
Modelling the Collective Mechanical
Regulation of the Structure and
Morphology of Epithelial Cell Layers
Hamid Khataee*, Madeleine Fraser and Zoltan Neufeld

School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia

The morphology and function of epithelial sheets play an important role in healthy tissue
development and cancer progression. The maintenance of structure of closely packed
epithelial layers requires the coordination of various mechanical forces due to intracellular
activities and interactions with other cells and tissues. However, a general model for the
combination of mechanical properties which determine the cell shape and the overall
structure of epithelial layers remains elusive. Here, we propose a computational model,
based on the Cellular Potts Model, to analyse the interplay between mechanical properties
of cells and dynamical transitions in epithelial cell shapes and structures. We map out
phase diagrams as functions of cellular properties and the orientation of cell division.
Results show that monolayers of squamous, cuboidal, and columnar cells are formed
when the axis of cell proliferation is perpendicular to the substrate or along the major axis of
the cells. Monolayer-to-multilayer transition is promoted via cell extrusion, depending on
the mechanical properties of cells and the orientation of cell division. The results and model
predictions are discussed in the context of experimental observations.

Keywords: computational modeling, tissue modelling, mechanobiolgy, cell morphological analysis, cellular
mechanics, stochastic modelling and simulation

1 INTRODUCTION

Understanding the mechanisms of the development of various tissue morphologies is a major
challenge in biology (Hannezo et al., 2014). Epithelial cell layers are the simplest living tissues that
line organs throughout the body (Vincent et al., 2015) and play important roles in regulating embryo
development, yet account for about 90% of all cancers (Pedersen et al., 2013). Morphogenesis of
organ systems is driven by the ability of cells to survive and proliferate (Chen et al., 1997; Streichan
et al., 2014), primarily regulated by cell growth factors and cell-substrate adhesion (Chen et al., 1997;
Schwartz and Assoian, 2001; Brakebusch et al., 2002).

For many adherent cells, cell proliferation can only occur on a substrate (Adam Hacking et al.,
2013). The substrate maintains a dynamic force balance between the cell and its microenvironment,
and thus, the loss of substrate or its abnormal stiffness can results in aberrant cellular behaviours, e.g.,
breast tumor progression (Provenzano and Keely, 2011). As feedback loops, cells sense the stiffness of
their environment by pulling against the extracellular matrix, through integrin-extracellular matrix
linkages, and/or neighbouring cells (Chen et al., 1997; Provenzano and Keely, 2011). This process is
dependent on cell–substrate and cell-cell adhesion, as well as the contractility of cell cortex
(Provenzano and Keely, 2011). Therefore, both integrins and growth factor receptors use
cytoplasmic signaling pathways to regulate cell cycle progression and growth (Schwartz and
Assoian, 2001). It has been shown that the probability of cell proliferation increases with
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increasing substrate stiffness (Mohan et al., 2018) and cell area
(Streichan et al., 2014). Yet, it remains inconclusive how different
forces and regulatory mechanisms within cells can affect
proliferation orientation; reviewed in (Collinet and Lecuit,
2013; Finegan and Bergstralh, 2019).

Earlier theoretical studies on epithelial morphology have
explored two-dimensional (2D) mechanical model of a tubular
epithelium (Hočevar Brezavšček et al., 2012; Krajnc et al.,
2013), geometric patterning of apical junctions (Gibson
et al., 2006; Farhadifar et al., 2007; Käfer et al., 2007;
Hilgenfeldt et al., 2008), shapes of cells and the buckling of
cell monolayers (Osterfield et al., 2013; Hannezo et al., 2014).
Although these models are based on the mechanical properties
of cells, they were mostly restricted to monolayers. To model
the dynamic processes involved in the formation of epithelial
cell layers, models of epidermal homeostasis were proposed
based on probabilistic rules associated to different types of cells
(Doupé et al., 2010; Doupé et al., 2012; Kostiou et al., 2020).
However, these models do not consider the shape of the cells
and the role of cellular mechanics in modelling the transition
between monolayers to multilayers. Therefore, it remains
elusive how the mechanical properties of cells and their
interactions determine cell aspect ratios and the formation
of mono- and multilayered epithelial structures. Further, the
role of the orientation of the plane of cell division, in
combination with mechanical properties of cells, in
modelling collective tissue morphology has not been explored.

