprin-1

gene—SYNE1 (Figure 3D). Markedly, the SYNE1 gene

accumulates the highest number of missense mutations (271),

followed by truncating (41) and splice mutations (12). A

mutation in exon 33 of the SYNE1 gene modifies a conserved

residue in spectrin repeat 11, showing aberrant mitotic

phenotypes such as altered distance between the centrosome

and the nucleus, potentially contributing to CIN in human

hepatoma-derived Huh7 cells (Sur-Erdem et al., 2020).

Furthermore, mutation analysis of SYNE1 revealed frequent

missense mutations of T8362M across three different

cancers—medulloblastoma, pancreatic adenocarcinoma, and

ovarian epithelial tumor. However, the physiological

significance of these mutations remains to be elucidated. Do

mutations in SYNE1 destabilize or hyperactivate

mechanochemical signals into the nucleus and chromatin as a

consequence of its altered interaction with LINC complex factors

and actin? This could further contribute to increased

communication with the microenvironment and the

consequent proliferation of cancer cells.

3 Chromatin organizers in
carcinogenesis

The genome is a highly dynamic collection of genes, their

regulators, and massive stretches of DNAwhose function is yet to

be discovered. Maintenance of genome organization involves the

concerted function of numerous proteins required for the

regulation of chromatin organization and gene expression.

The aberrant function of chromatin organizers is associated

with cancers (Table 1). Here, we examine the contribution of

major chromatin organizers, namely CTCF, cohesins, and

condensins, to cancer progression.

3.1 CTCF

CCCTC-binding factor (CTCF) is a conserved zinc-finger

protein that functions as a chromatin organizer and transcription

factor. In association with cohesin, CTCF regulates the

organization of gene loci and alternative splicing primed by its

sequence-specific binding to CTCF sites. In addition, CTCF

functions as an insulator to restrict the expansion of

repressive marks (Dixon et al., 2012; Holwerda and de Laat,

2013). The human genome has ~55,000–65,000 CTCF binding

sites, amongst which around ~5,000 are highly conserved across

species (Yusufzai et al., 2004; Chen et al., 2012; Holwerda and de

Laat, 2013), though CTCF occupancy remains tissue- and

cancer-specific (Hanssen et al., 2017; Debaugny and Skok,

2020). As per the loop extrusion model for TAD formation,

the cohesin complex moves along the chromatin, establishing a

loop until it encounters an oriented CTCF dimer. Consequently,

further advancement of the cohesin complex is aborted, thus

demarcating TAD boundaries enriched in CTCF binding sites

(Sanborn et al., 2015; Fudenberg et al., 2016). CTCF also prevents

non-specific promoter-enhancer interaction by delimiting the

loop size, thus augmenting enhancer-blocking mechanisms

(Amankwaa et al., 2022). The Yin Yang 1 (YY1) protein

interacts with cohesin and is enriched near enhancer-

promoter contact sites, thus assisting CTCF in augmenting

enhancer-promoter interaction (Figure 1) (Weintraub et al.,

2017).

Aberrant expression or occupancy of CTCF is associated with

breast, lung, endometrial, gastrointestinal, prostate, and skin
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cancers (Eldholm et al., 2014; Kemp et al., 2014; Poulos et al.,

2016; Guo et al., 2018; Höflmayer et al., 2020). Of note, multiple

mutations map to the DNA-binding zinc finger domain of CTCF

across cancers (Bailey et al., 2021). CTCF binding to its target

sites is sensitive to their methylation states. For instance,

hypermethylation of CTCF binding sites shows a loss of

insulation in isocitrate dehydrogenase (IDH) mutant gliomas

(Flavahan et al., 2016). This further leads to the ectopic

interaction of the IDH enhancer with PDGFRA (platelet-

derived growth factor receptor alpha), leading to its

constitutive expression and the development of gliomas

(Figure 1). However, not all cancer-specific mutations in

CTCF affect its binding. For instance, stop codon mutations

in its N- and C-terminals, as well as in the zinc finger domain,

may exhibit a dominant-negative effect by hindering interactions

with functionally important cofactors, thus impeding CTCF

function (Debaugny and Skok, 2020).

Analyzing patient data sets fromTCGA reveals frequent loss of

the CTCF gene in breast and prostate cancer patients, correlating

with hypermethylation of CpG islands and hypomethylation of

other parts of the genome. CTCF depletion in a prostate cancer cell

line, HPECE6/E7, shows hypermethylation of CTCF binding sites,

further downregulating respective gene expression (Damaschke

et al., 2020). This indicates that CTCF binding to its target sites

prevents CpG hypermethylation and safeguards chromatin

architecture, not just by organizing the chromatin but also by

maintaining it. This study further reveals that drug-induced

hypomethylation using 5-aza-2 deoxycytidine (5dAza) rescued

chromatin organization, reaffirming the importance of CTCF

and its binding sites in cancers. However, 5dAza interacts with

a wide range of targets and fails to act precisely on distinct TADs,

thus raising the question of specificity in cancer therapies.

