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Background: Emerging evidence shows that genome instability-related long non-coding
RNAs (IncRNAs) contribute to tumor—cell proliferation, differentiation, and metastasis.
However, the biological functions and molecular mechanisms of genome instability-related
INncBRNAs in endometrial cancer (EC) are underexplored.

Methods: EC RNA sequencing and corresponding clinical data obtained from The Cancer
Genome Atlas (TCGA) database were used to screen prognostic INcBRNAs associated with
genomic instability via univariate and multivariate Cox regression analysis. The genomic
instability-related INcCRNA signature (GILncSig) was developed to assess the prognostic
risk of high- and low-risk groups. The prediction performance was analyzed using receiver
operating characteristic (ROC) curves. The immune status and mutational loading of
different risk groups were compared. The Genomics of Drug Sensitivity in Cancer (GDSC)
and the CellMiner database were used to elucidate the relationship between the correlation
of prognostic INcRNAs and drug sensitivity. Finally, we used quantitative real-time PCR
(oRT-PCR) to detect the expression levels of genomic instability-related INcRNAs in clinical
samples.

Results: GlLncSig was built using five INcRNAs (AC007389.3, PIKBCD-AS2, LINC01224,
AC129507.4, and GLIS3-AS1) associated with genomic instability, and their expression
levels were verified using gRT-PCR. Further analysis revealed that risk score was
negatively correlated with prognosis, and the ROC curve demonstrated the higher
accuracy of GILncSig. Patients with a lower risk score had higher immune cell
infiltration, a higher immune score, lower tumor purity, higher immunophenoscores
(IPSs), lower mismatch repair protein expression, higher microsatellite instability (MSI),
and a higher tumor mutation burden (TMB). Furthermore, the level of expression of
prognostic INCRNAs was significantly related to the sensitivity of cancer cells to anti-
tumor drugs.
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Conclusion: A novel signature composed of five prognostic INcRNAs associated with
genome instability can be used to predict prognosis, influence immune status, and
chemotherapeutic drug sensitivity in EC.

Keywords: endometrial cancer, genome instability, long non-coding RNAs, risk score, prognosis predicting, immune

status

INTRODUCTION

According to the most recent cancer statistics, endometrial cancer
(EC) is the most commonly diagnosed gynecologic cancer in the
United States, with estimated 65,620 new cases and 12,590 deaths
(Siegel et al., 2020). However, no significant improvement in the
5-year relative survival of these patients has been achieved. The
Surveillance, Epidemiology, and End Results (SEER) database
contained 83.05% of data in 2018 and 82.36% in 1988 (Doll et al.,
2018). EC is broadly classified into two types based on distinct
pathological and clinical outcomes. Changes in multiple
pathways, most notably the PTEN/PI3K/AKT/mTOR pathway,
are implicated in type I EC. Moreover, the RAS/RAF/mitogen-
activated extracellular signal-regulated kinase 1 (MEK)/
extracellular signal-related kinase (ERK) and WNT/B-catenin
signaling pathway are frequently aberrantly activated (Dong
et al., 2013; Morice et al., 2016). Meanwhile, obesity and high
circulating estrogen levels are strongly linked to type I EC. Other
risk factors for type I EC include tamoxifen use after breast
cancer, physical inactivity, hyperinsulinemia, reproductive
history, and oral contraceptives (Bergman et al., 2000; Parslov
et al., 2000; Kaaks et al., 2002). Type II EC has lower morbidity
but a higher mortality rate than type I EC. However, this
classification of EC has flaws due to the overlapping
morphological and immunohistochemical characteristics of
type I and II EC (Soslow, 2013).

Long non-coding RNAs (IncRNAs) are a type of transcripts,
typically longer than 200 nucleotides (nt), and have no protein-
coding capacity but can regulate gene expression (Evans et al.,
2016). The abnormal expression of IncRNAs influences cell
proliferation, tumor metastasis, and progression by interacting
with specific signaling proteins, mRNAs, and micro-RNAs,
allowing the formation of sophisticated networks that can
contribute to phenotypic diversity in tumor cells (Dong et al.,
2019). Several abnormally expressed IncRNAs have been
discovered in different cancers, but their function is unknown.
Tong et al. found that the IncRNA NORAD holds great promise
as a prognostic biomarker in EC because it plays an important
role in EC progression as a tumor suppressor (Han et al., 2020).

Genomic instability, characterized by an increased tendency
for genomic changes ranging from base pair mutations to
chromosomal aberrations, contributes to somatic heterogeneity
and genetic diversity, as well as the progression of genetically
related diseases, including cancer (Andor et al., 2017). Genomic
instability is widely regarded as one of the hallmarks of cancer as
it accelerates tumor progression and decreases patient survival
(Negrini et al., 2010). Many studies on the classification of
endometrial carcinoma have been conducted to judge the
prognosis and guide treatment, and the findings revealed that

the majority of endometrial carcinoma were microsatellite
instable hypermutated (MSI-H) (Kandoth et al, 2013).
Hypermethylation of the MMR gene promoter in MSI-H type
EC resulted in the accumulation of DNA replication errors in
tumor proliferation, characterized by insertion and deletion of
microsatellite sequences, as well as a significantly higher genomic
mutation frequency than in microsatellite-stable tumors (Zhao
et al,, 2014). Therefore, the degree of EC genomic instability has
important diagnostic, treatment, and prognosis implications
(Khanduja et al, 2016). Furthermore, because effective EC
biomarkers for assessing prognosis and determining
appropriate treatment are still limited, it is critical to identify
novel available markers (Salvesen et al, 2012). Mounting
evidence demonstrates that IncRNA is strongly linked to
genomic instability (Liu, 2016). Recently, Zhaohua et al.
showed that nuclear IncRNA BGL3 directly plays a role in the
regulation of the DNA damage response pathway by preventing
the BRCA1/BARD1 complex from accumulating on the DNA
double-strand breaks (Hu et al., 2020). So far, however, few
studies have been reported on this phenomenon in EC.