Here, we propose a computational model for analysing the
development of collective epithelial morphologies using the
Cellular Potts Model (CPM) (Graner and Glazier, 1992;
Glazier and Graner, 1993). CPM is a computational modelling
framework that can represent the essential features of the real-
world epithelial cell dynamics, and allows general predictions of
the behaviour and morphology of cells (Khataee et al., 2020;
Kempf et al., 2021). Our model simulates the transition of cell
shapes and the formation of mono- and multilayered structures

by altering various mechanical properties of identical
proliferative cells.

2 Theoretical Model
To simulate the collective morphology of cells emerging
through their mechanical properties and interactions on a
substrate, we use a two-dimensional CPM (Graner and
Glazier, 1992; Glazier and Graner, 1993) which represents a
cross-section of cells on a substrate on a plane perpendicular to
the substrate. The CPM is an on-lattice model which is
computationally simpler than most off-lattice models, e.g.,
vertex model (Osborne et al., 2017; Giniūnait et al., 2019)
and has been used to capture essential realistic features of
epithelial cell dynamics (Kempf et al., 2021), e.g., the
dynamics of cell migration on short microlanes (Zhou et al.,
2020), circular micropatterns (Segerer et al., 2015), and in a
confluent sheet expanding into a free region (Khataee et al.,
2020).

The cells are represented on a lattice, where each cell covers
a set of connected lattice sites (or pixels) and each pixel can
only be occupied by one cell at a time. Here, the lattice is a
rectangular surface (480 × 195 pixels in length and height,
respectively), representing a cross-sectional view to epithelial
cells placed on a substrate. This means that the model is 2D in
the x-z plane, where x and z axes are parallel and perpendicular
to the substrate, respectively (see inset in Figure 1A, top left
corner). The expansion and retraction of the cell boundaries
are determined by minimising a phenomenological energy E,
defined in terms of the area Aσ and perimeter Lσ of each cell σ of
N cells (indices σ = 1, . . . , N) (Farhadifar et al., 2007; Khataee
et al., 2020; R. Noppe et al., 2015; Albert and Schwarz, 2016;
Thüroff et al., 2019) as:

E�λarea∑
N

σ

Aσ −A0( )2+λcont∑
N

σ

L2
σ+∑

�i, �j

J σ �i ,σ �j( ) 1−δ σ �i ,σ �j( )( ). (1)

FIGURE 1 | Phase diagram of single-cell shapes (A,B). x-z cross-section of the cell (green) placed on a substrate (blue) surrounded by an empty region (black) and
wall cells (black squares). Simulations were run with the cell proliferation disabled. The range of parameter values are adopted from (Khataee et al., 2020). Snapshots
were taken in the steady-states.
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The first term models the compressibility of cells by
penalising the deviation of cell areas from a target area A0.
The second term represents the contractility of the cell cortex
as a spring with zero equilibrium length (i.e., the target length
of the cell perimeter is zero). The penalty parameter λcont
represents cortical actomyosin contractility, around the lateral
cell membrane (Reffay et al., 2014). The last term describes the
cell-cell adhesion mediated by adhesion molecules, such as
E-cadherin (Charras and Yap, 2018). J is the boundary energy
cost at neighbouring lattice sites �i and �j. The Kronecker δ
function prevents counting pixels that belong to the same cell.
When both lattice sites �i and �j correspond to cells,
J(σ �i , σ �j) � λadhcc; when one lattice site corresponds to cell
and another site corresponds to the substrate
J(σ �i , σ �j) � λadhcs; otherwise when one or both lattice sites
represent empty space or boundary wall, the boundary
energy cost J is set to zero. Note that λadhcc < 0 and λadhcs < 0
to represent that cells preferentially expand their boundaries
shared with neighbouring cells or substrate. This is however
balanced by the contractile tension along the cell cortex. The
prefactors λarea, λcont, and λadh reflect the relative importance
of the corresponding cellular properties.

