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Objective: Single-cell RNA sequencing (scRNA-seq) analyses have provided a novel
insight into cell-specific gene expression changes in diseases. Here, this study was
conducted to identify cell types and pathophysiologic factors in diabetic nephropathy.

Methods: Single-cell RNA sequencing data of three human diabetic kidney specimens and
three controls were retrieved from the GSE131882 dataset. Following preprocessing and
normalization, cell clustering was presented and cell types were identified. Marker genes of
each cell type were identified by comparing with other cell types. A ligand–receptor network
analysis of immune cells was then conducted. Differentially expressedmarker genes of immune
cells were screened between diabetic nephropathy tissues and controls and their biological
functions were analyzed. Diabetic nephropathy rat models were established and key marker
genes were validated by RT-qPCR and Western blot.

Results: Here, 10 cell types were clustered, including tubular cells, endothelium, parietal
epithelial cells, podocytes, collecting duct, mesangial cells, immune cells, distal convoluted
tubule, the thick ascending limb, and proximal tubule in the diabetic kidney specimens and
controls. Among them, immune cells had the highest proportion in diabetic nephropathy.
Immune cells had close interactions with other cells by receptor–ligand interactions.
Differentially expressed marker genes of immune cells EIF4B, RICTOR, and PRKCB
were significantly enriched in the mTOR pathway, which were confirmed to be up-
regulated in diabetic nephropathy.

Conclusion:Our findings identified immune cells and their marker genes (EIF4B, RICTOR,
and PRKCB) as key pathophysiologic factors that might contribute to diabetic
nephropathy progression.
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INTRODUCTION

Diabetic nephropathy represents amicrovascular complication of type
1 and 2 diabetes, which may rapidly progress to an end-stage renal
disease without treatment due to having no clinical symptoms at an
early stage (Sun et al., 2021). It occupies 40% of patients who require
renal replacement therapy (Lu et al., 2020). The morphological and
ultrastructural alterations contain glomerular basement membrane
thickening, mesangial matrix expansion, glomerular hyperfiltration as
well as tubular interstitial fibrosis (Wheeler et al., 2021). Despite
microalbuminuria as a biomarker for early diabetic nephropathy, it
possesses low sensitivity and specificity in predicting the risks of
diabetic nephropathy (Lee et al., 2021). Moreover, renal biopsy is still
the gold standard for diagnosing diabetic nephropathy (Chen et al.,
2021). However, it is an invasive examination with a few adverse
events like infection and hemorrhage (Li et al., 2021). Furthermore, it
can hardly proceed continuously as the renal disease progresses and
has a high probability of sampling errors. Hence, it is of importance to
investigate non-invasive and sensitive biomarkers for predicting
diabetic nephropathy progression. Diabetic nephropathy is a multi-
factorial disease, which has the features of the complex interactions of
hemodynamic and metabolic factors, such as hyperglycemia,
advanced glycation end-product, and activation of the renin-
angiotensin-aldosterone system (Du et al., 2021). Thus, the current
management of diabetic nephropathy places emphasis on a strict
control of blood sugar, blood pressure, and blood lipids (Ahola et al.,
2021). Nevertheless, these strategies cannot protect against chronic
kidney diseases. Hence, it is extremely important to find new
treatments for diabetic nephropathy.

Traditional RNA sequencing (RNA-seq) may allow detecting
gene expression alterations between cell populations via
differential expression analyses. Nevertheless, RNA-seq cannot
find genes that cause differences between cells since RNA-seq
specimens are retrieved from a mixture of cells (Yip et al., 2019).
Single-cell RNA sequencing (scRNA-seq) has been widely applied
for studying gene expressions at the level of an individual cell. The
sensitivity, accuracy, and efficiency of scRNA-seq have been
making much progress in recent years (Ding et al., 2020).
Through single-cell profiles in a mix of cell populations,
scRNA-seq shows favorable advantages over RNA-seq such as
dissection of heterogeneity in cell populations and exploration of
rare cell types related to diseases (Hafemeister and Satija, 2019).
By scRNA-seq of glomerular cells, dynamic changes in gene
expression have been found in experimental diabetic kidney
diseases (Fu et al., 2019). Here, this study identified specific
cell types and marker genes in diabetic nephropathy. Immune
cells were considered as a determinant of diabetic nephropathy.
In diabetic nephropathy rat models, we verified the expression of
marker genes of immune cells, which might be important
pathophysiologic factors of diabetic nephropathy.