CTCF functions as a double-edged sword, acting both as an

oncogene as well as a tumor suppressor in a cancer subtype-specific

manner. Ovarian cancers exemplify the oncogenic potential of

CTCF, where metastatic lesions display elevated CTCF

expression. Further, the depletion of CTCF in ovarian cancer cell

lines (SKOV3 and A2780) decreased cell migration by consistently

downregulating threemetastasis-associated genes, includingCTBP1,

SRC, and SERPINE (Zhao et al., 2017). In contrast, CTCF positively

regulates the expression of the metastatic suppressor, Nm23-H1, in

breast cancers. Studies in the highly invasive MDA-MB-231 and the

less invasive MCF-7 cells show that CTCF-dependent Nm23-H1

levels inversely correlate with cancer aggressiveness (Wong et al.,

2021). The mechanism by which CTCF functions in a cancer-

specific manner remains poorly understood.

Overall, changes in genome organization due to altered levels or

aberrant recruitment of chromatin organizers contribute to cancer

progression However, experiments performed in cell culture models

need to be complemented with insights from animal models and

patient-derived tumor samples. Since adherent cell culture studies

are usually performed on a monolayer of cells, these approaches do

notmimic the tumormicroenvironment, discounting factors such as

nutrient accessibility, barrier tissue formation, and variation in drug

response, among others.What effects chemotherapeutic agents have

onTADorganization and gene expression in vivo remains an area of

active study. Moreover, it is intriguing that environmental factors,

such as diet and social interaction, also impinge on CTCF function

and, therefore, chromatin organization and function (Davis et al.,

2022; Wang R et al., 2022)—an interesting finding, given that

extraneous environmental factors considerably contribute to an

increase in the incidence of cancers.

3.2 Cohesin

Cohesins are multi-protein complexes essential for mitosis

and meiosis, conserved from yeast to humans. The canonical

TABLE 1 Role of chromatin organizers in cancers.

Chromatin
organizer

Gene Cancer Effect of dysregulation of gene Reference

Cohesin STAG2 Glioblastoma Mutation in STAG2 leads to aneuploidy while its rescue enhances the chromosomal stability Solomon et al.
(2011)

RAD21 Breast Overexpression of RAD21 in MDA-MB-231 cells leads to poor prognosis and
chemoresistance, while its knockdown reduces chemoresistance

Xu et al. (2011)

Condensin NCAPH Colorectal In HCT116, NCAPH depletion decreases cell migration, arrests the cells in G2/M, and
enhances apoptosis

Yin et al. (2017)

NCAPG Liver NCAPG has a pro-proliferative effect in adenocarcinoma patients Zhang et al.
(2022)

NCAPH Prostate Upregulation of NCAPH in prostate cancers promotes cell proliferation and helps in
bypassing replication checkpoints, which might hinder cancer progression

Kim et al. (2019)

CTCF Breast CTCF and EGR1 reduce cell migration in TNBC cell line MDA-MB-231 by inducing the
expression of Nm23-H1

Wong et al.
(2021)

Mutations in genes that encode for chromatin organizers are implicated in carcinogenesis and impact chromosome organization, stability and transcriptional regulation.
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function of cohesins is to clasp sister chromatids together during

the metaphase-to-anaphase transition. Apart from the

aforementioned function, cohesin plays a vital role in

maintaining inter-TAD and intra-TAD boundaries by looping

chromatin in the interphase nucleus, allowing for regulated inter-

and intra-TAD interactions (Matthews and Waxman, 2018;

Barrington et al., 2019). This promotes enhancer-promoter

contacts in a cell type-specific manner.

Through genome-wide sequencing, it is now apparent that

cohesin accumulates a number of mutations in the coding region

that alter the way it binds the chromatin and promotes aberrant

genomic contacts leading to anomalous expression of various

genes. Depletion of RAD21, a component of the cohesin

complex, promotes enhanced expression of mesenchymal

genes such as ITGA5 and TGF-B1 by altering the

intrachromosomal chromatin contacts and creating active

transcriptional units (Yun et al., 2016). Recent exome

sequencing revealed that the STAG2 protein of cohesin is

frequently mutated in cancers (Lawrence et al., 2014). It is

interesting to note that STAG2 is involved in promoting

regulated chromosomal contacts, the depletion of which

enhances the loop extrusion and promotes aberrant genomic

contacts (Adane et al., 2021; Richart et al., 2021). It remains

unclear how the mutated STAG2 functions in cancer, elucidation

of which might uncover a new therapeutic candidate. Moreover,

the loss of cohesin function in cancers leads to increased

replication stress and genomic instability (Leylek et al., 2020;

Minchell et al., 2020). We surmise that cohesin mutations

enhance genomic instability, facilitate clonal expansion, or

enhance tumorigenic potential, eventually leading to cohesin

loss of function in the clonal population. However, various

lines of evidence suggest that mutations in the cohesin genes

contribute to cancer initiation and progression by disrupting

chromosome organization and transcriptional regulation

(Table 1) (Leeke et al., 2014; Kojic et al., 2018; Antony et al.,

2021).