The dynamics of the CPM is defined by a stochastic series of
elementary steps, where a cell expands or shrinks
accommodated by a corresponding area change in the
adjacent cell (or empty area) (Glazier and Graner, 1993;

Swat et al., 2012). The algorithm randomly selects two
adjacent lattice sites �i and �j, occupied by different cells
σ �i ≠ σ �j. The elementary step is an attempt to copy σ �i
into the adjacent lattice site �j, which takes place with
probability

P σ �i → σ �j( ) � 1 for ΔE≤ 0
e−ΔE/T for ΔE> 0{ (2)

where ΔE is the change in functional (1) due to the elementary
step considered, and the temperature parameter T is an arbitrary
scaling factor. A Monte Carlo step (MCS) of the simulation, the
natural unit of time in the model, is set to n elementary
steps–where n is the total number of lattice sites in the
simulated area (Swat et al., 2012). Together, Eqs 1, 2 imply
that cell configurations which increase the energy in functional
(1) are less likely to occur. Thus, the cell population evolves
through stochastic rearrangements in accordance with the
biological dynamics incorporated into the effective energy
function E.

Among multiple environmental factors that can regulate
cell proliferation, cell growth factors and cell-substrate
adhesion are most crucial (Schwartz and Assoian, 2001;
Brakebusch et al., 2002): the probability of cell proliferation
for individual cells increases with the cell area (Streichan et al.,
2014) and substrate stiffness (Mohan et al., 2018).We therefore

FIGURE 2 | Numerical results for single-cell properties. (A, B) Area of the cell in steady state versus contractility strength λcont at various λarea and cell-substrate
adhesion λadhcs . (C, D) Number of cell-substrate adhesion sites ns in the steady state versus λcont at various λarea and λadhcs . Each symbol is derived from an individual
simulation run and corresponds to mean ± SD.
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define cell proliferation probability as a function of cell area
and adhesion to the substrate in the form of the Hill function,
which is widely used in mathematical modelling of binding of
molecular structures of cells (Santillán, 2008). At every
MCS, if a cell σ reaches its target area (i.e., Aσ ≥ A0), the
probability of proliferation is given by the following
expression:

Pdiv � Pmax
nks

nks + γ
���
A0

√( )k (3)

where Pmax is the maximum probability of proliferation and ns
denotes the number of boundary pixels of a cell adjacent to the
substrate, representing cell-substrate adhesion sites
(Paddillaya et al., 2019). We assume that the Hill half-

saturation threshold is given by the dimension in pixels of a
square shaped cell, i.e., γ

���
A0

√
with a multiplicative factor γ.

Together, Eq. 3 expresses that the proliferation probability of a
cell increases as the cell is more adhesive to the substrate. This
is consistent with experiments (Chen et al., 1997; Provenzano
and Keely, 2011; Mohan et al., 2018) where increased area of
cell-substrate contact enhanced cell growth, and thus
proliferation. Further, Pdiv = 0 for cells not
adhered to the substrate, representing that cell
proliferation can occur only on the substrate (Adam
Hacking et al., 2013).

Our simulations are implemented using the open-source
software package CompuCell3D (CC3D) (Swat et al., 2012).
Each simulation starts with a single cell of the size 15 × 15
pixels placed on a substrate of width of 450 pixels and allowed
to proliferate following Eq. 3. The simulation domain is
surrounded by wall cells that prevent the cells from sticking
to the lattice boundaries. The wall cells are excluded from
participating in the pixel copies of the Potts model (Swat et al.,
2009). If a cell division occurs, the cell is divided along a plane
specified by a normal vector ndiv = (nx, nz), where nx and nz are
the components normal to the plane. The division then results
in two cells each with area ≈ A0/2. Then according to Eqs 1, 2
these two cells grow to reach the target area A0. Table 1
summarises the parameter values used in our computational
simulations.

FIGURE 3 | Single-cell Potts energy E versus cell height h at various cell length l calculated using Eq. 4. Top row: λarea = 1 and λcont = 3 at λadhcs � −100 (A), −300
(B), −700 (C). Bottom row: λarea = 70 and λcont = 3 at λadhcs � −100 (D), −300 (E), −700 (F).

