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Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common birth defect,
affecting approximately 1 in 700 births. NSCL/P has complex etiology including several
known genes and environmental factors; however, known genetic risk variants only
account for a small fraction of the heritability of NSCL/P. It is commonly suggested
that gene-by-environment (G×E) interactions may help explain some of the “missing”
heritability of NSCL/P. We conducted a genome-wide G×E interaction study in cases and
controls of European ancestry with three common maternal exposures during pregnancy:
alcohol, smoking, and vitamin use using a two-stage design. After selecting 127 loci with
suggestive 2df tests for gene and G x E effects, 40 loci showed significant G x E effects
after correcting for multiple tests. Notable interactions included SNPs of 6q22 near VGLL2
with alcohol and 6p22.3 near PRL with smoking. These interactions could provide new
insights into the etiology of CL/P and new opportunities to modify risk through behavioral
changes.
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INTRODUCTION

Interest in identifying the causal factors for birth defects, including orofacial clefts (OFCs) can be
traced back centuries (Marazita, 2012) and has often involved a debate as to the contribution of
genetic versus environmental risk factors (Beames and Lipinski, 2020). Evidence for a multifactorial
model for OFC etiology originated with Fraser’s early studies exposing pregnant mice to cortisone
showing that the incidence of corticosteroid induced cleft palate varied by strain. The multifactorial
model is favored in human nonsyndromic OFCs, where twin and family studies provide evidence for
a strong, but incomplete, genetic component. Many environmental factors have been postulated to
modify risk of OFCs including maternal medications, smoking or alcohol consumption (Romitti
et al., 2007; Grewal et al., 2008), nutrition (Kelly et al., 2012), obesity (Blomberg and Källén, 2009),
gestational diabetes (Figueiredo et al., 2015), and occupational exposures. Of these, cigarette
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smoking, alcohol consumption, and folic acid supplementation
are the most widely studied, but, except for smoking (Hackshaw
et al., 2011), these exposures have inconsistent results in
epidemiological studies. Maternal smoking, on the other hand,
has been shown to increase risk consistently across many studies
with similar effect sizes (Little et al., 2004).

Over the last 10 years, 20 independent genome-wide
association studies (GWAS) or meta-analyses have identified
at least 50 loci associated with OFCs (Beaty et al., 2016).
Cumulatively, these loci are estimated to account for 25–30%
of the heritable risk attributed to additive genetic effects. Other
approaches are needed to identify the “missing” heritability, some
of which may be attributed to interaction effects. Leveraging
published data from GWAS studies, gene-environment
interaction (GxE) studies have become a popular approach to
further elucidate OFC risk. Following one such GWAS study in
European and Asian case-parent trios (Beaty 2010), candidate
gene and pathway-based GxE analyses have suggested
interactions between smoking and RUNX2 (Wu et al., 2012),
and between multiple exposures and BMP4 (Chen et al., 2014).
Genome-wide GxE using a variety of statistical approaches have
identified interactions for maternal smoking, alcohol, or folate
supplementation in cleft palate (Beaty et al., 2011; Wu et al., 2014;
Haaland et al., 2017) and cleft lip with or without cleft palate
(Haaland et al., 2018; Haaland et al., 2019).

In this study, we performed genome-wide GxE analyses in a
case-control sample of European ancestry from the Pittsburgh
Orofacial Cleft Study to identify interactions between genetic
variants and three exposures (maternal smoking, alcohol
consumption, or vitamin supplementation) during the
periconceptional period that influence risk of OFCs.

MATERIALS AND METHODS

Study Samples and Genotyping
The sample for these analyses was derived from a larger
multiethnic OFC cohort, which has been previously described
(Leslie et al., 2016). Briefly, participants were recruited from 18
sites worldwide as part of ongoing genetic studies conducted by
the University of Iowa and the University of Pittsburgh Center for
Craniofacial and Dental Genetics. All sites obtained Institutional
Review Board approval both locally and at the University of Iowa
or the University of Pittsburgh. All participants gave informed
consent. These data are available through dbGaP (accession
number: phs000774. v2. p1).

This large multiethnic cohort contains OFC-affected probands
and their unaffected relatives in addition to controls without a
family history of OFC or other craniofacial anomalies. Additionally,
data were obtained on three maternal periconceptional exposures:
alcohol use, smoking, and vitamin use. Periconceptional exposures
were gathered from maternal self-report of alcohol use, personal
smoking, or vitamin use during the 3 months prior to pregnancy
and during the first trimester for each child as were used as binary
indicator variables in analyses.

From this larger cohort, a subset of unrelated cases and controls
of European ancestry and with complete data for the three

environmental exposure measures was drawn. It consisted of 344
NSCL/P cases and 194 controls of European descent fromDenmark,
Hungary, and the United States (Supplemental Table S1).