MATERIALS AND METHODS

Data Acquisition
Single-cell RNA sequencing (ScRNA-seq) data of three early
human diabetic kidney specimens and three controls were

retrieved from the Gene Expression Omnibus (GEO)
repository with accession number GSE131882 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131882) (Wilson
et al., 2019; Muto et al., 2021). This dataset was based on the
GPL24676 Illumina NovaSeq 6000 platform. Two kidney
transcriptomic profiling datasets (GSE111154 (Sircar et al.,
2018) and GSE142025 (Fan et al., 2019)) were also acquired
from the GEO repository. The GSE111154 dataset contained four
normal kidneys and four early diabetic kidney samples on the
platform of the GPL17586 Affymetrix Human Transcriptome
Array 2.0 platform. Furthermore, the GSE142025 dataset
included 28 diabetic kidney diseases and nine control samples
on the basis of the GPL20301 Illumina HiSeq 4000 platform.

Quality Control and Filtering of Cells
For droplet-based single-cell sequencing, usually, only data
generated by droplets containing only one cell were retained.
Unique molecular identifier (UMI) count matrix and the
molecule information file (molecule_info.h5) generated by
CellRanger were read by the DropletUtils package (version
1.14.2) (Lun et al., 2019), followed by the down-sampling of the
UMI count matrix. The expression profile of each droplet and the
expression profile of the surrounding solution were detected to
distinguish between empty droplets that only had RNA in the
solution and droplets containing cells. Then, the empty droplets
were removed. Scater package (version 1.22.0) (McCarthy et al.,
2017) was employed for further quality control. The total counts in
the cell (library size), the number of genes containing counts in the
cell, and the percentage of ribosome andmitochondrial genes were
calculated by using the perCellQCMetrics function. The cells were
filtered according to the percentage of mitochondrial genes ≤10%.

Pre-Processing, Normalization and
Dimensionality Reduction Analysis
NormalizeData function in Seurat package (version 4.1.0) (Satija
et al., 2015) was utilized to standardize the expression matrix of
each sample after filtering. By using the FindVariableFeatures
function, the top 2,000 highly variable genes among cells were
screened. ScaleData function was used for linearly scaling the
expression data by converting the expression value of each gene
so that the average expression value of each cell was 0 and the
variance between cells was 1. Principal component analysis
(PCA) was performed by the RunPCA function.

Cell Clustering
FindNeighbors and FindClusters functions in Seurat package were
utilized for cell clustering. The t-distributed stochastic neighbor
embedding (t-SNE) and uniform manifold approximation and
projection for dimension reduction (UMAP) were performed via
RunTSNE and RunUMAP functions.

Identification of Marker Genes and Cell
Types
Using the FindMarkers function in the Seurat package (version
4.1.0), the differentially expressed genes were calculated in each
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cluster compared to all other clusters based on |log2fold-change|
≥0.1, the expression ratio of the cell population ≥0.25, and the
p-value≤0.05, thereby obtaining marker genes. By comparing the
marker genes with the existing marker genes, cell types were
identified (Puthumana et al., 2021).

Ligand-Receptor Network Analysis
Through the CellPhoneDB database (version 2.0) (Efremova
et al., 2020), the cell–cell communication was inferred
according to the expression values of the receptor ligands
corresponding to diverse types of cells. Then, the
ligand–receptor pairs between the cells were obtained. The
ligand–receptor network was established by Cytoscape
software (Shannon et al., 2003).

Differential Expression Analyses and
Protein-Protein Interaction (PPI)
The expression of marker genes that were obtained by the
FindMarkers function was compared between diabetic kidney
specimens and controls through the limma package (Ritchie et al.,
2015). Differentially expressed marker genes with |log2fold-
change|>1 and p < 0.05 were visualized into volcano plots and
heat maps. The marker genes were imported into the STRING
database (version 11.5) (von Mering et al., 2003). The PPI
network was visualized via Cytoscape software (version 3.9.1).

Functional Enrichment Analyses
Gene oncology (GO) enrichment analysis of marker genes was
presented based on the gene oncology database (Ashburner et al.,
2000), containing three categories: biological process, cellular
component, and molecular function. Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways enriched by marker
genes were analyzed through the KEGG PATHWAY database
(Kanehisa and Goto, 2000). p-value<0.05 was considered
significant enrichment.

Single-Cell Regulatory Network Inference
and Clustering (SCENIC) Analysis
SCENIC algorithm was applied for reconstructing simultaneous
gene regulatory networks and identifying cell state based on
single-cell RNA-seq profiles (Aibar et al., 2017). According to
the expression profiling of each cell, the area under the curve
(AUC) value of each transcription factor corresponding to each
cell was calculated to infer the gene set “activity” with the AUCell
method. The AUC difference of each transcription factor between
the diabetic nephropathy and control samples was compared with
that of the limma package.