TABLE 1 | Model parameters.

Parameter Value

Initial cell size (pixel × pixel) 15 × 15
Initial cell area, Aσ (pixel × pixel) 225
Preferred area, A0 (pixel × pixel) 225
Temperature, T 50
Half-saturation constant, γ 2
Hill coefficient, k 10
Maximal proliferation probability, Pmax 0.1
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3 RESULTS AND DISCUSSION

3.1 Single Cell Morphology
Since the multicellular morphogenesis is partly driven by changes
in the shape of individual cells (Widmann and Dahmann, 2009),
our starting point for modelling collective epithelial cell
morphology is to explore single-cell morphology in response
to its mechanical properties, when cell proliferation is switched
off. Typical snapshots of single-cell morphology in the steady-
state are shown in Figure 1. We find that the squamous (i.e., flat)-
to-cuboidal shape transition is promoted by increasing cell
contractility. A similar shape transition is also found with
decreasing cell-substrate adhesion; see Figures 1A,B.

To better understand how the single-cell morphology can
influence the multi-cellular dynamics, we analyse the cell area
and number of cell-substrate adhesion pixel (which affect the
probability of cell proliferation) in response to the mechanical
control parameters. This enables us to predict the combination of
mechanical properties that can lead to different collective cell
behaviors.

Figure 2A shows that the average cell area increases with
cell-substrate adhesion, which is more evident with weak cell
contractility. Contrarily, with strengthening cell contractility
and decreasing cell-substrate adhesion, the average area of a
cell falls below its target area A0. On the other hand, with
increasing λarea, the average cell area remains close to A0 at all
λcont and λadhcs; see Figure 2B. Further, increasing cell-
substrate adhesion and weakening cell contractility expand
cell-substrate adhesion sites; see Figures 2C,D. Together, these
numerical results suggest that monolayers and multilayered
structures are more likely to form with increasing cell-
substrate adhesion and weaker cell contractility, due to
increased proliferation probability of individual cells.
Further, non-confluent structures are generated when cells
have strong cortex contractility and low adhesion to the
substrate.

We check the consistency of these simulation results with the
estimated energy minimum determined for a simplified
rectangular cell shape. The energy function for a single
rectangular cell reads:

FIGURE 4 | Equilibrium single-cell aspect ratio h*/l* (A, B) and area h* × l* (C, D) versus cell-substrate adhesion λadhcs and contractility λcont. l* and h*: cell length and
height at the mechanical equilibrium, respectively, corresponding to rectangular cell shape; see Eq. 4.
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E l, h( ) � λarea lh − A0( )2 + λcont 2l + 2h( )2 + λadhcsl, (4)
where l and h are cell length and height (see schematic inset,
Figure 3). The minimum of the energy E is determined by solving
the equations:

zE l, h( )
zl

� 0,
zE l, h( )

zh
� 0, (5)

which results in

2λareah lh − A0( ) + 8λcont l + h( ) + λadhcs � 0,
2λareal lh − A0( ) + 8λcont l + w( ) � 0,

(6)

to define cell length l* and height h* at mechanical equilibrium.
The typical dependence of the energy function on the cell
height and width is illustrated in Figure 3. Assuming that the
mechanical equilibrium at steady state can be approximately
estimated from the minimisation of the energy function
corresponding to a rectangular cell (Eq. 4), we calculate the
steady cell aspect ratio and area. The results shown in Figure 4
are consistent with the phase diagram of single-cell
morphology in Figure 1 and also show
qualitative agreement with the CPM simulation results in
Figures 2A,B.

3.2 Collective Multicellular Morphology
We now use the model to simulate a system of proliferating
cells various combinations of mechanical parameters. The
simulations are started with a single cell placed on the
substrate in the middle of the domain and cell division is
allowed according to the rules described above, i.e., when the
cell area is larger than A0 with a probability Pdiv dependent on
the number cell adhesion sites (pixels) attached to the
substrate.