3.3 Condensin

Like cohesins, condensins are multi-protein complexes

required for chromosome assembly, condensation, and

segregation during mitosis and meiosis. While cohesin clasps

the sister chromatids together, condensin facilitates mitotic

chromosome compaction by uniting the two distant portions

of a single chromatid. Condensin isoforms have conserved

structural maintenance of chromosome (SMC) proteins,

SMC2 and SMC4, but differ in their non-SMC components.

Interestingly, decreased condensin expression triggers CIN,

consequently driving colorectal cancer progression (Baergen

et al., 2019). In addition, mutations in the C-terminal residues

R551 and S556 of CAPH2, a condensin II subunit, lead to

genomic instability in the human retinal pigment epithelial

(RPE1) cell line (Weyburne and Bosco, 2021). Another line of

evidence shows the involvement of the condensin complex in

maintaining chromosomal stability via its recruitment to the

pericentromeric regions. The binding of cell cycle regulators pRB

and E2F1 to the pericentromeric regions cause replication stress.

Studies reveal that these factors recruit condensin II to form a

complex in the pericentromeric chromatin, thus regulating

replication fidelity and cell ploidy (Coschi et al., 2014). This

agrees with an increase in the γH2A.X marker at the

pericentromeric region, accompanied by enhanced repeat

instability, on depletion of condensin (Samoshkin et al., 2012).

However, the precise function of condensin II and the

mechanistic basis of its safeguarding function against

replicative stress remains to be deciphered.

Apart from chromatin compaction, condensins also play

moonlighting roles that include facilitating enhancer RNA

transcription and enhancer-promoter looping in condensin-

bound ERα (Estrogen Receptor α)-sensitive enhancers in

breast cancers by recruiting p300 and RIP140 (Li et al., 2015).

Immunoprecipitation of condensins followed by mass

spectroscopy or Rapid immunoprecipitation mass

spectrometry of endogenous proteins (RIME) during dynamic

processes such as cell transformation may reveal other non-

canonical functions (Mohammed et al., 2016). Considering the

limited number of therapeutic approaches available to combat

triple-negative breast cancers (TNBC), it is encouraging that the

knockdown of condensin I complex protein NCAPD2 curtailed

cell proliferation and invasion. These lines of evidence implicate

NCAPD2 expression as a prognostic marker of TNBC patients

suggesting a potential therapeutic candidate (Zhang Y et al.,

2020). An in-depth biochemical and molecular characterization

assumes significance as condensins emerge as potential

therapeutic targets for human cancers (Wang et al., 2018).

4 Impact of non-canonical histones
and oncohistones on chromatin
organization in cancers

Non-canonical histone variants occasionally replace

canonical histones in the genome, often serving two main

purposes. First, histone variants are dynamically incorporated

throughout the interphase with the regular nucleosomal turnover

of canonical histones to sustain nucleosomal stability. Secondly,

additional regulatory domains, interactors, and PTMs in non-

canonical histones offer supplementary mechanisms for the

control of epigenetic regulation. Since cancers are

characterized by large-scale remodeling of their epigenetic

landscape, canonical histones in cancers are occasionally

interchanged with histone variants (Vardabasso et al., 2015).

Structurally, histones are composed of amino- and carboxy-

terminal tails and a globular histone fold domain (HFD).

Specific mutations in histone genes tend to confer oncogenic
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properties to cells, and these mutant histones are referred to as

oncohistones (Mohammad and Helin, 2017). Mutations occur

both in the tail and globular domains, with different

consequences. While tail domain mutants cause a global loss

of both active and inactive histone marks, the globular domain

destabilizes the nucleosome. Here, we review the functional

diversity and regulatory mechanisms involved in genome

organization by some non-canonical and oncohistones while

discussing the scope for further research in the field.

4.1 H3 variants

The histone variant H3.3 functions as a space-filling histone

when canonical H3 is evicted from the nucleosome, thus

maintaining nucleosomal stability (Ray-Gallet et al., 2011).

The incorporation of histone H3.3 facilitates the enrichment

of active marks on chromatin associated with dynamic histone

turnovers, such as transcriptionally active promoters and

enhancers of active genes (Lin et al., 2013; Ha et al., 2014).

