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Aging is an inevitable process characterized by a decline in many physiological activities, and has
been known as a significant risk factor for many kinds of malignancies, but there are few studies
about aging-related genes (ARGs) in lung squamous carcinoma (LUSC). We designed this study to
explore the prognostic value of ARGs and establish an ARG-based prognosis signature for LUSC
patients. RNA-sequencing and corresponding clinicopathological data of patients with LUSC were
downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The
ARG risk signature was developed on the basis of results of LASSO andmultivariate Cox analysis in
the TCGA training dataset (n = 492). Furthermore, the GSE73403 dataset (n = 69) validated the
prognostic performance of this ARG signature. Immunohistochemistry (IHC) staining was used to
verify the expression of the ARGs in the signature. A five ARG-based signature, including A2M,
CHEK2, ELN, FOS, and PLAU, was constructed in the TCGA dataset, and stratified patients into
low- and high-risk groups with significantly different overall survival (OS) rates. The ARG risk score
remained to be considered as an independent indicator of OS in the multivariate Cox regression
model forLUSCpatients.Then, aprognosticnomogram incorporating theARGriskscorewithT-,N-
, and M-classification was established. It achieved a good discriminative ability with a C-index of
0.628 (95% confidence interval [CI]: 0.586–0.671) in the TCGA cohort and 0.648 (95% CI:
0.535–0.762) in the GSE73403 dataset. Calibration curves displayed excellent agreement
between the actual observations and the nomogram-predicted survival. The IHC staining
discovered that these five ARGs were overexpression in LUSC tissues. Besides, the immune
infiltration analysis in the TCGA cohort represented a distinctly differentiated infiltration of anti-tumor
immune cells between the low- and high-risk groups. We identified a novel ARG-related prognostic
signature, which may serve as a potential biomarker for individualized survival predictions and
personalized therapeutic recommendation of anti-tumor immunity for patients with LUSC.
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INTRODUCTION

Lung cancer (LC), the second most commonly diagnosed
malignancy annually, is the leading cause of tumor-related
death worldwide (Sung et al., 2020). Lung squamous
carcinoma (LUSC), one of the major histological types of LC
(Santarpia et al., 2018), occupies about 25% to 30% of non-small
cell lung cancer (NSCLC) (Travis et al., 2015). The diagnosis and
treatment of LC, especially targeted therapy, have substantially
improved during the last decades. Unlike patients with lung
adenocarcinoma (LUAD), only few patients with LUSC benefit
due to the different gene mutation profiles (Yu et al., 2016;
Oberndorfer and Müllauer, 2018). And the improvement of
overall survival (OS) in LUSC patients remains dissatisfactory
(Piperdi et al., 2014; Siegel et al., 2019). Until now, the tumor-
node-metastasis (TNM) system has been commonly adopted to
predict individual clinical outcomes, but it contains limited
factors and neglects genetic characteristics (Balachandran
et al., 2015). Thus, it is vital to develop individual
antineoplastic protocols and exploit new prognostic
biomarkers for identifying heterogeneous patients with LUSC
and guiding personalized therapeutic care.