During morphogenesis, oriented cell divisions are essential for
the generation of cell diversity and for tissue shaping (Finegan
and Bergstralh, 2019). The long-standing Hertwig’s rule (or the
long axis rule) states that cells tend to divide at their cytoplasmic
centre perpendicular to their longest axis (Hertwig, 1884). More
recent studies have revealed that the proliferation is oriented by
additional cellular properties, e.g., spatial distribution of the
cell–substrate adhesion sites (Théry et al., 2005) and
actomyosin-based mechanical tension dependent (LeGoff et al.,
2013) and independent (Scarpa et al., 2018; Finegan and
Bergstralh, 2019) of cell shape. However, current evidence on
the role of cell shape and different sets of intracellular
mechanisms in orienting cell proliferation remains
inconclusive (Collinet and Lecuit, 2013; Finegan and
Bergstralh, 2019). Our model allows a convenient way to

FIGURE 5 | Phase diagram of steady state collective cell morphology when the axis of division is perpendicular to the substrate, i.e., ndiv = (1, 0); see Eq. 3 (A–D).
α � λadhcs /λadhcc . *Slow-growing multilayers. See Supplementary Movies S1–S5.
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simulate collective cell morphologies by considering different
orientations of cell division axis and varying mechanical
properties of cells in various combinations.

Steady state phase diagrams of the collective morphology
with horizontal, vertical, and random cell division orientation
are presented in Figures 5–7(A–D), Supplementary Figure
S1. First, we note that the cell shapes in the multicellular
system in most cases can be quite different from the shape of a
single isolated cell obtained for the same set of mechanical
parameters. We observe three main types of multi-cellular
structures and behaviors developing in the simulations: 1) For
certain parameter combinations, the cell division is either
completely blocked or is very limited resulting in the
formation of a small group of cells without forming a
confluent cell layer along the substrate over the whole
domain. 2) A cell monolayer can form through repeated cell
divisions in such a way that cell proliferation stops in a self-
regulated manner once a fully confluent layer is formed. This
layer may be composed of flat or tall cells. 3) In multi-layered
structures, the cell division continues indefinitely (although it
is still restricted to the basal cells along the substrate) and the
height of the cell layer increases over time. In a real
multilayered epithelium, the height of such layer can be
controlled by differentiation and death of the non-

proliferating cells that are not adhered to the substrate.
Since we focus on the emergence of the different cell layer
structures and the corresponding cell shapes, we do not include
cell death and differentiation in our model. The simulation
results also show that for high cell-substrate adhesion and low
contractility (λadhcs � −500 and λcont = 1 in Figures 5B–7B,D)
multicellular structures with irregular thin cell shapes develop.
The formation of such structures is obviously not realistic and
cannot appear in real tissues as it would be prevented by the
internal cell cytoskeleton which is not included in the energy
function of our model.

Non-confluent structures are formed at high cell contractility
and reduced cell-substrate adhesion, independently of the
proliferation orientation; see Figures 5–7, Supplementary
Figure S1. This is due to reductions in both cell area and the
number of cell-substrate adhesion sites in individual cells which
reduce the probability of cell proliferation; see Figure 2.

Confluent monolayers and multilayered structures are formed
with increasing cell-substrate adhesion and lowering cell
contractility. With proliferation orientation perpendicular to
the substrate, monolayers of squamous (flat), cuboidal, and
columnar (tall) cells are found; see Figure 5. The expansion of
monolayers typically happens through the division of border cells
(at both edges of the monolayer) on the substrate, while the other

FIGURE 6 | Phase diagram of collective cell morphology with horizontal orientation of cell proliferation, where the axis of division is parallel to the substrate, i.e., ndiv
= (0, 1); see Eq. 3 (A–D). α � λadhcs /λadhcc . *Slow-growing multilayers. See Supplementary Movies S6, S7.
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cells inside the monolayer do not divide or only relatively rarely.
Once the layer becomes confluent cell crowding limits the cell
area and the cell-substrate adhesion sites, due to which the
probability of proliferation decreases; see Figures 8A–I. At
certain combinations of mechanical properties (summarised in
Figure 5 and analysed in Figures 8A–I), cells stop proliferating
once a confluent monolayer is formed see Supplementary
Movies S1–S3, S5. Squamous cells are mostly found for high
cell-substrate adhesion (relative to cell-cell adhesion), increased
cortex contractility and reduced λarea parameter. Increasing λarea,
in this regime, leads to squamous-to-columnar shape transition.