Contrastingly, histone H3.3 is also incorporated in repeat-rich

and repressed telomeres, where H3.3 is incorporated into the

nucleosomes and further methylated to H3.3K9me3. The

H3.3K9me3 mark is vital for maintaining the integrity of

constitutively heterochromatinized telomeres (Udugama et al.,

2015). Specific chaperone complexes facilitate the incorporation

of the histone H3.3 into different regions in the genome. In the

euchromatin, H3.3 is incorporated by the HIRA complex (Shi

et al., 2017; Yu et al., 2021; Yang et al., 2022), while DAXX/ATRX

complexes incorporate H3.3 in the telomeric and pericentric

heterochromatin (Goldberg et al., 2010; Lewis et al., 2010;

Heaphy et al., 2011). Of note, DAXX/ATRX is mutated in

classes of gliomas, sarcomas, and pancreatic neuroendocrine

tumors and is involved in differential H3.3 deposition, thereby

deregulating gene expression profiles (Heaphy et al., 2011; Yuen

and Knoepfler, 2013; Ren et al., 2018). Deposition of the

H3.3 variant in the telomeric regions might potentially

contribute to the maintenance of cancer stem cells within

tumors by activating embryonic stem cell dynamics and

promoting alternative lengthening of telomeres (ALT) (Wong

et al., 2009; Gulve et al., 2022). Moreover, the H3.3 recruiter

ATRX is also localized to the nuclear periphery with the lamins,

suggesting a possible interaction between H3.3, the telomere

complex, and lamins, which collectively regulate telomere

organization (Pennarun et al., 2021; Teng et al., 2021).

Histone composition in the nucleosome, especially the

incorporation of oncohistones, affects the expression of a wide

range of genes. For instance, H3/H3.3K27M tail domain

mutations accelerate neural stem cell self-renewal by

dysregulating neural development genes in diffuse intrinsic

pontine gliomas (DIPGs) (Mohammad and Helin, 2017;

Larson et al., 2019; Nacev et al., 2019). H3G34V/R and

H3.3G34W/L histone tail domain mutations are found in

pediatric high-grade gliomas and giant cell tumors of the

bone, respectively. Several in vitro and in vivo studies reveal

that both the oncohistones, H3.3K27M and H3.3G34W/L/V/R,

reduce H3K27me3 levels, resulting in the aberrant expression of

Polycomb-group (PcG)-mediated heterochromatinized genes,

though the results are more promising in in vitro systems

(Mohammad and Helin, 2017). H3.3K27M tumors have

enhanced expression of genes associated with neural

development, where H3K27me3 loss released bivalent

promoters from their poised state (Larson et al., 2019).

Likewise, the H3.3K36M mutation, found in 90% of

chondroblastomas, shows a parallel trend of decreasing

H3K36 di- and tri-methylation, PTMs involved in RNA

polymerase elongation (Jha and Strahl, 2014; Fang et al., 2016;

Sahu and Lu, 2022). A possible mechanism is reducing

methylation levels by the selective sequestration of histone

methyltransferases, NSD2, SETD2, and PRC2, creating a

dominant negative effect (Figure 4D). Intriguingly, these

oncohistones affect multiple histone marks. For instance, the

H3.3K36M mutation, despite decreasing H3K36 methylation,

increases the deposition of H3K27me3 marks. This leads to the

mobilization of the polycomb repressor complex 1 (PRC1) away

from its target sites, resulting in aberrations of PcG-regulated

heterochromatin and an altered epigenetic profile (Bjerke et al.,

2013; Chan et al., 2013; Lu et al., 2016). It remains an open

question as to why the tail domain mutants of H3.3 are spatially

confined in a hindbrain tissue-specific manner. Surprisingly, the

H3.3K27M mutant promotes CIN and induces NHEJ-mediated

DNA damage response through the DNA end-processing

enzyme Polynucleotide Kinase 3′-Phosphatase (PNKP)

(Rondinelli et al., 2022). The rationale underlying the

deposition of H3.3 mutants on stalled forks despite the

presence of other canonical histones remains unclear.

Although oncohistones function as discrete entities, the

mechanistic basis underlying their potential regulatory

crosstalk would be a tantalizing finding to unravel.

4.2 H2A and H2B variants

All histones exist as multiple variants that modulate gene

expression, barring histone H4, which has only one variant.