Aging, which is characterized by gradual functional
deterioration of many tissues, is an inevitable and important
biological process overtime, lastly generating numerous chronic
and age-related pathologies, and is a powerful risk factor for
several kinds of diseases, including neoplastic, neurodegenerative,
metabolic, and cardiovascular diseases (havlakadze, 2019;
Armanios et al., 2015; Benayoun et al., 2019; Smetana et al.,
2016). Cytologically speaking, aging is correlated with
mitochondrial dysfunction, genomic instability, cellular
senescence, and so on, which is accompanied by the
accumulation of irreparable damage and lethal substances in
cells (Yin and Chen, 2005; López-Otín et al., 2013). Aging has
been found to have an effect of irreversibly arresting cell growth
and development, inhibiting the uncontrolled proliferation of
tumor cells (Mosteiro et al., 2016; He and Sharpless, 2017;
Calcinotto et al., 2019). A large flat morphology and reduced
motility in senescent cells may contribute to suppress invasion,
escape, cell migration, and metastasis (Zhao et al., 2015).
However, the mechanisms and impact of cell aging on
malignant tumors are quite complicated. Aging-related genes
(ARGs) play a vital role in initiation and regulation of cell aging,
and potentially affect tumor cells in complex ways. Regulation of
tumor cellular senescence by ARGs can inhibit tumors, but ARGs
can potentially promote tumor initiation, development, and
metastasis (Johnson et al., 2013; Mosteiro et al., 2016; Galluzzi
et al., 2018; Calcinotto et al., 2019; Lee and Schmitt, 2019). Lately,
the potential diagnostic or prognostic value of ARGs have been
explored and confirmed in colorectal cancer and LUAD (Xu and
Chen, 2021; Yue et al., 2021). But its prognostic values and
potential mechanisms in LUSC remain unknown, and no
precise ARG-based risk signature has been developed for
LUSC patients.

A comprehensive model with multi-genes shows stronger
predictive capacity than a model with one gene (Srivastava
and Gopal-Srivastava, 2002). Thus, in the current study, we

made use of The Cancer Genome Atlas (TCGA) database to
establish an ARG-based signature to predict individual prognosis
for LUSC, and the data of a Gene Expression Omnibus (GEO)
dataset validated the prognostic value of the ARG-based
signature. Finally, a predictive nomogram including the ARG-
based signature and TNM system was developed for precise
survival predictions of LUAC.

MATERIALS AND METHODS

Data Collection and Preparation
Data of gene expression and clinical information of LUSC
patients were downloaded from the TCGA (https://tcga-data.
nci.nih.gov/tcga/) and GEO databases (https://www.ncbi.nlm.
nih. gov/geo/). After excluding cases with incomplete clinical
information and follow-up of less than 1 day, 492 patients from
the TCGA dataset were analyzed as a training set and 69 patients
from the GSE73403 dataset were used for validation. The scale
method from the ‘limma’ R package was performed to normalize
gene expression profiles. The Masked Somatic Mutation data
(varscan. Somatic. Maf) were downloaded and analyzed by the
“maftools” R package (Mayakonda and Koeffler, 2016). A total of
309 human ARGs were obtained from the Human Aging
Genomic Resources 3 (Supplementary Table S1).

Construction and Validation of the
Prognostic ARG Signature
A log2 | fold change |> 2 and false discovery rate (FDR) < 0.05
were defined as the cut-off values. The differentially expressed
genes (DEGs) in LUSC tumor tissues and normal tissues were
analyzed by the R software “limma” package. The ARG
candidates for the prognostic-related signature were firstly
selected using univariate Cox regression analysis (p < 0.05) in
the TCGA cohort. Secondly, we used the least absolute shrinkage
and selection operator (LASSO) regression model to further
narrow down the number of prognostic-related ARG
candidates. Then, the multivariate Cox model was used to
assess the prognostic contributions of each ARG candidate in
OS and determine the best weighting coefficient of each
prognostic-related ARG candidate. Finally, the signature
enrolled all the differentially expressed prognostic-related
ARGs. The risk score of each patient was summed up by
normalized expression levels of ARGs and their corresponding
regression coefficients. The specific formula was as follows: Risk
score = sum (each ARG’s expression level × corresponding
coefficients). According to the cut-off point of risk scores
derived from maximally selected log-rank statistics, LUSC
patients in the TCGA training cohort were divided into low-
and high-risk groups. The Kaplan-Meier method was utilized to
estimate OS and the log-rank test was used to compare the
differences of OS between the two groups.

