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Calculating and predicting drug-target interactions (DTls) is a crucial step in the field of
novel drug discovery. Nowadays, many models have improved the prediction
performance of DTls by fusing heterogeneous information, such as drug chemical
structure and target protein sequence and so on. However, in the process of fusion,
how to allocate the weight of heterogeneous information reasonably is a huge challenge. In
this paper, we propose a model based on Q-learning algorithm and Neighborhood
Regularized Logistic Matrix Factorization (QLNRLMF) to predict DTls. First, we obtain
three different drug-drug similarity matrices and three different target-target similarity
matrices by using different similarity calculation methods based on heterogeneous
data, including drug chemical structure, target protein sequence and drug-target
interactions. Then, we initialize a set of weights for the drug-drug similarity matrices
and target-target similarity matrices respectively, and optimize them through Q-learning
algorithm. When the optimal weights are obtained, a new drug-drug similarity matrix and a
new drug-drug similarity matrix are obtained by linear combination. Finally, the drug target
interaction matrix, the new drug-drug similarity matrices and the target-target similarity
matrices are used as inputs to the Neighborhood Regularized Logistic Matrix Factorization
(NRLMF) model for DTls. Compared with the existing six methods of NetLapRLS, BLM-NII,
WNN-GIP, KBMF2K, CMF, and NRLMF, our proposed method has achieved better effect
in the four benchmark datasets, including enzymes(E), nuclear receptors (NR), ion
channels (IC) and G protein coupled receptors (GPCR).

Keywords: drug-target interactions, heterogeneous information fusion, g-learning, weight distribution, drug
similarity, target similarity

INTRODUCTION

Diseases are usually caused by defective proteins in the body or the functional structure of viral
proteins. Effective drugs can combine well with these proteins, removing the original function and
achieving the therapeutic effect (Ding et al., 2021). Previous research and development of novel drugs
mainly relied on biochemical experiments, which are risky, expensive and time-consuming. In
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addition, protein-protein interactions play a key role in many
biological processes (Guo et al., 2015), leading to the emergence
of large-scale experimental data on genes and proteins, making
drug discovery and repositioning in biomedical research more
difficult (Ding et al., 2019a). The purpose of DTTs prediction is to
identify potential novel drugs or novel targets for existing drugs,
and provide a list of candidate drugs for drug discovery, thus
greatly improving the efficiency of research and development and
reducing the cost of experiments. In recent years, the research
methods of DTIs prediction have been proposed successively. So
far, a large number of associations known to date have been
proved by previous experiments and stored in some public
databases (Wang et al, 2021). Therefore, existing methods
predict DTIs mainly based on a small number of
experimentally validated interactions in existing databases,
such as DrugBank (Wishart et al, 2008), KEGG DRUG
(Kanehisa et al.,, 2012), and SuperTarget (Giinther et al., 2008).
Previous studies have shown that DTIs prediction based on
experimental verification can effectively predict some novel
interactions between drugs and targets, and the computational
methods used to predict DTIs can significantly improve the
efficiency of drug discovery.

In general, traditional computational methods proposed for
DTIs prediction are mainly based on ligands and target-based
(Liu et al.,, 2021). The ligand-based method usually compares the
candidate ligand with the known interacting ligand of the target
to determine the binding between them. However, the
disadvantage is that the ligand-based method cannot be used
for targets which have no or only a small amount of known
binding ligands. The target-based (or docking simulation)
method uses docking techniques to predict interactions
between drug candidates and targets. Nevertheless, this
method requires detailed structures. Not all proteins have
structural information (Ding et al.,, 2020). For example, most
targets of GPCRs (G protein coupled receptors) are unknown
(Yan et al., 2019).