In this study, we attempted to integrate the expression profiles
and somatic mutation profiles of patients with EC to construct a
genome instability-associated IncRNAs based on risk score for
prognosis prediction, immune status determination, and
therapeutic scheme selection.

MATERIALS AND METHODS

Data Acquisition and Preprocessing

The Cancer Genome Atlas (TCGA), a public database interacting
with 33 cancer types, was used to obtain data on the expression
profile, somatic mutation, and clinical information of
endometrial carcinoma patients. The project was TCGA-
UCEGC, and the transcriptome data files were labeled “FPKM.”
LncRNA and mRNA were extracted from the transcriptional
profiling data, separately. We obtained complete IncRNA
expression profiles, mMRNA expression profiles, clinical
features, and somatic mutation profiles for 511 samples.

Differential IncRNA Expression and

Co-Expression Analysis

The computational framework was designed to identify the
IncRNAs associated with genomic instability, and then, the
number of mutations was counted in each sample (Bao et al,
2020). Subsequently, we arranged subjects in descending order
based on the number of somatic mutations. The patients were
divided into high (>25% mutation number) and low mutation
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TABLE 1 | Clinical features of included patients.

Covariates Type Total
Age <=60 199(38.94%)
>60 312(61.06%)
Histological_type Endometrial 384(75.15%)
Mixed and serous 127(24.85%)
Grade G1 & G2 91(17.81%)
G3 & G4 420(82.19%)
Stage Stage | & Stage Il 370(72.41%)
Stage Ill Stage IV 141(27.59%)

number (<25% mutation number) groups, respectively, and
designated as the genomic unstable (GU) groups and the
genomic stable (GS) groups according to the mutation
number. The “limma” package in R software was used to
identify differentially expressed IncRNAs (DELs) between the
high and low mutation number groups with a |logFC| >1
threshold and a false discovery rate adjusted p-value < 0.05.
The co-expression network of the DELs and genes was established
with a coefficient |[R*| > 0.3 and p < 0.001. Next, 511 EC samples
were randomly divided into training (256 patients) and testing
sets (255 patients) using the R software package “caret.” Table 1
shows the clinical and pathological characteristics of the tumor
samples between two sets (p > 0.05, Chi-square test). The
preprocessing processes were as follows: (1) RNA sequencing
annotation with reference file; (2) eliminating missing values; and
(3) normalizing expression values by R software (3.4.0) and
correcting background using the robust multichip averaging
algorithm.

Functional Enrichment Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted via the
Annotation, Visualization, and Integrated Discovery (DAVID)
6.8 (https://david.ncifcrf.gov) (Yu et al, 2012). p < 0.05 was
regarded as significantly enriched.

Construction of Prognosis

Predictive-Model and Nomogram

All patients were randomly assigned to the training and
validation cohorts on a 1:1 ratio. The expression profile of
DELs was then combined with prognosis data. Employing the
survival package, the prognosis prediction model was developed
with the formula of “Riskscore = ) coe f*Exp (genes)”. Patients
with risk scores higher than the median were assigned to the high-
risk group, whereas others were assigned to the low-risk group.
The Kaplan-Meier survival curve was used to compare the
prognosis difference of high- and low-risk groups (Liu et al.,
2020a). The receiver operating characteristic (ROC) curve was
used to assess the predictive potential of our prognosis model.
Dimensionality was reduced using principal component analysis
(PCA) (Liu et al., 2019). Risk scores and clinical characteristics of
patients were combined to establish a nomogram for improved
predictive ability, which was then tested using calibration plots.
Genomic instability-related IncRNA signature (GILncSig)

Genome Instability LncRNAs Prognostic Signature

Train Test p value
93(36.33%) 106(41.57%) 0.26
163(63.67%) 149(58.43%)
191(74.61%) 193(75.69%) 0.86
65(25.39%) 62(24.31%)
50(19.53%) 41(16.08%) 0.37
206(80.47%) 214(83.92%)
185(72.27%) 185(72.55%) 1.00
71(27.73%) 70(27.45%)

prognosis was assessed using univariate and multivariate Cox
regression analyses, as well as stratified analyses. We compared
the areas under the ROC curves (AUCs) to evaluate GILncSig
performance.

Immune Microenvironment, Checkpoint
Analysis, and Gene Set Enrichment Analysis

The immune cell landscape in the tumor microenvironment was
quantified by ssGSEA algorithms (Zhu et al., 2016). When
compared to traditional quantification algorithms, ssGSEA had
a higher degree of freedom in calculating multiple immune cell
scores based on the expression profile. The expression of immune
checkpoint genes was also examined in the high- and low-risk
groups to investigate the underlying effect on immunotherapy.
GSEA  (http://software.broadinstitute.org/gsea/index.jsp) ~was
used to identify biological processes with a high gene rank.
The EC samples in the TCGA set were divided into high-risk
and low-risk groups based on the riskscore model. The
underlying biological functions of the two groups were
identified by comparing the enrichment of biological
processes. The collection of annotated gene sets in the
Molecular = Signatures Database (MSigDB, http://software.
broadinstitute.org/gsea/msigdb/index.jsp)  served as  the
reference gene set in GSEA software. The Nom. p < 0.05 was
chosen as the cutoff criterion (Song et al., 2017). The c2.cp.kegg.
v7.4.symbols.gmt was chosen as the reference file.

Immunophenoscore Analysis

The immunophenoscores (IPSs) of patients with EC were
obtained from The Cancer Immunome Atlas (https://tcia.at/
home). The IPS analysis was performed randomly using
machine learning to determine the immunogenicity of four
categories of genes: effector cells, suppressive cells, major
histocompatibility =~ complex  molecules, and immune
modulators or checkpoints. The IPS was calculated using
weighted averaged Z-scores from the above categories with a
range of 0-10, and the scores were increased with higher
immunogenicity (Charoentong et al., 2017).