To validate this prognostic signature, the risk score of patients
in the GSE73043 dataset was calculated according to the same
formula as the TCGA cohort. Patients in the GSE73043 validation
cohort were also divided into two groups according to the cut-off
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points of risk scores from maximally selected log-rank statistics.
Kaplan-Meier curves and the log-rank test were performed to
identified the relation between the ARG signature and OS in the
validation cohort.

Gene Set Enrichment Analyses
To explore the potential molecular mechanisms of the ARGs, we
performed Gene Set Enrichment Analysis (GSEA) to find
enriched terms between high- and low-risk patients
(Subramanian et al., 2005). GSEA was performed in Java
GSEA v. 4.0.1 with Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways in C2 and Gene Ontology (GO)
terms in C5. After performing 1,000 permutations, genes with a
false discovery rate q < 0.05 were seen as significantly enriched.

Immune Infiltration and Tumor Mutation
Burden Analyses
After normalizing the expression data in the TCGA dataset, we used
single-sample GSEA (ssGSEA) to evaluate 28 immune cells in the R
package “GSVA” (Tamborero, et al., 2018) with 782 genes included in
the gene sets (http://software.broadinstitute.org/gsea/msigdb/index.
jsp).With the perm set to 1,000, the CIBERSORT algorithmwas used
in the CIBERSORT software package to evaluate the proportion of 22
types of infiltrating immune cells based on LM22 (Newman et al.,
2015). Immune scores and stromal scores in low- and high-risk
groups were calculated by the R package ‘ESTIMATE’. According to
the length of the human exon, the TMB calculated for each patient
was equal to the total mutation frequency/35 MB. Dividing the total
number of mutations by the size of the coding region of the target
results in TMBpermegabase. TheWilcoxon test andMann-Whitney
U test were performed to contrast the differential abundances of
immune infiltrates, expression level of PD-1, PD-L1, PD-L2, and
CTLA4, TMB, immune score, and stromal score between the low-
and high-risk groups.

Establishment and Validation of a Predictive
Nomogram
In the TCGA dataset, we established a nomogram integrating the
ARG signature and TNM staging system for predicting individual
survival. Besides, calibration curves for 1-, 3-, and 5 years OS were
calculated to evaluate the predictive accuracy of our nomogram in
the TCGA dataset as well as the GSE73403 validation dataset.

Immunohistochemistry
Tumor and adjacent non-tumorous tissue specimens from 10
LUSC samples from Sun Yat-Sen University Cancer Center
between January 2016 and January 2017 were collected for
the immunohistochemistry (IHC) assay. The formalin-fixed,
paraffin-embedded tissue sections were dewaxed and
rehydrated followed by antigen retrieval and blocking.

The slides were incubated with primary antibodies, rabbit
anti-CHEK2 polyclonal antibody (1:2000; ab207446; ABCAM),
rabbit anti-A2M polyclonal antibody (1:500; ab109422;
ABCAM), rabbit anti-ELN polyclonal antibody (1:2000;
ab213720; ABCAM), rabbit anti-c-FOS polyclonal antibody (1:

2000; ab214672; ABCAM), and rabbit anti-PLAU polyclonal
antibody (1:150; ab133563; ABCAM) overnight in 4°C.

After being incubated with anti-rabbit secondary antibody,
HRP-conjugated rabbit polymer (1:500; ab97051; ABCAM) and
liquid diaminobenzidine tetrahydrochloride plus substrate (DAB
chromogen, Changjia) were used for visualization followed by
counterstaining with hematoxylin. The samples were
photographed by microscope (Nikon), and images were
analyzed using ImageJ FIJI v2.1.0.

Ten random fields were analyzed per tissue section for semi-
quantitative scoring, and the scoring method was as follows: 1)
Positive cell rate score 0 for <10% positive cells, one for 10~25%
positive cells, two for 25~50% positive cells, three for 50~75%
positive cells, and four for >75% positive cells.

We also used the Human Protein Atlas database to identify the
protein expression of immunohistochemical staining of these five
ARGs in LUSC patients.