In order to solve the difficulties of traditional methods,
chemical genomics methods have been successfully used for
large-scale drug discovery and repositioning (Chen et al,
2018). The purpose of chemical genomics research is to
integrate drug and target information into a unified
framework, in order to identify potentially useful
compounds (Ezzat et al, 2019). Chemical genomics
methods are usually divided into ligand-based, target-based,
and target-ligand, all of which are based on similarity between
member proteins and targets. In fact, this significant
similarity-based view of chemical genomics has made
machine learning methods widely used in DTIs prediction
tasks (Ding et al., 2017; Lo et al., 2018; Ding et al., 2019b; Ding
et al,, 2019¢; Qu et al., 2019; Liu et al.,, 2020; Bagherian et al.,
2021), where DTIs prediction is regarded as a binary
classification problem, in which drug-target pairs are taken
as examples, the internal chemical structure of the drug and
the amino acid subsequence of the target are considered as
features. Then, we can build a binary classification model
through some classic classification methods, such as support
vector machines (SVM), neural networks and nearest
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neighbors. Yamanishi et al. (Yamanishi et al, 2010)
proposed a framework for supervised bipartite graph
reasoning, and this framework could predict unknown DTIs
based on chemical, genomic and pharmacological data. Tabei
et al. (Tabei et al, 2012) used complex protein pairs
represented by eigenvectors to correspond to chemical
substructures and protein domains, and used logistic
regression and SVM to establish a prediction model. Mei
et al. (Mei et al,, 2013a) improved the bipartite local model
by considering novel drug candidates through the interaction
profile of neighbors. In short, DTIs prediction based on
machine learning comes down to a process of data
collection, feature representation, similarity calculation and
machine learning modeling. Although machine learning has
achieved good results in DTIs prediction, there are still
bottlenecks. For example, most drug relocation methods
based on machine learning only use a single metric to
evaluate the similarity between diseases and between drugs.
In fact, the similarity of drugs/diseases is not only noisy, but
also multimodal, which can be measured from different
aspects (Yang et al., 2021). The fusion of multiple similarity
measures can avoid the noise and extract effective features in
individual similarity calculation, thus effectively improving
the accuracy of DTIs prediction.

In order to overcome the bottleneck encountered by
machine learning in DTIs prediction, improving the
prediction  performance of DTIs by integrating
heterogeneous information related to drugs and targets has
been extensively studied by the academic community. Among
them, the challenge is how to extract and integrate such
information (Wang et al., 2011). Wang et al. (Wang et al,
2011) proposed a kernel function method based on SVM
predictor to integrate heterogeneous information sources to
improve the accuracy of DTTs prediction. Yan et al. (Yan et al,,
2019) proposed a method based on multi-kernel learning and
clustering to integrate heterogeneous information sources
related to multiple drugs and targets to improve the
accuracy of DTIs prediction, in which the weight of linear
weighting was obtained through interior point optimization
algorithm (Byrd et al., 1999). (Ding et al., 2020) used six
different features to characterize protein sequences in the
experimental process of predicting the subcellular
localization of proteins. These features are constructed into
corresponding kernels and combined by optimizing the weight
of these kernels by Kernel Target Alignment-based Multiple
Kernel Learning (KTA-MKL) (Ding et al., 2020). (Zhou et al,,
2021) built a multi-kernel learning model with Hilbert-
Schmidt independence criterion (HSIC) to obtain optimal
weights for vairous features, and identified ncRNA
subcellular localization by using the graph regularization k
local hyperplane distance nearest neighbor model. Although
the above methods have achieved good results, there are still
some problems. For example, Wang et al. (Wang et al., 2011)
found that the experimental effect of fusion of three
information sources was inferior to that of fusion of two
information sources in the process of fusion, and the reason
may be that drug targets for the contributions to the similarity
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TABLE 1 | Information about the four datasets.

Dataset E IC GPCR NR
Drugs(n) 445 210 223 54
Targets(m) 664 204 95 26
Interactions 2926 1476 635 90

of DTIs prediction is different, and the integration of equal-
weight information cannot reflect the difference of
contribution ratio of heterogeneous information, DTIs
prediction accuracy improved range is limited. To solve the
above problems, we used Q-learning algorithm to reasonably
allocate weights in the process of heterogeneous information
integration, and realized DTTs prediction based on the NRLMF
model proposed by Liu et al. (Liu et al., 2016). Finally, our
method QLNRLMEF achieved good results on four benchmark
datasets.