The genotyping, quality control procedures, imputation, and
generation of principal components of ancestry (PCAs) have been
previously described (Leslie et al., 2016). Briefly, samples were
genotyped using the Illumina HumanCore + Exome chip
(Illumina Inc., San Diego, CA), with approximately 97% of the
genotyped SNPs passing quality control filters, resulting in a total
of 539,473 genotyped SNPs. Genotype imputation for an
additional 34,985,077 unobserved polymorphisms was
performed using IMPUTE2 software with the multiethnic
1,000 Genomes Project Phase 3 reference panel (Howie et al.,
2009). Imputed genotype probabilities were converted to most-
likely genotypes using GTOOL; only most-likely genotypes with
probabilities >0.9 were retained for statistical analysis. Imputed
SNPs with INFO scores <0.5 or those deviating from
Hardy−Weinberg equilibrium (p < 1 × 10–4 in a set of
unrelated European controls) were also excluded from the
analysis. The University of Washington, Genetics Coordinating
Center released a full online report on the data cleaning, quality
assurance, ancestry analyses, and imputation for this study
(http://www.ccdg.pitt.edu/docs/Marazita_ofc_QC_report_
feb2015.pdf, last accessed April 25, 2016). Additionally, we
excluded variants with a minor allele frequency <10%, as the
power to detect interaction effects among low-frequency variants
is very limited and analysis of such variants is prone to type 1
errors. After these filtering steps, 5,165,675 variants were included
in the genome-wide interaction analyses. Population structure
was measured through generation of principal components of
ancestry using the R package SNPRelate following the approach
introduced by Patterson, Price, and Reich (Patterson et al., 2006).

Statistical Analyses
To assess the association between genetic variants and NSCL/P
that may or may not be modified by an environmental factor, we
used a two-stage approach for each of the three environmental
exposure. First, we employed the strategy laid out in Kraft et al.,
2007 a 2 degree of freedom (2df) joint test of the gene (G) and
gene-environment interaction (GE) effects was employed
genome-wide using logistic regression, adjusting for five
principal components of ancestry (Kraft et al., 2007). This
provides a sensitive test for two scenarios simultaneously:
(Marazita, 2012) where there is a genetic effect that is similar
across all environmental strata, and (Beames and Lipinski, 2020)
where there is a genetic effect that is specific to a specific
environmental stratum. Then, the GE effect was interrogated
for variants demonstrating at least suggestive association from the
G-GE joint test (i.e., p < 0.05) to identify regions in which there is
a genetic effect differing across environmental stratum, not just a
genetic effect alone. To estimate the dependence between the joint
G-GE and GE alone tests and derive a significance threshold to
use which accounts for this dependence, we performed
simulation (details available in Supplemental Note). In
simulation, using a first-stage threshold of p < 0.05, with a
second-stage threshold of p < 0.00275, yielded a procedure
with a properly controlled type-1 error rate of 0.05. To
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account for multiple testing, we then Bonferroni-adjusted this
second-stage significance level for interrogating the GE effect,
adjusting for the number of regions with suggestive results from
the G-GE joint test (i.e., 0.00275/572 = 4.8 × 10–6). All analyses
were conducted in PLINK v1.9 assuming an additive genetic
model (Chang et al., 2015).

RESULTS

As a follow-up study to previous GWAS identifying marginal
gene effects (G) increasing risk for NSCL/P, this study focused on
identifying G x E interactions. We carried out a two-stage

analysis, where we first examined the 2df joint test of G and G
x E (GE). We observed suggestive evidence of association in the
joint G-GE test for 572 loci (Figure 1). Several loci had multiple
SNPs with p < 0.05 in each of the three analyses. These included
8q24, one of the most reliably associated loci with NSCL/P in
European populations (Beaty et al., 2016). As expected, this locus
showed strong G effects, but did not have a significant GE effect
(p > 0.05). A locus on 2p23 with similarly strong G effects but no
GE effects was identified in all three analyses but to our
knowledge has not been reported before in GWAS of NSCL/P.