Statistical Analysis
Continuous data were shown as the mean ± SD and compared by
Student’s t-test. Categorical variables were listed as frequencies with
percentages and tested using the chi-square (χ2) test. According to an
outcome-oriented approach for OS, maximally selected log-rank
statistics from the “maxstat” R package were collated to decide the
optimal cut-off value of risk scores for risk stratification (Hothorn and
Zeileis, 2008). Survival curves were estimated by the Kaplan-Meier
method, and differences between these two different risk groups were
compared with the log-rank test. Based on results from the
multivariate Cox model, we established a predictive nomogram
using the “rms” R package, and assessed its predictive accuracy by
calibration curves and compared its discriminate ability using time-
dependent receiver operating characteristic (ROC) curves. Statistical
analysis was conducted using SPSS (version 22.0) and R software
(version 4.0.1); a p value<0.05was considered as statistical significant.

RESULTS

Identifying a Prognosis-Related ARG
Signature
As represented in theflowchart (Figure 1), gene differential expression
analysis was performed in the TCGA dataset between 502 tumor
tissues and 49 normal tissues. We discovered 1924 upregulated and
2,639 downregulated DEGs including 45 differentially expressed
ARGs. After excluding 9 cases lacking survival or important
clinical data, 492 cases from the TCGA training cohort were
included in this study to decide prognosis-related ARGs as well as
construct the ARG-based signature. In addition, 69 cases from the
GSE73403 validation cohort were used to validate the ARG-based
signature. Clinicopathological factors of the TCGA training cohort
and the GSE73403 cohort are shown in Table 1.

After univariate Cox analysis by using mRNA expression
profiles of each differentially expressed ARG, five OS-related
ARGs from TCGA were identified (Supplementary Table S2),
which were also significant in the LASSO Cox regression analysis
(Figures 2A,B) and entered the multivariate Cox regression
analysis (Figure 2C). Finally, a five-ARG risk signature was
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constructed according to 492 LUSC cases in the TCGA dataset,
whose risk score was specifically calculated based on a linear
combination of gene expression levels and their corresponding
regression coefficients from the multivariate Cox analysis. The
specific formula was as follows: Risk score = A2M × 2.952e-7 -
CHEK2 × 1.347e-4 + ELN × 1.222e-5 + FOS × 7.953e-6 + PLAU ×
1.858e-5.

Prognostic Value of the ARG Signature in
the Training Cohort
In the training cohort, the cut-off value of risk scores was
defined as 0.35 by means of the maximally selected log-rank

statistics (Figure 3A), according to which we divided cases
into low-risk and high-risk groups. Figure 3B shows the
distribution of risk scores. As shown in Figure 3C, there
were significantly fewer deaths due to LUSC in the low-risk
patients than high-risk patients. We plotted a heatmap to
show different expression levels of these five ARGs between
the two risk groups (Figure 3D). Additionally, patients in the
low-risk group had a significantly better OS than patients in
the high-risk group (p = 1.352e-08) (Figure 3E). After
integrating age, gender, smoking history, and T, N, and M
classification, the risk score was still significantly associated
with OS (HR = 2.68, 95%CI = 1.86–3.86, p < 0.001)
(Figure 3F).

Prognostic Value of the ARG Signature in
the Validation Cohort
In our validation cohort, 69 patients with LUSC were divided into
high-risk (N = 33) and low-risk (N = 36) groups on the basis of
the cut-off value of the risk score from the maximally selected log-
rank statistics. The distribution of risk score is presented in
Figure 4A. Similar with the training cohort, more deaths in
the high-risk group were significantly found compared with the
low-risk group (Figure 4B). As shown in Figure 4C, expression
profiles of the five ARGs between low-risk and high-risk groups
were plotted in the heatmap. The Kaplan-Meier curves revealed
that patients in the low-risk group had an apparently longer OS
than patients in the high-risk group (p = 1.108e-02) (Figure 4D).
Further, the multivariate Cox model revealed the ARG risk score
as an independent indicator for OS after controlling other clinical
factors (HR = 9.51e+18, 95%CI = 752.28–1.20e+35, p = 0.02)
(Table 2).