The main contributions of this paper are summarized as
follows:

e According to three heterogeneous data sources, including
drug chemical structure, target protein sequence and drug-
target interaction, we obtain three drug-drug similarity
matrices and three target-target similarity matrices using
different similarity calculation methods.

e We use Q-learning algorithm to reasonably allocate weight to
the similarity matrices obtained above, and then perform linear
weighted integration after obtaining the optimal weight.

e We perform DTIs prediction experiments on four
benchmark datasets. Experimental results show that the
DTIs prediction accuracy of QLNRLMF model is better
to several advanced comparison models

MATERIALS AND METHODS

Problem Description

In this paper, the drug set is defined as D = {d;}}",, and the target
set is defined as T = {¢;}"_|, where m and n respectively represent
the number of drugs and the number of targets. The interaction
between the drug and the target is defined as Y € R"*", which is
composed of drug d; (1 < i < m) and target ¢; (1 < j < n), the
matrix Y € R™*" is defined as Eq. 1.

V. = { 1 Drugd;isrelated to Target t; )
v 0 Drugd,isnot related to Target t;

We take each drug-target pair in Y as a sample, and divide
equally all drug-target pairs in Y into ten pieces by random seed
shuffled. Then we select one sample as the test set in turn, and the
remaining nine samples as the training set. At the same time, we
obtain all the samples in the test set corresponding to the
subscripts in Y and assign all the corresponding positions to 0,
and a new drug and target interaction Y4, € R™*" is obtained.
The purpose of our experiment is to predict these unknown pairs
of interactions labeled 0.

Weight Allocation Based on Q-Learning

TABLE 2 | Summary of similarity matrix of two feature spaces.

Space Similarity matrix Description

Drug SIMstrarug Chemical structure
SIMcosarug Cosine similarity of drugs
SIMyacdrug Jaccard similarity of drugs

Target SIMsriar Target sequence information
SIMeostar Cosine similarity of target
SIMactar Jaccard similarity of the target

Data Preparation
Chemical Data

Yamanishi et al. (Yamanishi et al., 2008) obtained the chemical
structure of the compound from the drugs and compounds
section of the KEGG ligand database (Kanchisa et al., 2007).
The chemical structure similarity between drugs is obtained by
the SIMCOMP algorithm (Hattori et al., 2003), and the similarity
score is calculated according to the number of common
substructures between two compounds. In this paper, the
chemical structure similarity between two compounds d; and
dj can be calculated according to the Tanimoto coefficient as
follows Eq. 2, and the chemical structure similarity matrix of the
drug compound is expressed as SIMtrdrug.

_|di ndj]

SIMstrdrug,-j - |d1 U d]| (2)

Genetic Data

Due to the rapid development of sequencing technology, a large
amount of data has been accumulated, we use amino acid
sequence data to measure the similarity of proteins. In this
paper, normalized Smith-Waterman score (Smith and
Waterman, 1981) is used to calculate the sequence similarity
between protein t; and protein t; as shown in Eq. 3, where
SW (ti, t;) represents the Smith-Waterman score between the
target protein t; and t;, and the sequence similarity matrix of the
protein is expressed as SIMtqy.

SW(ts ;)

= (3)
\/SW(ti, t)SW(t), t;)

SI M strtarij

Drug-Target Interactions Data:

As for the performance evaluation of the DTIs prediction
algorithm, we will verify it on four benchmark datasets,
including E, IC, GPCR, and NR. Get the address of datasets:
http://web kuicr kyoto-u.ac.jp/supp/yoshi/drugtarget/. Table 1
counts the relevant information of the four datasets, including
the number of drugs (n), the number of targets (m), the number
of interactions.

According to the above Y4, € R™*", we use cosine similarity
and Jaccard similarity coefficient to calculate the drug-drug
similarity ~matrices  SIMcosdrugs  SIMjacarug> ~ target-target
similarity matrices SIM costar> SIM jactar-
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FIGURE 1 | Reinforcement learning.
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It [t)]
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SIM (4)

SIM]acdrug,'] = (5)

SIMcostar,'j = (6)

SIM]uctar,'j (7)

Table 2 lists the above similarity matrices. There are three
similarity matrices in the drug space and the target space
respectively.

NRLMF

NRLMF is the method proposed by Lin et al. (Liu et al,
2016), which combines Logistic matrix decomposition
(LMF) and domain regularization to predict associations.
Some of the equations that will be used in the model are as
follows:

Ir;u:l’i:i(l +cyij— yij)ln[ 1+ exp(uiVJT)] - CyijuiVJT
s ®)

+% tr[U" (AL + aL!)U] + %tr[VT (AL +BL)V]

Denoting the objective function in Eq. 8 by L, the partial
gradients with respect to U and V are as follows:

oL
Sg=BVH (- D(YOR)V-cYV+ (AI+al)U (9
g—fl =PU+ (c-1)(Y o PT)U-cY'U+ (LI+BL)V (10)

where Pe R™*", in which the (I, j) element is P;;, ® denotes the
Hadamard product of two matrices. View reference Lin et al.
(Liu et al., 2016), where we can see more details about above
equation.