To identify gene-environment interactions, we next examined
the GE effect alone for each variant with p < 0.05 in the joint test.
Three regions (5 SNPs) had a significant GE p-value less than

FIGURE 1 |Manhattan plots of the G-GE test for maternal periconceptional (A) alcohol use, (B) smoking, (C) vitamin use. SNPs highlighted in green are those with
significant GE effects (p2df < 0.05 and pGE<4.8 × 10–6).
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4.8 × 10–6 (i.e., Bonferroni correction for 572 loci) and several
more had suggestive results (GE p-value less than 5 × 10–4)
(Supplementary Table S2). Among these regions, we observed a
significant interaction effect between rs706954, a variant <5 kb

downstream of VGLL2 on 6q22.1, and periconceptional alcohol
exposure (pGE = 4.62 × 10–6). The minor allele (G) of rs706954
was associated with higher odds of NSCL/P within individuals
with periconceptional alcohol exposure, but lower odds with

FIGURE 2 | Regional association plots of the GE test with interaction plots (A) 6q22 (rs706954) interaction with alcohol use. (B) 6p22.3 (rs35097027) interaction
with smoking. (C) 3q27.3 (rs61069053) with vitamin use. Note, only one individual is homozygous for the G allele in the no vitamin use stratum.
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individuals without periconceptional alcohol exposure
(Figure 2). We also observed a significant GE effect with
periconceptional alcohol exposure for a SNP on chrX
(rs5912923, pGE = 3.71 × 10–6).

Two additional loci had several SNPs per locus with suggestive
GE p-values for alcohol exposures. These included 6q21 (lead
SNP rs6929494, pGE = 1.18 × 10–5) and 11q21 (lead SNP
rs7116990, pGE = 1.80 × 10–5). At the 6q21 locus, which
included genes REVL3 and TRAF3IP2, the major allele (A) of
rs6929494 was associated with higher odds of NSCL/P within
individuals with periconceptional alcohol exposure, but had an
opposite (protective) effect for individuals without
periconceptional alcohol exposure. The associated SNPs at the
11q21 locus, are located in an intergenic region between CNTN5
and JRKL; for the lead SNP, rs7116990, the major allele (A) was
associated with greater odds of NSCL/P in the individuals with
periconceptional alcohol exposure and lower odds of NSCL/P for
individuals without periconceptional alcohol exposure.

In the vitamin exposure analysis, one locus on 16p21.1
harbored a variant with a significant GE effect (rs9930171, pGE
= 4.78 × 10–6). While not statistically significant, several SNPs on
3q27.3 showed a suggestive interaction with vitamin exposure
(lead SNP rs61069053, pGE = 1.05 × 10–5). The minor allele (G) of
rs61069053, located in an intergenic region between CRYGS and
DGKG, had higher estimated odds of NSCL/P in the individuals
without periconceptional vitamin exposure, but had lower odds
of NSCL/P for the periconceptional vitamin exposure group.
However, this result may be confounded by the distribution of
vitamin use and allele frequency; only one individual was
homozygous for the minor allele and did not have vitamin
exposure.

In the periconceptional smoking analysis, no variants achieved
statistical significance. However, at 6p22.3, several SNPs showed
suggestive GE p-values for smoking (lead SNP rs35097027, pGE =
1.96 × 10–5). These variants are upstream of PRL; the minor allele
(C) of rs35097027 conferred higher odds of CL/P for individuals
with maternal smoking exposure, but lower odds of NSCL/P for
individuals without maternal smoking exposure (Figure 2).

DISCUSSION

The primary goal of this paper was to identify additional gene-
environment interactions for NSCL/P and build on our
previous work in this dataset (Leslie et al., 2016). These
analyses were motivated by multiple studies reporting
associations between OFCs and periconceptional smoking,
alcohol use, and vitamin supplementation (Dixon et al.,
2011; Beaty et al., 2016). Genome-wide interaction scans,
however, have been limited for NSCL/P (Wu et al., 2014;
Haaland et al., 2018). Our analyses add to a growing list of
loci for which interactions between SNPs and maternal
environmental exposures influence risk of OFCs.

While procedures for identifying GxE interactions have low
power in general, the 2df joint G-GE test is nearly always more
powerful than the marginal G and/or GE tests, even with a
relatively small sample size, making it a useful screening tool,

especially for common variants with strong effects (Kraft et al.,
2007). Consistent with this, the loci in these analyses with
statistically significant G-GE associations that were driven by
the GE effect had markedly strong effect estimates. Notably, the
estimated odds of NSCL/P were 2.73 times higher with each copy
of the minor allele G of rs117083 (in linkage disequilibrium with
rs706954, R2 = 0.88) for individuals with maternal
periconceptional alcohol exposure and was 35% lower for
individuals without periconceptional alcohol exposure. For the
only locus with more than one SNP with a significant GE p-value
[i.e., 6q22.1 (alcohol)], the genotypic odds ratio ranged from 40%
lower odds of CL/P to 178% higher odds. For alcohol and
smoking exposures, we primarily identified scenarios described
as “cross-over” interactions where the genotype group at lowest
risk for NSCL/P without the exposure had high risk for NSCL/P
with the exposure. In each of these interactions, the influence of
genotype entirely depends on the exposure. The method we used
to detect interactions is better suited for these “cross-over”
interactions. However, it is limited in its ability to detect
associations that are only present in one environmental
context. For example, it is quite plausible that a genetic
variant may only modify risk in the presence of a specific
environment. This method has lower statistical power to
detect such an association; additional methods are needed to
explicitly search for these association signals.