Histone H2A and H2B cumulatively have 15 non-canonical

histone variants, out of which 11 are H2A variants—H2A.X,

H2A.Z.1, H2A.Z.2.1, H2A.Z.2.2, H2A.Bbd, H2A.J, H2A.B,

TH2A, H2A.P, macroH2A.1.1, macroH2A.2, and

macroH2A1.2, and four are H2B variants—H2BE, H2B.S.M,

TH2B, and H2B.W (Oberdoerffer and Miller, 2022), which

are often dysregulated in cancers (Figure 4A). γH2A.X, a

histone H2A subclass phosphorylated at S139, functions as a

molecular beacon that detects DNA damage in the genome (Mah

et al., 2010). Of note, the lack of H2A.X causes lethality in mice

exposed to γ-irradiation, establishing its importance in
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FIGURE 4
Histone variants and mutants in cancer (A) A heatmap representing various non-canonical histones across 31 different cancers; data curated
from GEPIA2. Genes H2AFX, H2AFZ, and H2AFY code for H2A.X, H2A.Z.1, and macroH2A, respectively (B) Difference in the recruitment of non-
canonical histones in normal versus cancer cells. cHC—Constitutive heterochromatin (C) Comparison between canonical H2A and non-canonical
histone H2A.B (D) Mutations in the globular domain of core histones (H2B, H2A, and H4) to enhance dimer exchange and chromatin
remodeling. This further dysregulates the expression of genes involved in differentiation (E)Oncohistones, mutations in the tail and globular domains
are found in different cancers. Tail domain mutations sequester histone methyltransferases, while globular domain mutants destabilize the
nucleosome, altering the expression of various genes.
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maintaining genome stability (Celeste et al., 2002). Surprisingly,

H2A.X is also involved in sustaining the self-renewal capacity of

pluripotent stem cells (Turinetto et al., 2012). We speculate an

H2A.X-dependent mechanism involved in the sustenance and

regulation of cancer stem cells (Kim et al., 2012). As the guardian

of the genome, the significance of H2A.X in facilitating

metastasis was demonstrated when the knockdown of H2A.X

induced EMT through the upregulation of transcription factors

Twist1, ZEB, and SLUG (mesenchymal markers) in

HCT116 colorectal cancer and MCF10A non-tumorigenic

breast epithelial cell lines (Weyemi et al., 2016). This strongly

suggests alternate functions of H2A.X in various aspects of gene

regulation in addition to its role in the DNA damage response

machinery.

Both H2A.Z and H3.3 maintain an open conformation of

chromatin in nucleosome-depleted regions of the promoter for

transcription factors to interact with gene promoters resulting in

their transcriptional upregulation (Jin et al., 2009). Consistent

with the requirement to transcribe genes, H2A.Z facilitates access

to transcribing genomic regions by destabilizing the nucleosome,

which is important in regulating stem-cell renewal and

differentiation (Buschbeck and Hake, 2017). In cancers,

canonical H2A is often replaced by its non-canonical variants

H2A.Z.1.1 and H2A.Z.2. Remarkably, these isoforms are

upregulated and positively correlate with resistance to

chemotherapy in malignant stages of melanoma and

pancreatic ductal adenocarcinoma (Vardabasso et al., 2015;

Ávila-López et al., 2021). Furthermore, overexpression of

H2A.Z correlates with poor prognosis in estrogen receptor-

positive breast cancer (Hua et al., 2008). The non-canonical

histone variant, macroH2A (mH2A), has a macro-domain and is

involved in the inactivation of the X chromosome in mammals

(Chadwick et al., 2001). In contrast to other histones, mH2A has

a stabilizing effect on the nucleosome and can mediate both gene

activation and repression. Notably, the depletion of mH2A

dysregulates gene expression in at least nine cancers (Zink

and Hake, 2016). However, the recruitment mechanism of

mH2A is yet to be completely elucidated.

H2A.Bbd, a member of the short H2A family, is a testis and

brain-specific histone variant overexpressed predominantly in

Diffuse Large B-cell Lymphomas (DLBCLs) (Chew et al., 2021).

Interestingly, H2A.B harbors multiple H2A mutations in its

sequence. These include R29Q (DNA binding site mutant)

and E92L (acidic-patch mutant) (Figure 4C). Furthermore,

H2A.B’s truncated C-terminal tail compromises its

nucleosomal compaction and, if expressed ectopically, might

cause dysregulated gene regulation (González-Romero et al.,

2008; Bagert et al., 2021; Chew et al., 2021; Kohestani and

Wereszczynski, 2021). From a vantage point, wild-type H2A.B

has already evolved into an oncohistone with the ability to

promote nucleosomal instability (Bagert et al., 2021). H2B,

another histone H2 variant, has the highest number of

nucleosome-destabilizing mutations in the globular domain at

E71 and E76 (Nacev et al., 2019; Bagert et al., 2021).

Essentially, tail-domain mutants are well-characterized, but

not limited to, H3.3. The same is true for globular domain

mutations, which are better documented for histone H2

(Nacev et al., 2019). Mutation data shows that 80% of the

most frequent mutations in histones occur in their globular

domain (Nacev et al., 2019). Many of these mutations in the

globular domain enhance chromatin remodeling and histone

dimer exchange, which correlates with the altered expression of

genes involved in differentiation across patients with different

cancers (Bagert et al., 2021). However, the mechanism and

contribution of these mutations to cancers remain largely

uncharacterized. We surmise that mutations in the globular

domain of histones induce nucleosomal instability, which

affects chromatin compaction both during mitosis and

interphase. Moreover, histones bearing mutations in their

globular domains mutant histones can increase the chances of

incorporating histone variants, potentially altering gene

expression. The temporal preference for the incorporation of

histones, both dependent on and independent of replication,

adds an additional layer of complexity (Figure 4E). Interestingly,

47% of the missense mutations in histones H2A, H2B, H3, and

H4 show a conversion of glutamic acid residues to lysine or

glutamine (Nacev et al., 2019), suggestive of 1) altered DNA-

histone interactions 2) aberrations in PTM patterns of histones

owing to an increase in the number of lysine and glutamine

residues. Such a contribution of novel histone PTMs to

carcinogenesis remains to be elucidated.