Gene Set Enrichment Analysis for Important
Pathways
To explore the potential functional mechanisms associated
with the prognosis-related ARGs in patients with LUSC, we
performed GSEA using GO and KEGG pathway enrichment

FIGURE 1 | Flowchart of data collection and analysis.

TABLE 1 | Patients’ characteristics.

TCGA training cohort
n = 492

GEO validation cohort
n = 69

Gender
Male 364 (74.0) 65 (94.2)
Female 128 (26.0) 4 (5.8)
Age (year) 61.3 ± 9.6 58.3 ± 8.5
≤65 171 (34.8) 44 (63.8)
>65 321 (65.2) 25 (36.2)

Smoking history
Yes or ever or unknown 474 (96.3) 58 (84.1)
No 18 (3.7) 11 (15.9)

T stage
T1 114 (23.2) 4 (5.8)
T2 286 (58.1) 42 (60.9)
T3 69 (14.0) 20 (29.0)
T4 23 (4.7) 3 (4.3)

N stage
N0 320 (65.0) 35 (50.7)
N1 127 (25.8) 17 (24.6)
N2 40 (8.1) 17 (24.6)
N3 5 (1.0) 0 (0)

M stage
M0 486 (98.8) 69 (100)
M1 6 (1.2) 0 (0)
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analysis in the low-risk and high-risk groups in the TCGA
training dataset. In patients with high-risk, genes were
primarily enriched in collagen fibril organization,
regulation of extracellular matrix organization, cell
substrate junction, collagen binding, extracellular matrix
structural constituent, ECM receptor interaction, focal
adhesion, nod-like receptor signaling pathway, natural
killer cell-mediated cytotoxicity, and B-cell receptor
signaling pathway. In patients with low-risk, genes were
primarily enriched in cell cycle DNA replication, DNA-
dependent DNA replication, NADH dehydrogenase
complex, respiratory chain complex, NADPH
dehydrogenase quinone activity, base excision repair, DNA
replication, homologous recombination, mismatch repair,
and RNA polymerase (Figures 5A,B).

Tumor Immunity Landscape and TMB in
LUSC
To explore the association between ARG risk scores and anti-
tumor immunity, ssGSEA and the CIBERSORT algorithm
were used to evaluate the immunity landscape between
low-risk and high-risk groups in the TCGA dataset. The
heatmap showed the results of ssGSEA in 28 immune cells,
which demonstrated that these two risk groups had
significantly different proportions of different immune cell

infiltration (Figure 6A). Similar results were also seen in the
CIBERSORT algorithm analysis of 22 immune cells
(Figure 6B). Correlations among the 22 immune cell types
are plotted in Figure 6C. As shown in Figure 6D, infiltrating
proportions of naive B cells, CD8+ T cells, activated CD4+

memory T cells, follicular helper T cells, M1 macrophages,
resting mast cells, and monocytes were apparently higher in
low-risk patients while infiltrating proportions of M0
macrophages, activated mast cells, and neutrophils were
significantly higher in high-risk patients. A significantly
higher calculated immune score and stromal score with the
characteristic of “hot tumor” were found in the high-risk
group (Figures 6E,F). Compared with LUSC patients in the
low-risk group, patients in the high-risk group tended to have
a higher expression of PD-1 (Figure 7A), but no significant
difference in the expression level of PD-L1 was found
(Figure 7B). Patients with high-risk had an apparently
higher expression level of PD-L2 and CTLA4 (Figures
7C,D), but patients with low-risk had a significantly higher
TMB (Figure 7E).