ESTIMATE Algorithm

Estimation of Stromal and Immune cells in Malignant Tumours
using Expression data (ESTIMATE) is an algorithm for
determining the levels of stromal and immune cell infiltration
in tumors (Yoshihara et al., 2013). ESTIMATE algorithm was
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used to evaluate the immune cell content (immune score),
stromal cell infiltration (stromal score), strom-immune
synthesis score (ESTIMATE score), and tumor purity for each
EC sample.

TMB Calculation and Clinical Data Analysis
The tumor mutation burden (TMB) level was calculated by
dividing the total number of mutations by the size of the
coding region of the target region. The EC samples were
divided into high-TMB and low-TMB groups based on the
median TMB level. The TMB level from the TCGA database
was combined with the corresponding survival data from each
sample, and the differences in OS between different TMB level
groups and different TMB levels combined with different risk
groups were compared using Kaplan-Meier analysis. The
Wilcoxon rank sum test was used to investigate the correlation
of TMB with the risk score.

Somatic Mutation, Tumor Stemness, and
Drug Sensitivity Analysis

The mutation data of endometrial carcinoma patients were
obtained from the TCGA (Data Category = copy number
variation; “maf” file). Fall plots were used to visualize the top
10 mutation genes via the maftools packages in R software
(Mayakonda et al., 2018). As previously reported, the stem-like
indices for each endometrial carcinoma sample were calculated
using one-class logistic regression (Yi et al., 2020). Then, in the
high-risk and low-risk groups of GILncSig, we estimated the half-
maximal inhibitory concentration (IC50) of selected drugs from a

public database called Genomics of Drug Sensitivity in Cancer
(GDSC; https://www.cancerrxgene.org) using the “pRRophetic”
packages (Song et al., 2020). The NCI-60 database, which was
assessed via the CellMiner interface (https://discover.nci.nih.gov/
cellminer), is currently the most widely used for cancer drug
testing (Dong et al., 2020). Pearson correlation analysis was
performed to explore the underlying drug sensitivity difference
between the high- and low-risk groups.

Quantitative Real-Time PCR

A total of 15 paired EC tissues and normal tissues were obtained
from patients at the First Affiliated Hospital of Nanjing Medical
University. The Ethics Committee of the First Affiliated Hospital
of Nanjing Medical University (Nanjing, China) approved this
study. All patients signed informed consent forms. Total RNA
was isolated from samples using TRIZOL reagent (Thermo Fisher
Scientific, USA), then reverse-transcribed into ¢cDNA using a
Revert Aid First Strand ¢cDNA Synthesis kit (Thermo Fisher
Scientific, USA), and analyzed by quantitative real-time PCR
(qRT-PCR) with an SYBR-Green PCR kit (Takara, Tokyo, Japan).
GAPDH was used to normalize the relative expression of the
IncRNA. The sequences are listed in Supplementary Table S1.

Statistical Analysis

All the analyses were performed using the R software (version
4.1.0). All statistical tests were two-sided, with a p-value of less
than 0.05 considered statistically significant. The Student t-test
was used to compare the normally distributed variables in two
groups, and the Wilcox test was used to compare non-normally
distributed continuous variables.
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RESULTS

Sample Clustering and Enrichment Analysis
Figure 1 depicts the research procedure for this study. According
to the cumulative somatic mutations, we assigned the top 25%
highest mutation and the bottom 25% lowest mutation to the GU
(n=133) and GS groups (n = 131). There were 109 DELs between
the two groups, with 31 IncRNAs upregulated and 78 IncRNAs
downregulated in the GU group (adj. p-value < 0.05, |logFC| > 1)
(Supplementary Table S2). Supplementary Figure S1 shows a
heatmap of 20 most significantly upregulated IncRNAs and 20
most significantly downregulated IncRNAs. Unsupervised
hierarchical clustering analysis was used to classify all TCGA
samples into GU (higher cumulative somatic mutations) and GS
(lower cumulative somatic mutations) groups based on the set of
109 DELs (Figure 2A). As one of the members of the ubiquitin-
like and ubiquitin-associated (UBL-UBA) protein family,
UBQLN4 plays an important role in sustaining genomic

stability by affecting nucleotide excision repair. Recent studies
have revealed that the mutation of UBQLN4 could reflect
genomic instability in cancers, thus affecting prognosis and the
chemotherapy response (Jachimowicz et al., 2019). Therefore,
UBQLN4 was selected to reflect the genomic instability. Similarly,
the GU-like group had a higher level of somatic mutation count
and UBQLN4 expression (Figures 2B,C). Meanwhile, a co-
expression network of these IncRNAs and mRNA was
constructed (Figure 2D). GO analysis revealed that the
IncRNAs were significantly enriched in “sequence-specific
DNA binding,” “anterior/posterior pattern specification,”
“transcription factor activity, sequence-specific DNA binding”,
“neuron differentiation”, and “regulation of immune system
process” (Figure 2E). KEGG analysis demonstrated that the
IncRNAs were significantly enriched in “signaling pathways
regulating pluripotency of stem cells,” “cytokine-cytokine
receptor interaction”, “hippo signaling pathway,” “pathways in
cancer”, and “hematopoietic cell lineage” (Figure 2F). As of now,
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the low risk-group.