Establishment of Diabetic Nephropathy Rat
Model
Healthy Sprague–Dawley male rats (8–10 weeks old, weighing
200–250 g) were purchased from Beijing Huafukang
Biotechnology Co., Ltd (China). All rats were reared in an
environment of temperature (24 ± 0.5)°C, humidity (55 ± 5)%,

and light/dark (12/12) h. After 1 week of adaptive feeding, they
were randomly divided into a normal control group and a
diabetic nephropathy model group. All rats had free access to
water and food. The normal control group was given ordinary
feed. The diabetic nephropathy model group was given high-fat
and high-sugar feed. The feed formula was as follows: sucrose
20%, lard 10%, cholesterol 2.5%, sodium cholate 0.5%, and basic
feed 67%. After 8 weeks of feeding, rats in the diabetic
nephropathy model group were intraperitoneally injected with
30 mg/kg streptozotocin (Sigma, United States) solution
dissolved in sodium citrate buffer, followed by continuing to
feed on high-fat and high-sugar feed. After 7 days, blood was
taken from the tail vein and the rat’s blood glucose was measured.
Random blood glucose ≥16.7 mmol/L was the criterion for
successful diabetes modeling. On this basis, the diabetic
nephropathy model group was continuously given high-fat
and high-sugar feed for 4 weeks and blood glucose was
monitored. The 24-h urine albumin excretion rate was more
than 20 mg and the urine glucose was positive, suggesting that the
model of diabetic nephropathy was successful. All rats were
anesthetized by an intraperitoneal injection of pentobarbital
sodium (50 mg/kg). The kidneys of the rats were collected and
washed with normal saline at 4°C. Finally, the kidney tissue was
stored at -80 °C. This study gained the approval of the Ethics
Committee of The First Affiliated Hospital of Harbin Medical
University (2020-031).

Hematoxylin-Eosin (H&E) Staining
The kidney tissue was fixed with 4% paraformaldehyde solution
for 24 h. The tissue was dehydrated with gradient alcohol and
xylene. Then, the tissue was embedded in wax. After drying, the
tissue was cut into 4 μm thick sections. After patching, the
dehydration step was reverse-performed as described
previously. The section was stained by hematoxylin at room
temperature for 5 min. Hydrochloric acid alcohol
differentiation was presented. Afterwards, the section was
stained by eosin for 30 s. Dehydrate transparent was carried
out according to the previously mentioned dehydration step.
Images were observed under a light microscope after mounting
the slides.

Real-Time Quantitative Polymerase-Chain
Reaction (RT-qPCR)
Total RNA was extracted from 0.15 g kidney tissue through
Trizol reagent (Solarbio, Beijing, China), followed by being
reverse transcribed into cDNA. Using the SYBR green PCR kit
(Toyobo, Japan) and the ABI Prism7300 fluorescence
quantitative PCR instrument (ABI, United States), PCR
amplification of the target genes was presented. The PCR
amplification conditions were as follows: denaturation at
95 °C for 10 min, annealing at 60 °C for 1 min, and
extension at 95°C for 15 s, 40 cycles. The primer sequences
of target genes included: EIF4B, ATATCAGTGCAGTGCGTT
TA (F), and ATCCCTGTCTTTATCCTGTG (R); RICTOR,
GCATTTGGCAGTGGGTAT (F), and CCGAGGCTTTAG
ATTCAGT (R); PRKCB, CCCAAAGACCCAAACTGA (F),
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and GCTGACGCTGCAACTTCT (R); GAPDH,
GATGCTGGTGCTGAGTATGRCG (F), and
GTGGTGCAGGATGCA TTGCTCTG (R). The 2−ΔΔCt

method was applied for semi-quantitatively analyzing the
mRNA expression of the target genes.

Western Blot
Kidney tissue was added to RIPA lysate (Thermo Fisher Scientific,
United States) containing phosphatase inhibitor and protease,
followed by being disrupted by an ultrasound. Then, the sample
was centrifuged at 14,000 g at 4°C for 15 min, and the supernatant
was collected. The BCA protein detection kit (Pierce,
United States) was utilized for measuring the protein
concentration. 20 μg protein was loaded. After 10% sodium
dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, the
product was transferred to a polyvinylidene fluoride (PVDF)
membrane (Millipore, Germany). The membrane was blocked
with 5% bovine serum albumin at 37°C for 2 h, and was incubated
with primary antibodies overnight at 4°C. Antibodies included
EIF4B (1/10000; ab134138; Abcam, United States), RICTOR (1/
1000; ab219950; Abcam, United States), PRKCB (1/2000;
ab195039; Abcam, United States), and GAPDH (1/10000;
ab8245; Abcam, United States). After being washed 3 times
with TBST, the membrane was incubated with HRP-labeled
secondary antibody (1/2000; ab7097; Abcam, United States)
for 2 h at 37°C. After being washed three times, the protein
expression was detected by a gel quantitative analysis system
following treatment with ECL (Solarbio, Beijing, China) with
GAPDH as the reference control.