4.3 CENP-A

Apart from the role of histones in regulating transcription,

histones are essential for modulating DNA damage response,

genome organization, and chromosome maintenance. CENP-A,

a centromere-specific H3 variant, is necessary and sufficient to

ensure the structural and functional organization of the

centromere. Heterochromatinization at the centromere is

achieved by recruiting RNAi-based DICER machinery and

SUV methyltransferases (Peters et al., 2003; Folco et al., 2008).

Moreover, heterochromatic regions are associated with the

nuclear envelope components, contributing to an additional

layer of regulation (Towbin et al., 2012; Solovei et al., 2013;

Ebrahimi et al., 2018; Iglesias et al., 2020). For instance, LBR and

B-type lamins are involved in the organization of the pericentric

heterochromatin in the interphase nucleus (Shimi et al., 2008;

Dechat et al., 2010; Lukášová et al., 2018). Centromeres and

telomeres are enriched in constitutive heterochromatin marks

that frequently localize to the LADs in the genome (Haaf and

Schmid, 1991; Weierich et al., 2003; Raz et al., 2008; Bloom,

2014), with a subset of heterochromatic domains clustering
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around nucleoli as perinucleolar heterochromatin (Alcobia et al.,

2000; Gdula et al., 2013).

The two fundamental functions of CENP-A include 1)

centromere formation and maintenance and 2) nucleation of

checkpoint assembly proteins involved in chromosomal

segregation. The organization of the centromere is dynamic

during the various cell cycle stages, contributing to chromatin

reorganization. During the early G1 phase, CENP-A molecules

form a rosette-like structure nucleated by HJURP, facilitating a

3D ring-like organization during the G1 phase (Figure 4B).

During mitosis, this structure is reoriented to form a rod-like

pattern (Andronov et al., 2019). Elevated levels of CENP-A form

neo-centromeres due to its mislocalization along the

chromosomal arms, resulting in the misorientation of

microtubule fibers on the kinetochore. This leads to the

abnormal segregation of chromosomes, resulting in

chromosomal translocations and breakage (Barnhart et al.,

2011; Sun et al., 2016). It is now established that CENP-A is

recruited to DNA double-strand breaks, and its depletion leads to

an impaired DDR (Zeitlin et al., 2009; Lawrence et al., 2015;

Stirpe and Heun, 2022). This highlights that CENP-A is recruited

to sites other than the centromeric regions, although the exact

role of CENP-A in DDR remains to be characterized. The ectopic

overexpression of CENP-A increases the tolerance limit to DNA

insults and enhances chemoresistance (Lacoste et al., 2014). The

mechanism of CENP-A recruitment to DNA breakage sites and

the consequent molecular signals required for its residence and

dislodgement remains to be elucidated.

5 Chromatin organization during
senescence

Cellular senescence is a state of dormancy where the cell

ceases to divide. Senescence involves shortened telomeres,

increased DNA damage, stalled replication, nuclear

deformities, mitochondrial dysfunction, and aberrant genome

organization (Di Micco et al., 2021). After a somatic cell crosses

the Hayflick limit, it reaches replicative senescence because of the

end replication problem, i.e., progressive shortening of telomeres

with each division cycle due to the inherent inability of DNA

polymerases to correctly replicate the cytosine-rich telomere

lagging-strand (Hayflick and Moorhead, 1961; Harley et al.,

1990). Interestingly, this limit is often bypassed by neoplastic

cells, making them immortal (Autexier and Greider, 1996). As

aging progresses, the DDR machinery is compromised,

predominantly increasing the predisposition to breast,

prostate, lung, and colon cancers (Rossi et al., 2007; de

Magalhães, 2013). Normally, these functions are tightly

regulated, and the activation of oncogenes leads to aberrant

replication fork progression, resulting in Oncogene-Induced

Senescence (OIS) (Serrano et al., 1997; Di Micco et al., 2006;

Rocha et al., 2022). It is noteworthy that cancer cells often evade

OIS by altering cellular levels of p16INK4A, a cell cycle blocker

(McLaughlin-Drubin et al., 2013).

Remarkably, extensive topological changes in chromatin

compartmentalization accompany senescence, obfuscating the

spatial separation between the A and B compartments.