Nomogram Based on ARG Signature for
LUSC
We established a visualized predictive nomogram model
incorporating the ARG risk scores and T-, N-, and

FIGURE 2 | Identification of a prognosis-related ARG-based signature in the TCGA training cohort. (A) Selection of the optimal candidate genes in the LASSO
model. (B) LASSO coefficients of prognosis-associated ARGs, each curve represents a gene. (C) Forest plots showing results of univariate Cox regression analysis
between the candidate ARG expression and overall survival.
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M-classification to predict individual OS probability at 1-,
3-, and 5 years using the data of the training cohort
(Figure 8A). Bootstrap validation was performed in this
nomogram. The C-index of the TCGA training cohort was
0.628 (95% CI: 0.586–0.671) and the C-index of the
GSE73403 validation cohort was 0.648 (95% CI:
0.535–0.762), which suggested its good performance in
predicting OS for LUSC patients. Calibration curves were

drawn in both the TCGA cohort (Figure 8B) and the
GSE73403 validation cohort (Figure 8C), which showed
the good consistency between the actual survival and the
nomogram-predicted survival at 1-, 3-, and 5-years. The
time-dependent ROC curves showed that ARG risk scores
combined with the TNM system has better capability in
predicting OS for both training and validation cohorts
(Figures 8D,E).

FIGURE 3 | Assessment of prognostic value of the ARG signature model in the TCGA training cohort. (A) Determination of cut-off value of ARG risk scores by the
maximally selected log-rank statistics. (B) The distribution of risk scores in the TCGA cohort. (C) Patient distribution in the high- and low-risk groups according to overall
survival status. (D) The heatmap showing expression profiles of the five ARGs. (E) Kaplan-Meier curves for the overall survival of patients in the high- and low-risk groups.
(F) Multivariate Cox regression analysis of the ARG signature and other clinicopathological factors.
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Validation of the Expression Levels of Five
ARGs in LUSC and Paracancerous Normal
Tissues
To verify the reliability of the results, tumor and adjacent non-
tumorous tissue specimens from 10 LUSC samples were collected
to test the expression levels of the five ARGs by IHC. The
representative images of IHC staining of A2M, CHEK2, FOS,
PLAU, and ELN are shown in Figures 9A–E. We also obtained
the IHC staining images of A2M, CHEK2, FOS, and PLAU from
the Human Protein Atlas database (Figures 9F–I). We found that
the IHC scores of the five ARGs in tumor tissues were higher than
those in the normal lung tissues (Figure 9J).

DISCUSSION

In the current study, we investigated the relationship between
the expression levels of ARGs and survival of LUSC patients,
and established a novel prognostic ARG signature consisting of

five ARGs, i.e., A2M, CHEK2, FOS, ELN, and PLAU. In the
TCGA training dataset, multivariate Cox analysis further
revealed the independent prognostic value of the ARG
signature. Then a predictive nomogram integrating this
ARG signature and the TNM staging system was developed
for predicting individual prognosis, and we validated its
prognostic accuracy in the GSE73403 validation cohort.
Furthermore, we explored the relation between the ARG
risk signature and immune cell infiltration in patients
with LUSC.

With the accessibility of getting free data from the public
TCGA and GEO databases, more and more studies focus on the
relation between RNA-seq data of specific gene sets and
individual outcomes (Wu et al., 2019; Qu et al., 2020; Zhu
et al., 2020). These studies were limited to autophagy, immune
infiltration, and so on, and they lacked clinical extension. Besides,
studies about the prognostic role of ARGs in LUSC are rare.
Biologically speaking, along with the decline of function, aging
is spontaneous and inevitable (Shavlakadze et al., 2019).
Pathophysiologically speaking, metabolic disorders,
declining immune response, and malnutrition occur during
the aging process, and are a risk factor of many chronic
illnesses, such as cancer (Smetana et al., 2016; Lee and
Schmitt, 2019). Aging may also promote occurrence,
development, and metastasis of tumors (Johnson et al.,
2013; Mosteiro et al., 2016; Galluzzi et al., 2018; Calcinotto
et al., 2019; Lee and Schmitt, 2019). A previous study revealed
that ARGs were associated with the prognosis of lung
carcinoma (Xu and Chen, 2021). Understanding the
association between the ARGs and LUSC is also necessary
and meaningful.