FIGURE 3 | low-risk groups. (J) Level of somatic mutation count in the high- and low-risk groups. GILncSig evaluation in the TCGA set. (K) Distribution of somatic
mutation and expression levels of UBQLN4 as well as expression patterns of five INcRNAs as the risk score increased. (L) Prognostic prediction in the high- and low-risk
groups by Kaplan—-Meier. (M) Time-dependent ROC curves were used to verify the survival prediction model. (N) PCA analysis revealed the difference between the
high- and low-risk groups. (O) Level of somatic mutationcount in the high-risk and low-risk groups. Red color represents the high-risk group, and blue color represents

109 IncRNAs have been identified as genome instability-related
IncRNAs.

Constructing the OS Prediction Model

We randomly divided 511 EC samples into a training group (n =
256) and a test group (n = 255) to investigate the prognostic value
of 109 candidate IncRNAs associated with genomic instability.
The Chi-square test and the Wilcoxon rank sum test were used to
demonstrate that no significant differences in clinicopathological
covariates existed between the training and the testing groups
(Table 1). We used univariate and multivariate Cox proportional
hazards regression to select five of 14 candidate IncRNAs as
prognostic IncRNAs (Supplementary Tables S3, S4). Finally, in
the training cohort, the IncRNAs AC007389.3, PIK3CD-AS2,
LINC01224, AC129507.4, and GLIS3-AS1 were included in our
prognosis model with the formula of “Riskscore = AC129507.4
*0.0336 + GLIS3-AS1 * 0.0183 + PIK3CD-AS2 *0.1192 +
LINCO01224 *0.1728 + ACO007389.3 *0.2166”. Then, on the
basis of the median value of the risk score, we calculated the
risk score for each EC sample in the training set and divided it
into the low-risk group (n = 128) and high-risk group (n = 128).
The patients with EC were ranked in ascending order based on
the risk score and observed the changes in the trend of GILncSig,
the number of somatic mutations, and the level of expression of
UBQLN4  (Figure 3A). The heatmap compared
clinicopathological features between two groups based on the
expression of five IncRNAs associated with genomic instability.
The analysis revealed significant differences in terms of stage,
grade, histological, type, and age (Supplementary Figure S2, p <
0.01). In the Kaplan-Meier analysis, we found that overall
survival (OS) was higher in the low-risk group than that in
the high-risk group (Figure 3B). According to the ROC curve,
our GILncSig model exhibited good sensitivity and specificity in
predicting the OS of patients with EC (5 years, AUC = 0.723;
3 years, AUC = 0.707; 1 year, AUC = 0.738) (Figure 3C). The
PCA revealed that samples from the two groups were distributed
in opposite directions (Figure 3D). Meanwhile, it was discovered
that the number of somatic mutations was lower in the high-risk
group than that in the low-risk group (Figure 3E).

Validating the Prognostic Prediction Model
in the Testing Set

Using the same risk scoring formula as in the training set, a total
of 255 samples in the testing set were divided into the low-risk
group (n = 129) and high-risk group (n = 126), and the predictive
power was demonstrated in the testing set. The changes in the
GILncSig trend, number of somatic mutations, and UBQLN4
expression level in the training set were similar to those in the
testing set (Figure 3F). Moreover, the testing set exhibited

prognostic patterns similar to the testing set (Figure 3G). The
ROC curve demonstrated that the model had good sensitivity and
specificity in predicting patient OS in the testing set (5 years,
AUC = 0.674; 3 years, AUC = 0.677; 1year, AUC = 0.639)
(Figure 3H). PCA analysis displayed a different distribution
pattern for the low-risk and high-risk groups according to the
expression of five IncRNAs in the testing set (Figure 3I). The
number of somatic mutations in the high-risk group was lower
than in the low-risk group (Figure 3]).

Validating the Prognostic Prediction Model

in the TCGA Set

The 511 samples To in the TCGA set were stratified into low-risk
(n = 257) and high-risk groups (n = 254) based on the cutoffs in
the training set to further validate the prediction model. The
distribution patterns of GILncSig, somatic mutation number, and
UBQLN4 expression level were consistent with the above results
for training and testing sets (Figure 3K). In addition, the high-
risk group had a much lower OS than the low-risk group
(Figure 3L). The ROC curve revealed that the GILncSig in the
TCGA set had good sensitivity and specificity in predicting patient
OS in the testing set (5 years, AUC = 0.702; 3 years, AUC = 0.696;
1 year, AUC = 0.683) (Figure 3M). In the TCGA set, PCA analysis
displayed a distinct distribution pattern for the low-risk and high-
risk groups (Figure 3N). The number of somatic mutations in the
high-risk group was lower than in the low-risk group (Figure 30).
Furthermore, GSEA was used to examine the transcript message of
genomic instability-related IncRNAs in the high-risk and low-risk
subgroups. Representative KEGG pathways in the high-risk
subgroup model were “base excision repair,” “cell cycle,” “DNA
replication,” “mismatch repair,” (MMR) and “nucleotide excision
repair.” Representative KEGG pathways in the low-risk subgroup
model were “asthma,” “autoimmune thyroid disease,” “cytokine-
cytokine receptor interaction,” “graft-versus-host disease,” and
“intestinal immune network for IgA production” (Supplementary
Figure S3).

ROC Analysis of Clinical Factors and the

Risk Score

ROC curve analysis revealed that the AUC of risk score was 0.707
and the clinical factor was 0.727 in this model, both significantly
higher than histological type (AUC = 0.664) and stage (AUC =
0.688). Intriguingly, the AUC of clinical factor plus risk score
(AUC = 0.762) was the highest in this ROC curve (Figures 4A,B).
The ROC curve demonstrated a better predictive potential of
GILncSig; however, combining clinical factors and GILncSig
yielded the best predicting effect on OS in patients with EC.
To demonstrate further the predictive performance of the ROC
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curve for IncRNA in this model, we compared two recently
published articles on the signatures of IncRNAs (Tang et al,
2019; Wang et al., 2020a). Using the same TCGA patient cohort,
it was revealed that the AUC of OS for the GILncSig in this model
is 0.702, significantly higher than other models such as
WangLncSig (AUC = 0.698) and TangLncSig (AUC = 0.641)
(Figure 4C). As such, a nomogram incorporating risk score and
clinical factors were developed to provide clinicians with a
quantitative method for predicting OS in patients with EC
(Figure 4D). The calibration curve of 1-, 3-, and 5-year
survival showed that the nomogram was nearly an ideal model
(Figures 4E-G). The prognostic factors of patients with EC are
shown in Supplementary Figure S$4; it was revealed that age,
grades 3 and 4, histological type, and stage were the most
important factor affecting the prognosis of patients with EC,
whereas initial stage (grades 1 and 2) did not affect prognosis
between the high-risk and low-risk groups. These findings suggest

that, compared to nomograms based on IncRNA signatures, those
based on GILncSig may better predict outcome and clinical features
for patients with EC, thereby aiding clinical management.