A major factor that contributes to monolayer-to-multilayer
transition is cell crowding. When the cell density cannot increase
anymore in the basal layer, while cell deformations are likely, cells
are extruded from the monolayer. Accordingly, cells at the basal
layer can expand their area increasing the probability of their
proliferation and further extrusion events; see Figures 8J–L and
Supplementary Movie S4. Overall, monolayer-to-multilayer
transition is more likely to appear with a combination of
parameters that increase λarea, increasing cell-substrate
adhesion, reduced cortical contractility, and with proliferation
orientation being parallel to the substrate, random, or along
the major axis of the cell; see Figures 6, 7, Supplementary
Figure S1.

Our simulation results complement earlier findings on
collective epithelial morphology. Simulation results
characterise cell area strength λarea as a major factor that
influences collective morphology: increasing λarea generates
multilayer structures, whereas with reducing λarea monolayer
and non-confluent structures appear; see Figures 5–7,
Supplementary Figure S1. Increasing λarea promotes
proliferation probability, by increasing cell area to approach
the target area A0; see Eq. 1. At a low λarea, it is more likely
that cell area deviates from A0 resulting in smaller probability of
proliferation. This effect is evident in the generation of
monolayers, where cell proliferation is limited by cell area and
the number of cell-substrate adhesion sites; see Figures 8A–I.
However, in multilayer structures, the growth of cell area is
facilitated (by λarea, λadhcs, and λcont) so that the crowding does
not block cell proliferation events and continuous cell extrusions
out of the basal layer lead to multilayered structure; see Figures
8J–L. At stronger cell-substrate adhesion λadhcs, the extruded cells
may return back to the basal layer; see inset in Figure 8D. Further,
cortex contractility λcont affects cell proliferation probability
through influencing cell size and shape. With lowering λcont
and strengthening cellular adhesion, cell shapes become softer
(i.e., stretched with dynamic boundaries), in contrast to the more
rounded cell shapes with approximately static cell boundaries at

FIGURE 7 | Phase diagram of collective cell morphologies when orientation of cell proliferation is along the major axis of the cells (A–D). α � λadhcs /λadhcc . *Slow-
growing multilayers. See Supplementary Movie S8.
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higher λcont (Farhadifar et al., 2007; Khataee et al., 2020; R. Noppe
et al., 2015). These fluctuations in the cell size then increase the
probability of proliferation in the model.

The simulation results are consistent with experimental
observations. It has been observed that the probability of
cell proliferation increases with cell area (Streichan et al.,
2014) and reduction in cell area (imposed by mechanical
constraints on tissue expansion) inhibits cell proliferation
(Chen et al., 1997; Puliafito et al., 2012). Further, substrate
stiffness has been known to be positively correlated with cell
proliferation increasing substrate stiffness (dependent on cell-
substrate adhesion) and was found to increase the proliferation
rate (García et al., 1999; Provenzano and Keely, 2011; Mohan
et al., 2018). It was shown that when the cell density cannot
increase anymore in a monolayer (due to cell crowding), while
the proliferation events still occur, newly generated cells are
extruded out of the monolayer where they remained without
adhering to the substrate (Deforet et al., 2014). These
suprabasal cells may slide over the basal cells such that they
migrate in and become basal cells themselves (Rognoni and
Watt, 2018; Haensel et al., 2020). Experiments have also
provided evidence that mechanical stretching stimulates cell

proliferation (Aragona et al., 2013). The proliferation is
activated in cells with flattened geometry where the cell
growth is promoted, whereas in cells with round geometry,
cell growth and thus proliferation are limited (Dupont et al.,
2011; Aragona et al., 2013). It was suggested that the rounded
cell geometry, compared to spread geometry, may differently
affect the adhesion sites and their associated F-actin
cytoskeleton (Low et al., 2014).