We identified three loci with significant interactions and several
loci with suggestive interactions. Of these, two loci have notable
biological plausibility which we discuss in detail. The only locus with
several variants demonstrating significant GE effects with
periconceptional alcohol exposure was on 6q22.1, approximately
5 kb upstream of VGLL2, encoding vestigial-like 2. Vgll2 is one of
several Vestigial-like factors that plays a role in muscle fiber
differentiation and the distribution of skeletal muscle fibers
(Honda et al., 2017). Although its expression in adult tissues is
restricted to skeletal muscle, during development, Vgll2 is more
broadly expressed. In mice, its expression is enriched in the
mandibular and maxillary prominences at embryonic day 10.5
and is localized to the epithelia of these structures (Johnson et al.,
2011). In the zebrafish, Vgll2 is expressed in the pharyngeal pouches
and somites (Maeda et al., 2002; Mielcarek et al., 2002). A role for
VGLL2 in craniofacial development is further supported by vgll2a
zebrafish morphants, which induce death of neural crest cells in the
pharyngeal arches causing hypoplasia of the Meckel’s and
palatoquadrate cartilages and truncation of the ethmoid plate
(Johnson et al., 2011). Models for fetal alcohol syndrome indicate
that ethanol exposure enhances cell death of cranial neural crest cells
(Cartwright and Smith, 1995; Smith et al., 2014). Although a specific
interaction between VGLL2 and ethanol has not been described
in vitro or in vivo, these data, combined with our statistical
interaction suggest this may be a fruitful area for future studies.

At the 6p22.3 locus, which was suggestively associated with
exposure to maternal smoking, the lead SNP was located 60 kb
upsteam of PRL, which encodes prolactin. Prolactin is a
reproductive hormone primarily known for its ability to
stimulate mammary gland development and lactation, but it
also has a variety of functions in reproduction, growth, and
development (Bole-Feysot et al., 1998). Prolactin receptor

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 6212615

Carlson et al. Gene-Environment Interactions in Clefting

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


transcripts and proteins have been detected in non-lactogenic
tissues notably including the facial cartilage and olfactory
epithelium in mammals (Freemark et al., 1997). Prolactin
levels are known to be altered by both active smoking and
exposure to secondhand tobacco smoke (Muraki et al., 1979;
Ng et al., 2006; Xue et al., 2010; Benedict et al., 2012). Although
smoking is associated with lower prolactin levels in pregnant
women, the same is not true for fetal prolactin levels (Andersen
et al., 1984). A role for prolactin in craniofacial development and
OFCs is unclear as knockouts of mouse PRL receptors are viable
and lack gross morphological defects (Ormandy et al., 1997).
However, in amphibian models, prolactin signaling has been
suggested as the pathway underlying the ability of pre-
metamorphic Xenopus laevis tadpoles to correct craniofacial
defects induced by thioridazine (Pinet et al., 2019). However,
the same group also found that increased prolactin signaling
during development alone does not cause craniofacial defects.
Nonetheless, there is evidence linking smoking to prolactin levels
and for prolactin signaling in craniofacial development;
additional research will be needed to connect these results and
determine a role for PRL and smoking in OFCs.

Our previous studies using this dataset have made use of the
ancestral diversity that resulted from the 13 different
recruitment sites worldwide. However, this study was limited
to individuals of European descent as the number of unrelated
participants with complete data from the other ancestry groups
was quite small. In previous GWASs for gene-environment
interactions, a lack of observations precluded the analysis of
smoking and alcohol exposures in Asian trios (Haaland et al.,
2018). The authors speculated that this was consistent with
general trends of low alcohol and cigarette use among Asian
women (Ng et al., 2014). This may also be true for other
populations recruited into our study, but the incomplete data
may also be due to changing study designs over the recruitment
period. We also note that the recruitment of these participants
was not population-based and thus does not reflect the
population prevalence of NSCL/P nor the three
environmental exposures we considered. In addition, a binary
exposure variable does not capture or represent the range of
possible environmental exposures that may influence
development of NSCL/P. Therefore, the conclusions drawn
here are limited to the study sample used in these analyses
and cannot be used to draw conclusions at a broader level.

To summarize, we performed a genome-wide analysis to
detect gene-environment interactions influencing risk of
NSCL/P in individuals of European ancestry. We identified
two notable interactions: near VGLL2 and PRL with maternal
periconceptional alcohol use and smoking, respectively that are
plausibly associated with risk of NSCL/P. These interaction
effects are novel and warrant further investigations. If

confirmed, these interactions provide new insights into the
etiology of NSCL/P and could provide opportunities to modify
risk through behavioral changes.
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