Assessing the Independent Prognostic
Significance of Risk Score and Clinical

Stratification Analysis

We performed univariate and multivariate Cox regression
analyses on three datasets (training, testing, and TCGA) for
variables, including age, histological type, stage, grade, and risk
score to see if it is an independent prognostic factor from the
clinicopathological features. After adjusting for other clinical
factors, including age, gender, and tumor stage, clinical
stratification analyses of the prognostic performance of
GInLncSig in the TCGA dataset revealed that patients in the
low-risk group had better survival outcomes than those in the
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TABLE 2 | Univariate and multivariable Cox regression analysis of the GILnvSig and overall survival in different patient sets.

Multivariable model

Variable Univariable model
HR 95% CI
Training set (n = 256)
Risk score 1.216 1.133-1.305
Age 1.337 0.7116-2.513
Grade 2.965 1.062-8.282
Stage 3.154 1.765-5.636
Histological_type 2.216 1.228-3.999
Testing set (n = 255)
Risk score 1.000 1.000-1.000
Age 2.447 1.204-4.973
Grade 4170 1.007-17.266
Stage 5.806 3.036-11.104
Histological_type 4.247 2.320-7.774
TCGA set (n = 511)
Risk score 1.000 1.000-1.000
Age 1.778 1.112-2.843
Grade 3.363 1.467-7.770
Stage 4116 2.670-6.275
Histological_type 3.044 2.003-4.624

high-risk group across all clinically stratified subgroups (p < 0.05,
log-rank test; Table 2). These results suggested that the
prognostic significance of GInLncSig in patients with EC is
independent of other clinicopathological variables.

Prediction Performance Between the
GILncSig and PTEN

Previous research has demonstrated that the phosphate and tension
homolog deleted on chromosome 10 (PTEN) gene plays a critical
role in EC progression (Wang et al., 2021). To learn more about the
relationship between the GILncSig and PTEN mutations, we
examined the proportion of patients with PTEN mutations in
three groups. The analysis showed that PTEN mutations in the
low-risk group were significantly higher than those in the high-risk
group in the TCGA, testing, and training sets (Figures 5A-C).
However, it is unclear whether higher PTEN mutation was a better
predictor of survival outcomes than GILncSig. Compelling evidence
shows that the TP53 mutation is an important prognostic factor in
EC (Hollis et al, 2020), as such, we compared the predictive
performance of GILncSig and the TP53 mutation simultaneously.
PTEN/TP53-sequence wild type (PTEN/TP53 wild) and PTEN/
TP53-sequence mutation type (PTEN/TP53 mutation) EC patients
were divided into GU and GS groups. PTEN wild EC patients in the
GS groups (defined as PTEN wild/GS-like) had a worse prognosis
than PTEN mutation EC patients in GS groups (defined as PTEN
wild/GS-like) (p < 0.001) and PTEN mutation EC patients in GU
groups (defined as PTEN mutation/GU-like) (p < 0.001). Whereas,
TP53 mutation in the GS groups (defined as TP53 mutation/GS-
like) had worse OS than TP53 wild in the GS groups (defined as
TP53 wild/GS-like) (p < 0.001) and in the GU groups (defined as
TP53 wild/GU-like) (p < 0.05). Meanwhile, there was no difference
in survival between the other groups (Figures 5D-E). These findings
demonstrate that GILncSig holds great promise as an effective tool in
predicting OS as PTEN mutation and TP53 mutation.

p-value HR 95% CI p-value
5.54E-08 1.176 1.087-1.272 4.97E-05
0.368
0.038 1.566 0.514-4.771 0.430
0.000 2.220 1.170-4.212 0.015
0.008 1.439 0.774-2.676 0.250
0.006 1.000 1.000-1.000 0.031
0.018 1.713 0.810-3.619 0.159
0.049 1.684 0.379-7.475 0.493
1.06E-07 3.906 1.946-7.840 0.000
2.75E-06 2.477 1.253-4.894 0.009
0.003 1.000 1.000-1.000 0.020
0.016 1.582 0.967-2.589 0.068
0.004 1.632 0.632-3.713 0.345
4.82E-11 3.252 2.055-5.1483 4.82E-07
1.84E-07 1.875 1.179-2.9 0.008