Microscopy and polymer modeling of chromatin reveals that

the spatial organization of chromatin compartments is drastically

altered in tumor cells. Following this finding, an additional

intermediate Compartment I has been proposed that interacts

with both A and B compartments in normal tissue and inclines

toward the B compartment in cancerous tissue (Johnstone et al.,

2020). Cells undergoing OIS show dramatic changes in

chromatin architecture, with the formation of Senescence

Associated Heterochromatin Foci (SAHF), characteristically

enriched with facultative heterochromatic marks such as

H3K9me1/2, H3K20me3, along with high-mobility group

proteins and non-canonical histones such as mH2A (Narita

et al., 2003; Zhang et al., 2007; Nelson et al., 2016).

Chromatin polymer modeling suggests that SAHF can

mobilize specific loci adjacent to heterochromatic domains in

close proximity to each other in the 3D space of the nucleus,

enhancing their activity in cell adhesion and cancer-related

signaling (Sati et al., 2020). Alongside activating specific genes,

the SAHF also affects cell proliferation by epigenetically

repressing E2F target genes through the recruitment of pRB

and heterochromatin factors (Narita et al., 2003). Moreover,

SAHFs are not found in cells going through quiescence (Aird

and Zhang, 2013). In agreement with this, the silencing of E2F-

responsive elements and the formation of SAHF are

characteristic of only irreversibly arrested cells, thus hinting

towards an Rb-mediated mechanism for stabilizing the

senescent phenotype.

The induction of senescence in cancer cells serves as a

traditional therapeutic approach by targeting p53, mTOR,

PI3K, and BCL-2 family proteins using senolytic agents (Lee

et al., 2010; Muñoz-Espín et al., 2013; Laberge et al., 2015).

However, challenges in targeting cancer cells are contributed to

by tumor heterogeneity since aged patients have higher numbers

of senescent cells, which can lead to fatal off-target effects by

senolytic agents (Wang L et al., 2022).

6 Perspectives

6.1 Effect of lamin mutations on genome
organization during cancer progression
and senescence

The LADs are parts of chromatin domains that are largely

in a state of repression. Surprisingly, the simultaneous loss of

all lamin forms in mouse embryonic stem cells did not change

the overall TAD structure but reorganized the inter- and

intra-TAD interactions, further altering transcriptional
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output (Zheng et al., 2018). It is interesting to note that

although lamins are known to organize heterochromatin

proximal to the nuclear border, they also modulate the

organization of transcriptionally-active euchromatin within

the nuclear interior (Pascual-Reguant et al., 2018; Ikegami

et al., 2020).

Ovarian cancers harbor homozygous deletion in the

LMNB1 gene, while the loss of lamin A/C leads to poor

FIGURE 5
Lacunae in the field of genome organization and nuclear envelope (A) Lamin B1 is upregulated in most cancers, as per TCGA data, and
overexpression of Lamin B1 expression sequesters 53BP1, a major orchestrator of NHEJ pathway. The precise mechanisms as to how cancer cells
overcome 53BP1 sequestration is unknown (B) Incorporation of both tail and globular domain mutants leads to dysregulated gene expression
through various mechanisms, though it remains unclear whether nuclear lamina has any role in either mitigating or worsening it. Globular
domain mutations, when associated with the LADs, could be altering the spatial localization of gene loci. (C) The nuclear envelope maintains
heterochromatin. LADs form a significant portion of the human genome and are regulated by the lamina and its associated complexes, the
deregulation of which often leads to HGPS and cancer (D) Furthermore, in EMT and cancer progression, phosphorylated lamin A/C and B1 are
associated with enhancer sequences, but the role of this association remains to be elucidated.
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prognosis and enhanced metastatic potential of cells (Capo-

chichi et al., 2011). In the context of senescence, lamin A/C

directly interacts with the telomeric protein TRF2, which

facilitates the insertion of 3′ overhangs into telomeric DNA,

resulting in T-loop formation that protects the telomere ends and

slows cellular senescence in a cell-type specific manner.

Mutations in LMNA, like those found in Hutchinson-Gilford

progeria syndrome (HGPS), destabilize lamin

A/C-TRF2 interaction, further leading to telomere loss and

accelerated cellular aging (Wood et al., 2014).

Additionally, TCGA data retrieved from GEPIA2 shows that

most of the cancers show upregulated levels of lamin B1. It is

known that lamin B1 overexpression sequesters 53BP1, a crucial

mediator of the NHEJ pathway (Etourneaud et al., 2021). It

remains to be elucidated how a majority of the cancers

overexpressing lamin B1 manage to steer the DDR to specific

NHEJ pathways (Bouwman et al., 2010) (Figure 5A).

Furthermore, lamins repress the activation of mobile

transposable elements that trigger chromosomal instability

(Andrenacci et al., 2020). During the later stages of cellular

aging, the association of lamin with transposable elements

declines, coupled with the loss of heterochromatin, leading to

aberrant gene expression and type-I interferon response (De

Cecco et al., 2019; Cenni et al., 2020). The mechanisms by which

chromatin organizers function in cancer cells will facilitate the

design of specific small molecule inhibitors.