Statistical Analyses
R language (version 3.5.2) and Graphpad Prism software (version
8.0.1) were employed for statistical analyses. Student’s t-test or one-
way variance analyses were presented for comparisons between the
groups. p-value<0.05 indicated statistical significance.

RESULTS

Pre-Processing, Quality Control, and
Normalization of scRNA-Seq Data of
Diabetic Kidney Specimens and Controls
Here, we collected the scRNA-seq data of three early human
diabetic kidney specimens and three controls from the
GSE131882 dataset. Pre-processing, quality control, and
normalization were firstly performed in each sample. The
empty droplets may contain RNA from the surrounding
solution, so counts were not zero. The emptyDrops function
was employed for distinguishing empty droplets and cell droplets
by examining the significant deviations between the expression
profile of each barcode and the expression profile of the
surrounding solution. As shown in Figures 1A–C, cell
droplets had large negative log-probabilities and large total
counts for three healthy kidney specimens. The empty droplet
was then removed. The inflection points of the knee displayed the
transition of the total count distribution in three healthy kidney

specimens, reflecting the difference between empty droplets
containing little RNA and cell droplets containing a large
amount of RNA (Figures 1D–F). In each cell, the
mitochondrial genome is only a small part compared to the
nuclear genome. Therefore, the cells with a ratio of more than
10% of the mitochondrial genes were filtered. After filtering out
cells with UMI <100, we calculated the proportion of
mitochondrial and ribosomal genes expressed in each cell
(Figures 1G–L). With the same methods, we performed pre-
processing, quality control, and normalization of scRNA-seq data
of the three diabetic kidney specimens (Figures 2A–L).

Screening Highly Variable Genes and Cell
Clustering
After standardizing the filtered scRNA-seq data, we selected the top
2,000 highly variable genes that showed large differences between
cells, such as PLA2R1, SLC26A4, PTPRQ, IL1RL1, VCAM1,
SERPINE1, REN, SELE, HIST2H2AA3, and TM4SF1
(Figure 3A). After scaling the data linearly with ScaleData
function, we performed PCA on the scRNA-seq data for the
dimensionality reduction analysis using the RunPCA function
(Figures 3B,C). The Elbow plot ranked the main components
based on the percentage of variance revealed by each component.
We found that the elbow appeared when PC = 12, indicating that
most of the real signals were captured in the first 12 PCs
(Figure 3D). Heat maps visualized the marker genes in the first
12 PCs (Figure 3E). By applying two methods, t-SNE and UMAP,
we presented the cell clustering analysis. As a result, 12 cell clusters
were identified across diabetic kidney specimens and controls
(Figures 3F–I). Using the FindMarkers function, we found the
differentially expressed genes in each cell type compared to other
types, as the marker genes of the cell type. As shown in Figure 4A,
the top ten marker genes were identified in each cell cluster.
Moreover, we showed the top one marker genes in each cell
cluster, including SCNN1G, SLC12A3, SLC12A1, SLC5A12,
FTCD, SLC26A7, KRT19, BX571818.1, EGFL7, CFH, PTPRQ,
SLC4A9, CARMN, and PTPRC (Figure 4B).