The ARG risk score formula of this study indicated that a
high level of plasminogen activator urokinase (PLAU) gene
expression was mostly unfavorable for individualized survival.
Belonging to the plasminogen activator family, PLAU is a
protease which is involved in cell migration and adhesion by

FIGURE 4 | Assessment of prognostic value of the ARG signature model in the GSE20685 validation cohort. (A) The distribution of risk scores in the GSE20685
cohort. (B) Patient distribution in the high- and low-risk groups according to overall survival status. (C) The heatmap showing expression profiles of the five ARGs. (D)
Kaplan-Meier curves for the overall survival of patients in the high- and low-risk groups.

TABLE 2 | Multivariate Analysis of GEO validation.

Factors Multivariate analysis

HR (95%CI) p Value

Gender
Female References
Male 1.68 (0.25–11.36) 0.59

Age (year)
≤65 References
>65 1.01 (0.96–1.05) 0.81
Smoking history 1.77 (0.44–7.08) 0.42
T stage 1.86 (1.02–3.41) 0.04
N stage 1.50 (0.92–2.44) 0.10
M stage — —

Risk score 9.51e+18 (752.28–1.20e+35) 0.02
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activating several signaling pathways. A previous study reported
that PLAUwas associated with immune cell infiltration in LUSC
(Zhang et al., 2020). Elastin (ELN), a fibrous protein, provides
characteristic elasticity properties in several tissues (Salesse
et al., 2018) and aberrant expression of ELN was a risk factor
for lung fibrotic diseases (Li et al., 2020). But the underlying
mechanisms and function of ELN have not been exhaustively
studied in LUSC. The expression product of the FOS gene is
c-FOS protein, which can dimerize with JUN family proteins to
regulate downstream gene expression and participate in
proliferation, invasion, metastasis, angiogenesis, and
apoptosis of tumors (Angel and Karin, 1991; Hennigan et al.,
1994; Milde-Langosch, 2005). The overexpression of FOS was
also related to poor survival outcomes of LUSC (Volm et al.,
1993). The protein encoded by A2M is alpha-2-macroglobulin,
which may promote tumor progression in mice (Kurz et al.,
2018). A previous study revealed that A2M was a hub gene
significantly associated with the occurrence and development of
LUSC (Zhang et al., 2019). Checkpoint kinase two is a
pluripotent kinase encoded by the CHEK2 gene, which is
associated with DNA repair, cell cycle regulation, and causes

apoptosis when DNA damage occurs (Wang et al., 2014).
CHEK2 gene mutation is also a pathogenic mutation in lung
cancer and increases susceptibility to lung cancer (Liu et al.,
2020). IHC staining discovered that the four ARGs, A2M, ELN,
FOS, and PLAU, were overexpressed in LUSC, which is
consistent with our ARG signature. However, IHC staining
revealed that CHEK2 was overexpressed in tumor tissues.
The IHC images in the Human Protein Atlas also
demonstrate that CHEK2 was overexpressed in tumor tissues.
Therefore, the possible mechanism of CHEK2 in LUSC needs
further study.