6.2 Interactors of LMNA during cancer
progression

Lamin A regulates gene expression by interacting with

various chromatin modifiers, the deregulation of which

promotes cancers. For instance, lamin A directly interacts

with and prevents the proteasomal degradation of SUV39H1,

the writer of the H3K9me3 inactive mark (Liu et al., 2013),

the dysregulation of which results in HGPS (Figure 5C).

Correspondingly, the PcG proteins that deposit the

H3K27me3 inactive mark interact with lamins (Cesarini

et al., 2015; Marullo et al., 2016). Notably, lamin loss leads

to an anomalous distribution of PcG proteins, eventually

resulting in dysregulated gene expression and accelerated

cancer progression. HDAC2 also plays an active role in

heterochromatinization by interacting with LMNA at the

nuclear periphery (Mattioli et al., 2018; Santi et al., 2020;

Murray-Nerger and Cristea, 2021). However, the molecular

mechanisms involving lamin-mediated regulation of inactive

H3K9me3 and H3K27me3 and active H3K4me3 marks are yet

to be uncovered.

In cancers, chromatin organizers harbor mutations in

various domains, resulting in their deregulated activity and

altered binding to chromatin or lamins. For instance, sarcomas

harbor high-frequency H3.3G34R and H3.3K36M mutations

that directly prevent the binding of H3K36me2/3 writer NSD1/

2, thus reducing PRC2-H3K36me2 interaction and increasing

H3K27me3 levels (Lu et al., 2016). The interaction between

SMARCB1 and NSD1 is essential for the deposition of

H3K36me2 in the genome, which is a marker for better

prognosis in sarcoma. Mutated SMARCB1 is unable to bind

to NSD1 but binds to PRC2, leading to an increase in

H3K27me3 with poor prognosis in cancer patients (Drosos

et al., 2022). Such atypical deposition of inactive histone marks

dilutes their occupancy in normally-repressed genes,

reorienting the genomic regions localized to the nuclear

periphery. As a result, genes typically localized to the

nuclear periphery, such as the mesenchymal progenitor

genes in the facultative LADs, become de-repressed (Lu

et al., 2016). Hence, we surmise a potential crosstalk between

the nuclear lamins, chromatin regulators, and oncohistones in

the initiation and sustenance of cancer progression.

6.3 Crosstalk between the nuclear
envelope and oncohistones

The nuclear lamina is primarily associated with inactive

histone marks at the nuclear periphery. However, lamins also

modulate active euchromatin (Zheng et al., 2018). How the

peripheral and nucleoplasmic pools of lamins engage in

chromatin dynamics and impinge on the transcriptional

regulation mediated by oncohistones such as H3.3K27M/I,

H3.3G34W/V/L/R, H3.3K36M, or sH2A is unclear

(Figure 5B). In addition, components of the nuclear

envelope, namely Nups and LINC complex factors, also

participate in chromatin organization. Moreover, lamins are

required for chromatin organization, although their potential

role in the incorporation of oncohistones by chaperones

remains unclear (Figure 5B). The extent of lamin A/C

phosphorylation correlates with lamin A/C levels in the

DU145 prostate cancer cell line, though this remains to be

verified experimentally across cancers (Kong et al., 2012).

Phosphorylated lamin A/C and unphosphorylated, probably

nucleoplasmic lamin B1, associate with active enhancers and

transcribing genes, respectively, which contradicts the

conventional function of LADs in gene repression (Guelen

et al., 2008; Ikegami et al., 2020). However, the exact role of

phosphorylated Lamin A/C in modulating enhancer regions

remains an enigma. In addition, the association of lamin

B1 with eLADs and higher expression of fibronectin,

vimentin, and twist highlight the role of lamin B1 in

metastasis (Pascual-Reguant et al., 2018), although its exact

purpose of lamin B1 in compartment A remains to be

elucidated (Figure 5D). Interestingly, lamin B1 has been

shown to localize to the TAD borders of eLADs, opening the

possibility of its interaction with border elements such as CTCF

and cohesin.
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7 Conclusion

In summary, it is beyond any doubt that genetic mutations,

aberrations in chromatin organization, incorporation of

oncohistones, deregulated transcription, and defects in nuclear

envelope organization and function collectively deregulate the

cellular and molecular processes of cancers. Novel therapeutic

targets will be identified by leveraging high-resolution single-cell

approaches, such as sc-ChIP-seq, sc-ATAC-seq, and sc-Hi-C,

with high-content imaging, including high-resolution FISH.

Furthermore, molecular and biochemical assays remain the

mainstay for the elucidation of molecular mechanisms.

Collectively, these lines of evidence reveal that aberrant

genome architecture serves as a precursor and promoter of

cancer initiation and progression.
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