The simulated cell shapes in monolayers are also consistent
with experimental observations. For example, with intermediate
cortical contractility λcont = 3 and λadhcs � −300, increasing
adhesion ratio α from 2 to 20 reduces cell height by factor
1.88; compare middle snapshots in Figures 5A,B. For
squamous cells (λcont = 7 and λadhcs � −700), cell height drops
by factor 1.22; compare top right corner snapshots in Figures
5A,B. For columnar cells, a negligible reduction (by factor 1.10)
in cell height is found with increasing α; compare top right corner
snapshots in Figures 5C,D. These simulation results agree with
experimental observations that lowering the lateral cell–cell
adhesion decreases cell height (Weber et al., 2007; Melani
et al., 2008; Montell, 2008; Gomez et al., 2012). It is also
consistent with the theoretical prediction that the cell-cell

FIGURE 8 | Dynamics of basal cells in four different collective morphologies illustrated with snapshots and associated mechanical parameters. Top row (A,D,G,J):
number of basal cells (with adherence to the substrate) and suprabasal cells (without adherence to the substrate) versus time. Middle row (B,E,H,K): area (left axis) and
number of cell-substrate adhesion sites ns (right axis) for basal cells versus time. Solid curves: mean. Shaded region: SD. Bottom row (C,F,I,L): ns of proliferating cells
versus time. Orientation of cell proliferation is vertical, ndiv = (1, 0). α � λadhcs /λadhcc . See Supplementary Movie S1–S4.
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lateral adhesion is a crucial parameter to increase cell height
(Hannezo et al., 2014; Dasbiswas et al., 2018).

Our results show that with altering the proliferation
orientation from being perpendicular to the substrate to be
along the major axis of the cells, monolayers of columnar cells
transition into multilayered structures; compare Figures 5, 7C,D,
top right corner. With proliferation orientation perpendicular to
the substrate, the new daughter cells are positioned to either left
or right of the mother cell on the substrate. This way, cell
crowding decreases the proliferation probability (see Eq. 3)
and a monolayer of columnar cells are formed. However,
when the proliferation orientation is along the major axis of
the cells, new daughter cells can extrude from the basal layer, even
before a confluent monolayer is formed (see Supplementary
Movie S8). These extrusions then do not contribute to cell
crowding on the basal layer and allow the basal cells to grow,
so that further proliferation events occur and multilayered
structures are formed. This is consistent with experimental
observations (Chanet et al., 2017) showing that cell rounding
is required for the division of columnar epithelial cells and
without the cell rounding, cells remain elongated due to tight
cell packing.

4 CONCLUSION

In this article, we introduced a 2D computational model to
analyse the emergence of collective morphology of epithelial
cells. The model allowed us to simulate diverse collective
morphology using various combinations of mechanical
properties of cells and the orientation of cell division axis. Our
results suggest that non-confluent structures transition into
confluent monolayers and multilayers with weakening cell
contractility (λcont) and strengthening cell-substrate adhesion
(λadhcs), due to increase in probability of cell proliferation.
Confluent monolayers of squamous, cuboidal, and columnar
cells are formed with proliferation axis perpendicular to the
substrate. It is further suggested that monolayer-to-multilayer
transition occurs by cell extrusion from the basal layer as a result
of the interplay between mechanical parameters (λarea, λcont, and
λadhcs) and the orientation of cell proliferation. Taken together,
our simulation results suggest that desirable biomechanical

features of individual cells can regulate multicellular tissue
morphology.

The extension of the energy function of the 2D model to 3D
is relatively straightforward [e.g., see (Hannezo et al., 2014)],
but including the third dimension would significantly increase
the computational cost of the simulations. We expect that for
most cases the computational results on the multicellular
morphology would be at least qualitatively similar since the
cell shapes are isotropic within the plane of the substrate
(i.e., x-y plane). In addition, the cell proliferation steps
defined here take into account the progressive increase of
cell volume (through growing of lateral area of cell Aσ and
approaching A0) and the apical perimeter of the cells (through���
A0

√ � l in Eq. 3). Further, the presented 2D model is more
amenable to efficient simulations (i.e., when performing
parameter sweeps) and mathematical analysis, compared
with that in 3D.
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