Q-Learning Algorithm

Reinforcement learning is an algorithm model that can make
the best strategy through self-study in a particular situation. As
shown in Figure 1, for real-world problems, reinforcement
learning can be modeled by abstracting them as the interaction

Weight Allocation Based on Q-Learning

process between agent and environment. For each time step,
the agent receives the state of the environment and chooses to
perform the corresponding action, and then in the next time
step, the agent obtains a reward and a new state based on the
feedback of the environment. In other words, reinforcement
learning refers to continuously learning to adapt to the
environment according to the rewards obtained, and the
goal of the agent is to maximize the expected cumulative
reward.

Q-learning is a value-based algorithm among reinforcement
learning algorithms. Q (s, a) is the expectation that taking action
a (a€A) can obtain benefits under state s (s€S) at a certain
moment, and the environment will feedback corresponding
return r according to the action taken by the agent.
Therefore, the main idea of this algorithm is to construct a
Q-Table (as shown in Table 3) between state S and action A to
store Q value, and then select the action that can obtain the
maximum benefit according to Q value.

The updated formula for Q value calculation in Q-Table is as
follows:

Q(s,a) «— Q(s,a) + a[r + ymaxarQ(s’,a’) -Q s, a)] (11)

Where a is learning rate and y is discount rate.

MDP Modeling

State Space Design

Before the experiment begins, we initialize a set of weights for
the drug similarity matrix and the target similarity matrix
respectively, and then find a set of optimal weight assignments
through the Q-learning algorithm. The state space at time step
tis defined as S; = (&, B;> ¥ Xt» ¥e» 2¢), where o, B, V;» Xt> Yt
and z; represent respectively the weights in front of the three
drug similarity matrices and the three target similarity
matrices at the time step t, and o, + B, + 9, = 1, x; + y, +
z = 1.

SIMdrug = aSIMstrdrug + ﬁSIMcosdrug + YSIM]ucdrug (12)
SIMtar = XSIMstrtar + ySIMcostar + ZSIM]actur (13)

Action Space Design

In order to optimize the weight of the drug similarity matrix and
the target similarity matrix, we define the action space as A = (a, b,
¢, -(b + ¢)), where a€{0, 1}, 0 means that the current action only
acts on the weight of the drug similarity matrix, and 1 means that
it only acts on the weight of the target similarity matrix; b,
ce{-0.1, 0, 0.1}, for example, the current state is (0.3, 0.3, 0.4,
0.3, 0.3, 0.4) and the executed action is (0, 0.1, 0.1, —=0.2), so the
next state is (0.4, 0.4, 0.2, 0.3, 0.3, 0.4).

TABLE 3 | Q-Table.

Q-Table ay a

S1 q (s1, a1) q (s1, @)
S2 q (s2, ai1) q (s2, a2)
S3 q (ss, ai) q (ss, @2)
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.
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FIGURE 2 | Algorithm flow chart.
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\4

Updata the Q-table

Design of Reward Function

After each action is performed, environment will respond with an
instant reward R in return. In this paper, we will use AUC as a
reward. When we perform an action a at each time step, we will
get a new state s that is a new weight. Then, data integration is
carried out according to the new weights, and the integration
results and drug-target interactions data are taken as the input of
the NRLMF model, and the output result AUC is used as the
instant reward after performing the corresponding action. If the
state does not match after the action is taken, that is, there is a
situation that is less than 0 or greater than 1 in the state, we will
feedback 0 as an instant reward.

R(S,) = AUC If all weights are between 0 and 1
Y71 o0 Otherwise

QLNRLMF

In our experiment, we divide the dataset into training set and test
set in a ratio of 9:1, and validate the performance with ten-fold-
cross-validation. The main ideas of our method are as follows:
First, we use different similarity calculation methods to calculate
heterogeneous data sources and obtain drug Space and target
Space. Then, we initialize weights for the matrices in Drug space
and target space respectively and optimize them through
Q-learning algorithm. After obtaining the optimal weight,
linear weighted integration is carried out to obtain SIM g,
and SIM,,. Finally, we take SIMgg, SIM s and Y train as the
inputs of NRLMF model for DTIs prediction.