Cellular senescence can lead to cancer-related immune
responses, and the immune cellular infiltration in the tumor
microenvironment contributes to the response of
immunotherapy (Zhao et al., 2015). However, the relationship
between immune cellular infiltration and aging in LUSC is poorly
known. In this study, we discovered that patients in the low-risk
group had an apparent increase in CD8+ T cell, activated CD4+

memory T cell, follicular helper T cell, and M1 macrophage
infiltration. Results of the CIBERSORT algorithm show a favorable
immune status in the low-risk group, which is associated with

FIGURE 5 | Gene set enrichment analysis between the low- and high-risk subgroups. (A) Enriched GO terms between high- and low-risk groups. (B) Enriched
KEGG pathways between high- and low-risk groups.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 7705508

Zhai et al. Aging-Related Genes in LUSC

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


prolonged survival (Sebestyen et al., 2020; Zhang et al., 2020).
However, the results of the ESTIMATE algorithm showed that
patients with high-risk had a higher immune score and stromal
score and a higher expression level of PD-L2 and CTLA4, which
indicated that patients with a high-risk score had a more complex

tumor immune microenvironment and more immune cell
infiltration, although the immune cell infiltration in high-risk
tumors did not show an anti-tumor effect. These results
suggested that the high-risk group had greater potential to benefit
from immunotherapy. In addition, patients in the low-risk group

FIGURE 6 | The landscape of immune cell infiltration between the high- and low-risk groups in the TCGA training cohort. (A)Heatmap of the 28 tumor-infiltrating cell
proportions in ssGSEA. (B) Barplot of 22 immune cell infiltrations in CIBERSORT. (C) Correlation matrix of the association between the expression level of the five ARGs
and tumor-infiltrating immune cell infiltrations. (D) Violin plot showing differences of infiltrating immune cell types between the low- and the high-risk groups. (E)
Expression of the immune score between the low- and the high-risk groups. (F) Expression of the stromal score between the low- and the high-risk groups.
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had a higher TMB, which related to a poor prognosis in NSCLC
(Devarakonda et al., 2018). The Checkmate 026 trial determined that
NSCLC patients with TMB ≥10/MB could benefit from
immunotherapy (Carbone, et al., 2017), given both risk groups

had a TMB less than 10/MB, TMB in this study could not be
used as a predictor of immunotherapy.

There remain some limitations in our study. Firstly, this ARG
prognostic model was only established by bioinformatic analysis

FIGURE 7 | (A) Expression of PD-1 between the low- and the high-risk groups. (B) Expression of PD-L1 between the low- and the high-risk groups. (C) Expression
of PD-L2 between the low- and the high-risk groups. (D) Expression of CTL4 between the low- and the high-risk groups. (E) TMB between the low- and the high-risk
groups.
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FIGURE 8 |Development of a nomogram based on the ARG signature for predicting overall survival of patients with LUSC. (A) The nomogram plot integrating ARG
risk score and T-, N-, and M-classification in the TCGA training cohort. (B) The calibration plot for the probability of 1-, 3-, and 5 years OS in the TCGA training cohort; 1-
year: red; 3 years: blue; 5 years: black. (C) The calibration plot for the probability of 1-, 3-, and 5 years OS in the GSE73403 validation cohort; 1 year: red; 3 years: blue;
5 years: black. (D) Time-dependent ROC curves comparing the prognostic accuracy of the risk score combining ARGs and the TNM system in the training cohort;
risk score + TNM: red; TNM only: black. (E) Time-dependent ROC curves comparing the prognostic accuracy of the risk score combining ARGs and the TNM system in
the validation cohort; risk score + TNM: red; TNM only: black.
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from the public TCGA andGEOdatabases, results of this study need
further validation from prospective, multicenter, or experimental
data. Secondly, this study preliminarily explored the potential
relationship between the ARG risk signature and anti-tumor
immunity cell infiltration, studies are needed to reveal the
underlying mechanisms by experimental data. Thirdly, although
the ARG signature and TNM staging system were integrated in our
prognostic nomogram, we cannot identify the contribution of each
ARG in this signature.

In conclusion, the ARG risk score was associated with OS in
patients with LUSC, we developed and validated a predictive
nomogram for LUSC including the ARG risk signature and TNM
staging system for predicting individual clinical prognosis.
Moreover, we identified that patients with a high ARG risk
score may have higher sensitivity to immunotherapy.
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