Analysis of the Mutation Profiles of Two
Risk Groups

To assess the immune status in the high-risk and low-risk groups,
we compared the ESTIMATE scores (including immune scores
and stromal scores) with tumor purity. The ESTIMATE
algorithm results revealed that the ESTIMATE score, immune
score, and stromal score of the high-risk group were lower than
those of the low-risk group. Tumor purity, on the other hand, was
higher in the high-risk group (Figure 6A). Human leukocyte
antigen (HLA)-related genes had significant effects on immune
regulation, and HLA-related gene expression was significantly
lower in the high-risk group compared to the low-risk group
(Figure 6B). Previous evidence shows that IncRNAs mediate the
function of tumor-infiltrating immune cells (TICs) (Athie et al.,
2020); therefore, we looked at the relationship between five
prognostic IncRNAs and TICs (Supplementary Figure S5).
Immune cells significantly impact the tumor immune
microenvironment; as such, we compared tumor immune-
related cells across the risk groups. The results showed that the
abundances of aDCs were significantly decreased in the low-risk
group, whereas the abundances of CD8" T cells, DCs, iDCs, mast
cells, neutrophils, pDCs, T helper cells, Tth, Thl cells, Th2 cells,
TIL, and Treg cells were significantly decreased in the high-risk
group (Figure 6C). The correlation of risk score and tumor
immune-related cells, as well as the most relevant tumor
immune cells, are illustrated in Figures 6D,E. Comparisons of
13 immune-related functions confirmed the difference of APC
costimulation, CCR, checkpoint, cytolytic activity, HLA,
inflammation-promoting, T cell co-inhibition, T cell
costimulation, type I IFN response, type II IFN response in the
high-risk and low-risk groups (Figure 6F).

Immune checkpoint proteins were involved in immune
response and interacted with immune cells in various ways.
Among many immune checkpoint proteins, CD27, CD40,
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CD70, CD270, B7-H3, B7-H4, IDO1, PD-1, PD-L1, PD-L2, TIM-
3, TIGIT, CTLA4, CD86, ICOS, and LAG3 have been extensively
studied and are thought to be important immunomodulators.
First, we looked at the correlations between immune checkpoint
proteins and risk score (Figure 7A); the top six immune
checkpoint proteins that were most negatively associated with
the risk score are shown in Figure 7B. The scores of IPS, IPS-
CTLA4, IPS-PD1-PD-L1-PD-L2, and IPS-PD1-PD-L1-PD-L2-
CTLA4 in the high-risk and low-risk groups were calculated
to evaluate immune signature and predict the potential role of
immune checkpoint inhibitors (Figure 7C). Moreover, we found
that the risk score was negatively correlated with MSI (p =
0.00063, Figure 7D). In addition, the expression levels of
MLH1, MSH2, MSH6, and PMS2 were significantly higher in
the high-risk group compared to the low-risk group (Figure 7E).

Genome-Wide Mutation Profiling in EC
Between Two Risk Groups

To investigate the prognostic value of TMB, we calculated the
TMB value of EC samples in the TCGA database and divided

them into high-TMB and low-TMB groups based on the median
TMB value. The survival rate of the two groups was analyzed
using the K-M curves and the results showed the best prognosis in
patients with EC with high-TMB (Figure 8A). When the risk
score and TMB analyses were combined, it was revealed that
patients with EC with low-TMB and high-risk scores had the
worst prognosis, whereas patients with EC with high-TMB and
low-risk scores had the best prognosis (Figure 8B). Furthermore,
we analyzed genome-wide mutations in EC high- and low-risk
groups and found that missense mutations were the most
common among different types of mutations, single-nucleotide
polymorphisms were more common than deletions or insertions,
and C > T transitions accounted for the highest proportion in
both groups. Horizontal histogram demonstrated that the top 10
mutated genes in the two groups differed, but PTEN was among
the top two (Supplementary Figure S6). In the high-risk group,
10 genes were mutated at a rate of more than 21%: TP53 (56%),
PTEN (45%), PIK3CA (44%), ARID1A (33%), TTN (30%),
PIK3R1 (23%), CHD4 (22%), CSMD3 (21%), KMT2D (21%),
and PPP2RIA (21%). In the low-risk group, 10 genes were
mutated at a rate of more than 29%: PTEN (84%), ARID1A
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FIGURE 6 | Comparison of immune signature between the high- and low-risk groups of patients with EC. (A) Comparison of ESTIMATES score, immune score,
stromal score, and tumor purity in the high- and low-risk groups. (B) Expression of HLA-related genes in different risk groups. (C) Comparison of tumor-infiltrating
immune cells (TIICs). (D) Correlation of risk score and TIICs. (E) Association of Macrophages MO and risk score (immune infiltration). (F) Scores of 13 immune-related
functions in the high- and low-risk groups. Adjusted p-values were shown as follows: ns, not significant; *p < 0.05; **p < 0.01; and **p < 0.001.

(57%), PIK3CA (54%), TTN (47%), PIK3R1 (39%), CTCF (36%),
CTNNBI (33%), KMT2D (32%), ZFHX3 (31%), and MUC16
(29%) (Figures 8C,D). Moreover, we found that the risk score
was negatively correlated with TMB (p = 0.01426, Figure 8E).
TMB appeared to be higher in patients with EC in the low-risk
group than in those in the high-risk group (Figure 8F). We
also discovered that the low-risk group had more samples with
PTEN, ARID1A, CTNNBI1, CTCF, TTN, PIK3R1, KMT2D,
and PIK3CA mutations than the high-risk group (Figure 8G).
The mRNA stemness indices in the high-risk group were
higher than those in the low-risk group, and there was no
difference in the EREG-mRNA stemness indices between the
two groups (Figures 8H,I).

Prognostic IncRNAs Expression and Cancer
Cell Sensitivity to Chemotherapy

The IC50 of each EC sample was calculated and compared using a
common chemical drug prediction model. We screened 20

chemotherapeutic  drugs with lower IC50 (including
Bicaluramide, ~AKT.inhibitor.VIII, X17.AGG, RDEAI19,
Bryostatin.1, FT1.277, AZD6244, XMD8.85, PD.0325901,

Roscovitine, SB.216763, CHIR.99021, AZD6482, PF.562271,
PD.0332991, Embelin, Bexarotene, Nutlin.3a, BMS.708163,

Lapatinib, FH535, AZ628, BMS.754807, BMS.536924,
LFM.A13) in comparison to the high-risk group (p < 0.05)
(Supplementary Figure S7). Furthermore, we investigated the
correlation of expression of the IncRNAs related to genetic
instability in NCI-60 cell lines and the relationship between
expression and drug sensitivity. The analysis demonstrated
that increased LINC01224 expression was associated with
decreased drug sensitivity of cancer cells to ARRY-162,
Trametinib, Cobimetinib, Selumetinib, Dabrafenib, and
Vemurafenib, whereas increased PIK3CD-AS2 expression was
associated with increased drug resistance of cancer cells to 6-
Mercaptopurine, Copanlisib, Dasatinib, and Pipamperone.
Furthermore, as GLIS3-AS1 expression increased, cancer cell
drug sensitivity to Vorinostat and 6-Thioguanine decreased
(Figure 9). The results showed that IncRNAs associated with
genome instability were potentially related to chemotherapy drug
sensitivity (p < 0.05).