The pseudocode of QLNRLMF algorithm is shown in
Algorithm 1. The overall flow chart for QLNRLM is shown in
Figure 2.

(14)

Algorithm 1. Qlnrlmf

Require: drugs set D, targetsset T, drug-targetinteractions Y, statespace S, action
space A, reward R, learning_rate a, discount rate y

Ensure: The prediction of S(a, f, 7, x, y, 2)

1. Divide the dataset and get the ¥ ;qin

2. Calculate the similarity matrix SIMgrgrug  SIMcosarug~ SIMjacarug~ SIMerear
SIM ostar SIMjactar

3. Initialize Q(s, a)

4. repeat (for each episode):

5

6

Initialize s

6. repeat (for each step of episode):

7 choose a from s using policy derived from Q(e.g., e_greedy)
8. take action a

9 s —s,a

10. SIMurug = OSIMstrarug + BSIMcosarug + VSIMjacarug

11. SIMygr = XSIMpriar +YSIMpostar + 2SIMjgctar

12. r— NRLMF(SIMd,ug, SIM gy, Yerain)

13. O(s,a)— O(s,a) + a[r + ymax,Q(s',a’) —Q(s, a)]

14. s s

15. until s is terminal

16. until O(s, a) convergence

RESULTS

Evaluation Measurements

In order to verify the performance of our proposed method, we
evaluate it from the feasibility, efficiency and accuracy of the
algorithm. First of all, we prove the feasibility of our algorithm
through the convergence graph of the average reward for each
episode. Secondly, we compare the Q-learning algorithm with the
brute force method in terms of the time required to find the
optimal weights, to prove the effectiveness of our algorithm.
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FIGURE 3 | Four datasets convergence graphs. (A) The convergence graph of NR dataset. (B) The convergence graph of GPCR dataset. (C) The convergence
graph of IC dataset. (D) The convergence graph of E dataset.

TABLE 4 | Time contrast between Q-learning algorithm and Brute Force algorithm.

Dataset 1 2 3 4 5

NR 1023 1001 1032 1027 1029
GPCR 1033 1069 1001 1050 1015
IC 997 1021 1030 1034 1045
E 1045 994 1036 1039 1031

Finally, we compare our algorithm with other algorithms on AUC
and AUPR to prove the accuracy of our algorithm.

Average Reward Convergence Graph

Figure 3 respectively describes the average reward convergence
graph of four benchmark datasets under g-Learning algorithm,
where the abscissa represents the number of iterations and the
ordinate represents the average reward. As shown in the Figure 3,
the average reward does not show an obvious upward trend in the
first 1000 iterations, because the agent is constantly exploring trial
and error at the beginning. After that, with the continuous
accumulation of experience, the strategies learned by agents
are getting better and better, and the average reward also

6 7 8 9 10 Avg Avg/
snum

987 1008 1016 1035 1005 1016 0.784
1055 1050 1015 1050 1024 1036 0.799
1034 1027 1012 1006 1017 1022 0.789
1001 1032 1064 982 1026 1025 0.791

presents an upward trend. When the number of iterations
reaches 4000, the average reward basically tends to be stable,
indicating that agent has learned an optimal strategy.

Comparisons with Brute Force Algorithm

In this experiment, the number S,,,,,, of the state space is 1296. If
the Brute Force algorithm is adopted, the optimal state can be
found by traversing 1296 states, that is, the optimal weight
allocation can be obtained. If we use the Q-learning algorithm,
we separately record the number of different states visited when
each fold finds the optimal weight. As shown in Table 4, we can
conclude that the ratio of the time required by the four datasets to
the time required by the Brute Force algorithm are: 78.4, 79.9,
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78.9, 79.1%, and the average time ratio is 79.1%. All in all, the
running time of Q-learning algorithm has been reduced by nearly
20.9% on average.