Validating Genome Expression Levels of
Instability-Related IncRNAs in EC Samples

To validate the expression levels of genome instability-related
IncRNAs, we used qRT-PCR to detect the expression levels
of five genome instability-related IncRNAs in 15EC
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FIGURE 7 | Immunophenoscore (IPS) score and gene expression analysis of immune checkpoint. (A) Correlation of risk score and expression of ICI

related genes. (B) Correlation of CD27, CD58, CD270, CTLA4, PD1, TIGIT, and risk score. (C) Expression level of IPS, IPS-CTLA4, IPS-PD1-PD-L1-PD-L2,
and IPS-PD1-PD-L1-PD-L2-CTLA4 in the high- and low-risk groups of patients with endometrial cancer. (D) Negative correlation between immune-related
risk score and microsatellite instability (MSI). (E) The gene expression of MLH1, MSH2, MSH6, and PMS2 in the high- and low-risk groups.

samples and 15 normal tissues. The findings revealed that  S8A,B). However, there was no difference in the expression
PIK3CD-AS2 was significantly downregulated, whereas  of GLIS3.AS1, LINC01224, and AC007389.3 between EC and
AC129507.4 was highly expressed (Supplementary Figures  normal samples (Supplementary Figures S8C-E).
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DISCUSSION

Globally, EC is among the most common female genital cancers
and the prevalence of EC continues to increase every year. The
lack of significant improvement in the 5-year survival rate for
patients with EC suggests that the disease remains a serious threat
to female health (Bray et al., 2018; Feng et al., 2019) Therefore,
there is an urgent need for better surveillance and treatment
programs for EC. The current study was aimed at identifying the
GILncSig and its prognostic value in EC.

To investigate the value of IncRNA-related genomic instability
on the prognosis of patients with EC, the patients were grouped
based on mutation frequency and filter the target genes. First, a
total of 109 IncRNAs with different expression levels in the
quarter highest and guarter lowest mutation frequency
samples were identified. The IncRNAs were then screened to
be associated with genomic instability in patients with EC. In
addition, it was also investigated whether the genomic instability-
associated IncRNAs could predict clinical outcomes. Results of
the present study showed that patients in the high-risk group had
the worse outcomes and lower somatic mutation, which was
validated by the testing set as well as the TCGA set.

Results of the ROC curve analysis show that the clinical factor
combined with risk score exhibited the most significant effect in

the model as compared with other models. The construction and
validation of GILncSig revealed that GILncSig -effectively
predicted the prognosis and gene instability of patients with
EC. Further, among the numerous IncRNAs, IncRNAs
AC007389.3, PIK3CD-AS2, LINCO01224, AC129507.4, and
GLIS3-AS1 were included in the prognosis model employed in
the current study. It has been reported that LINC01224 is highly
expressed in epithelial ovarian cancer and can promote the
development of the cancer through miR-485-5p-mediated
PAK4 (Gong et al, 2020). Therefore, interference with the
expression of LINC01224 can inhibit the proliferation of colon
cancer cells and induce cell cycle arrest in GO-G1 phase (Xing
etal., 2020). The PIK3CD-AS2 IncRNAs also promotes tumor cell
proliferation and inhibit apoptosis, and this is thus associated
with poor prognosis of lung adenocarcinoma (Zheng et al., 2020).
On the other hand, GLIS3-AS1 IncRNAs may be a biomarker for
pancreatic duct adenocarcinoma (Permuth et al., 2017).

In addition, it was evident that the largest difference in
mutations between these two groups of IncRNAs (PIK3CD-
AS2 and GLIS3-AS1) was PTEN mutation, which was more
common in the low-risk samples than in the high-risk
samples. A previous study conducted by Erkanli et al. reported
that the mutation or deletion rate of PTEN protein in | type EC
was between 34% and 55%, and even >80% (Erkanli et al., 2006).
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Moreover, the analysis of PTEN gene mutation in patients with
EC and precancerous lesions revealed that 83% of the patients
had PTEN mutation and 55% of precancerous lesions also had
genetic mutation, whereas normal endometrial tissue samples did
not have PTEN mutation (Mutter et al., 2000). The results of the
present study indicated that low-risk patients with more PTEN
mutation have worse prognosis outcome than high-risk patients
with fewer PTEN mutations. Therefore, the enrichment of co-
expressed genes was associated with carcinogenesis, and genome
stability as well as immune and genomic instability-related
IncRNAs were found to predict the prognosis and be an
indicator of genomic instability of patients with the cancer.

Currently, with the increase in understanding of the tumor
microenvironment, the importance of and the role that immune
cells play has been extensively elucidated. A previous study on
head and neck cancer (HNC) has confirmed that some immune
cells, such as MO macrophages and NK cells, have longer
dormancy time in tumor tissues than in the adjacent normal
tissues, whereas other cells, such as B cell naive, are shorter and
thus are significantly relevant in the HNC survival (Xie et al,
2018; Liu et al, 2020b). Unlike other tumor-associated
macrophages, it has been reported that MO macrophages play
a specific role in survival of patients with HNC.

In pancreatic ductal adenocarcinoma, Cansu et al, through
tumor proliferation and apoptosis assay of their study, showed
that MO macrophages harbor anti-tumorigenic activities that M1
and M2 did not share (Helm et al., 2014; Tekin et al., 2020). In
addition, investigation carried out by Peipei et al. demonstrated that
NK cells are regulated by IncRNA GAS5 through upregulation of the
expression of miR-544 to perform its role as liver cancer killer (Fang
et al,, 2019). Elsewhere, Mohsen et al. reported that the number of
memory B cells, which can express granzyme B (GZMB), was
smaller in metastatic as compared with non-metastatic lymph
nodes, and this hence emphasized the importance of GZMB + b
cells in patients with breast invasive ductal carcinoma (Arabpour
et al, 2019; Chesneau et al., 2020). Cytokine negatively regulates
IFNy signaling through CSFIR expression, thus modulating the
functions of tumor infiltration (Wang et al., 2020b).

Immune-microenvironment of the tumor has been considered
to be crucial in the progression of the tumor and response to
therapies. The present study showed that patients in the low-risk
group were more prone to mutations as compared with those in
the high-risk group. Further analysis confirmed that the risk score
was positively correlated with tumor immune-related cells and
negatively associated with TMB and MSI. In addition, it has been
found that the immune checkpoint inhibitors prevent tumors
from activating immune checkpoint protein receptors on the
surface of immune cells. This prevented tumors from evasive
immune responses and cause of the immune system to produce
an anti-tumor response (Intlekofer and Thompson, 2013). In
addition, some studies have shown a breakthrough in the
treatment of advanced EC with a combination of PD-L1
inhibitor Pembrozumab and Lenvatinib (Pakish and Jazaeri,
2017; Makker et al., 2019; Makker et al., 2020).

Results of the present study found that 25% of patients with
EC were associated with defects of DNA MMR, which is
characterized by an error in nucleotide repeats during DNA

Genome Instability LncRNAs Prognostic Signature

replication, also referred to as microsatellite instability (MSI)
(Le et al., 2015). MMR defects led to a higher rate of somatic cell
mutation, which increased the tumor antigen load and the
number of tumor-infiltrating lymphocytes of these tumors with
MMR defects, corresponding to the increased expression of PD-1 as
well as PD-L1 (du Rusquec et al, 2019; Howitt et al, 2015).
Therefore, the high incidence of MSI in EC has promoted
application of immunosuppressive agents as a new therapeutic
intervention. The validation results hence indicated that the
GILncSig not only predicts the prognosis and genomic instability
but also is an indicator of immune infiltration of patients with EC.

The relationship between the effectiveness of chemo-drug and
genomic instability-related IncRNAs on different risk groups was
predicted by GDSC database. Results of the present study showed
that LINC01224 was negatively associated with reduced sensitivity of
cancer cells to drug such as ARRY-162, Trametinib, Cobimetinib,
Selumetinib, Dabrafenib, and Vemurafenib. Further, ARRY-162 and
Trametinib, as well as Cobimetinib and Selumetinib are the
reversible inhibitor of MEK1 and MEK2 (Lugowska et al., 2015).
In addition, it was evident that Trametinib inhibits BRAF
V600 mutation-positive melanoma cell growth both in vitro and
in vivo through activating MEK1/2 to regulate ERK pathway, which
had been approved by Food and Drug Administration (FDA) to
treat BRAF V600E or V600K mutation-positive melanoma and
non-small cell lung cancer (Geraud et al., 2020; Roskoski, 2020).
Meanwhile, Dabrafenib and Vemurafenib are also effective drugs for
the treatment of melanoma (Chapman et al., 2011; Hauschild et al.,
2012).

The increased expression of PIK3CD-AS2 was associated with
increased drug resistance of cancer cells to 6-Mercaptopurine,
Copanlisib, Dasatinib, and Pipamperone. Furthermore, drug
sensitivity of cancer cells to Vorinostat and 6-Thioguanine was
downregulated as the expression of GLIS3-AS1 was increased. It
was also suggested that 6-mercaptopurine can be used as a
maintenance therapy for acute lymphoblastic leukemia (Bell
et al, 2004; Escherich et al, 2011). Results of the present
study found that Copanlisib is a generic I type PI3K inhibitor
with significant activity against PI3Ka and PI3KS subtypes, both
of which play important roles in B-cell malignancies (Decaudin
et al., 1999; Swerdlow et al., 2016).

Follicular lymphoma (FL) is a common form of indolent non-
Hodgkin’s lymphoma, and the FDA has accelerated approval of
copanlisib for the treatment of relapsed or refractory FL in adults
who have received at least two systemic treatments (Magagnoli
et al., 2020). Therefore, the reported correlation between the
genomic instability-related IncRNAs and chemotherapy drugs
suggested that GILncSig exhibited high therapeutic potential in
patients with EC. The results of the present study also
demonstrated that genomic instability-related IncRNAs can be
used as therapeutic targets to overcome drug resistance or
adjuvant drug sensitivity.

However, the current study has some limitations. First, patients in
the representative samples were predominantly Western people, and
thus, so whether the research results need to be verified if they hold
true for Asians and other people in the world. Second, the
conclusions of the present study may exhibit deviation because
some clinical indicators records were incomplete. Furthermore, the
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preliminary findings still require to be further validated on a larger
cohort and with biological experiments.

CONCLUSION

In conclusion, the present study identified and validated the
GILncSig. Further, the prognostic prediction, somatic
mutation, and chemotherapeutic drug sensitivity ~were
performed to explore the roles of GILncSig in patients with
EC. Therefore, the current study provided a critical approach
of investigating the prognostic role of genome instability-related
IncRNA, particularly in the areas of immune response, tumor
microenvironment, and drug resistance, which is essential for the
development of personalized cancer therapies.
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