Comparisons with Other Methods

There are many evaluation indexes for DTIs prediction methods.
Among them, AUC and AUPR are widely used. AUC is the area
under the receiver operating characteristic (ROC) curve, which
can also be understood as the probability that a positive sample
and a negative sample are randomly given, and the prediction
probability of the positive sample is greater than the probability of
the prediction probability of the negative sample. The value of
AUC can directly evaluate the performance of the DTIs
prediction method, and the greater the value, the better.
AUPR is the area under the curve of precision and recall rate,
and is a quantitative measurement method that can determine the
average separation degree between the predicted fraction of real
interactions and the predicted fraction of real non-interactions
(Peng et al., 2017). Relatively few interactions are known for DTIs

prediction. Therefore, AUPR is a more effective evaluation
indicator than AUC, because AUPR takes some measures to
reduce the impact of predicted fake DTIs data on the highest
ranking scores (Davis and Goadrich, 2006). Therefore, we use
these two indicators to evaluate the performance of our proposed
method.

Figure 4; Figure 5 respectively describe the comparison of
AUC and AUPR between our method and other seven methods
under four benchmark datasets. As shown in the figures, the
comparison between our QLNRLMF method and NRLMF
method shows that in four datasets, our method improves
3.62, 1.15, 0.27% and -0.47% respectively in AUC, and 18.08,
11.23, 3.25% and —0.48% respectively in AUPR. In general, our
method is superior to NRLMF method. In order to prove the
advantages of Q-learning algorithm, we also perform the
integration experiment of linear equal-weight strategy. The
experimental results show that the linear integration strategy
based on Q-learning algorithm is obviously better than the linear
equal-weight integration strategy. In addition, we also compare
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TABLE 5 | Comparsion with the other seven methods.

AUC
Dataset NetLapRLS BLM-NII WNN-GIP KBMF2K CMF Mean-weighted NRLMF QLNRLMF
NR 0.849 0.905 0.903 0.876 0.864 0.967 0.948 0.984
GPCR 0.914 0.943 0.935 0.919 0.929 0.965 0.960 0.971
IC 0.959 0.981 0.958 0.958 0.868 0.978 0.983 0.986
E 0.972 0.969 0.963 0.898 0.917 0.966 0.976 0.971
Avg 0.923 0.949 0.939 0.912 0.894 0.969 0.966 0.978
AUPR
NR 0.464 0.659 0.594 0.534 0.583 0.884 0.722 0.903
GPCR 0.615 0.514 0.471 0.570 0.629 0.801 0.702 0.814
IC 0.823 0.821 0.670 0.765 0.585 0.881 0.863 0.894
E 0.794 0.703 0.698 0.650 0.637 0.871 0.875 0.871
Avg 0.674 0.674 0.608 0.629 0.608 0.859 0.790 0.870

The values in bold mean the best result for each line.

our algorithm with other advanced five methods, which contain
NetLapRLS (Xia et al., 2010), BLM-NII (Mei et al., 2013b), WNN-
GIP (van Laarhoven and Marchiori, 2013), KBMF2K (Gonen,

2012) and CMF (Zheng et al, 2013), we can find that our
proposed method has certain advantages from the figures.
Finally, we summarize the experimental results and data of all
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the above methods into Table 5, from which we find that our
QLNRLMF method achieves better results in DTIs prediction.

CONCLUSION AND DISCUSSION

In this paper, we propose a model for optimizing weight
allocation of heterogeneous data based on Q-learning
algorithm to improve the accuracy of DTIs prediction. We
obtain multiple drug-drug similarity matrices and target-target
similarity matrices from heterogeneous data through different
similarity calculation methods, and then optimize the linear
weighted weights of these similarity matrices based on
Q-learning algorithm. Finally, we perform the experiment of
DTIs prediction based on NRLMF model. To evaluate the
performance and advantages of our proposed QLNRLMF
method, we perform a series of experiments on four
benchmark datasets to demonstrate the feasibility, efficiency,
and accuracy of our proposed method. There are two main
advantages to our approach. In our study, we use AUC and
AUPR as evaluation indicators to evaluate the performance of our
proposed method. On the one hand, it can be seen from the
experimental results that our method achieves better results on
the four benchmark datasets compared with other methods. On
the other hand, we add reinforcement learning method, which
speeds up the acquisition of optimal weight and enables us to
predict DTIs more effectively.

Through this experiment, we can find that the integration of
multiple information can improve the prediction accuracy of
DTIs to some extent, and the rational allocation of the weight of
these information also plays a key role in the prediction
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