Identification of Cell Types and Their
Marker Genes
By comparing the marker genes that we identified with the
published cell-type-specific markers, we defined the cell groups
that we clustered, including tubular cells, endothelium, parietal
epithelial cells, podocytes, collecting duct, mesangial cells,
immune cells, distal convoluted tubule, the thick ascending
limb, and proximal tubule (Figures 5A,B). Marker genes were
identified in each cell type by comparing with other cell types.
Figure 5C depicts the expression patterns of marker genes among
the cell types. A heat map showed the top ten marker genes in
each cell type (Figure 5D). We further visualized the expression
distribution of marker genes in each cell type as follows: NPHS1,
NPHS2, PTPRO, SYNPO, CLIC5, and ITGAV in podocytes
(Figure 5E); KDR, PECAM1, and PLVAP in endothelium
(Figure 5F); GATA3 in tubular cells (Figure 5G); ATP6V1G3
and ATP6V0D2 in collecting duct (Figure 5H); CD74 and
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FIGURE 1 | Pre-processing, quality control, and normalization of scRNA-seq data of the control kidney specimens. (A–C) The total count against the negative
log-probability in three healthy kidney specimens. Red indicated cell droplet and black indicated empty droplet. (D–F) Barcode rank plots in three healthy kidney
specimens. The inflection points of the knee indicate the transition of the total count distribution. (G–L) The ratios of mitochondrial and ribosomal genes expressed in
each cell of the three healthy kidney specimens.
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FIGURE 2 | Pre-processing, quality control, and normalization of scRNA-seq data of the diabetic kidney specimens. (A–C) The total count against the negative log-
probability in the three diabetic kidney specimens. Red indicated cell droplet and black indicated empty droplet. (D–F) Barcode rank plots in the three diabetic kidney
specimens. The inflection points of the knee indicate the transition of the total count distribution. (G–L) The ratios of mitochondrial and ribosomal genes expressed in
each cell of the three diabetic kidney specimens.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 7983166

Lu et al. scRNA-Seq Identify Diabetic Nephropathy Pathophysiology

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


KLRD1 in immune cells (Figure 5I); SLC12A3 and CALB1 in
distal convoluted tubule (Figure 5J); SLC12A1 and UMOD in the
thick ascending limb (Figure 5K); LRP2 and SLC27A2 in
proximal tubule (Figure 5L); CFH, CLDN1, and VCAM1 in
parietal epithelial cells (Figure 5M); and PDGFRB, CCN1, and
SLIT3 in mesangial cells (Figure 5N).

Establishment of a Ligand-Receptor
Network
The percentages of cells were compared between the diabetic
kidney specimens and controls. We found that the collecting

duct, distal convoluted tubule, podocytes, and proximal tubule
exhibited decreased percentages in the diabetic kidney specimens
compared to those in the controls (Figure 6A). Meanwhile,
endothelium, immune cells, mesangial cells, parietal epithelial
cells, the thick ascending limb, and tubular cells had increased
percentages in the diabetic kidney specimens than in the controls.
As shown in Figure 6B, immune cells had the highest cell ratio
among all cell types in the diabetic kidney specimens, and the
opposite results were found in control specimens, indicating that
immune cells could play a prominent role in diabetic
nephropathy progression. Cell–cell communication mediated
by ligand–receptor complexes plays key roles in coordinating

FIGURE 3 | Screening highly variable genes and cell clustering. (A) Screening the top 2,000 highly variable genes across cells based on scRNA-seq data. Red dots
indicate the highly variable genes and black dots indicate no significant genes. (B) Contribution of genes in the first two PCs. (C) PCA of filtered cells from the diabetic
kidney specimens (green dots) and controls (red dots). (D) Elbow plot for identifying the optimal PCs. (E)Heat map visualizing the expression ofmarker genes in each PC.
Cell clustering based on the (F,G) t-SNE and (H,I) UMAP methods.
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FIGURE 4 | Identification of marker genes in each cell cluster. (A) Heat map showing the top ten marker genes in each cell cluster. Yellow represented high
expression. (B) The expression distribution of the top one marker gene (SCNN1G, SLC12A3, SLC12A1, SLC5A12, FTCD, SLC26A7, KRT19, BX571818.1, EGFL7,
CFH, PTPRQ, SLC4A9, CARMN, and PTPRC) in each cell cluster.
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diverse biological processes. By CellPhoneDB v2.0, we identified
receptor–ligand pairs between cells. Figure 6C shows that
immune cells had close interactions with other cells by
receptor–ligand interactions. Supplementary Table S1 listed
the receptor–ligand pairs of differentially expressed marker
genes of immune cells.

Identification of Differentially Expressed
Marker Genes of Immune Cells in Diabetic
Nephropathy
With |log2fold-change|>1 and p < 0.05, we identified 83 up-
regulated and 56 down-regulated marker genes of immune cells
in the diabetic kidney specimens compared to the controls
(Figure 7A,B; Supplementary Table S2). The PPI network

revealed the tight interactions between these differentially
expressed marker genes of immune cells (Figure 7C). IKBKB
(degree = 5), HIST1H2AC (degree = 4), EIF4B (degree = 4), and
CALM1 (degree = 4) had the highest degree, which were
considered as hub genes. The biological implications of the
differentially expressed marker genes of immune cells were
further analyzed. In Figure 7D, these marker genes were
markedly involved in cellular protein metabolic process,
cellular protein modification process, multi-cellular organism
development, protein metabolic process, and regulation of
RNA metabolic process. They significantly participated in
regulating cellular components of cytosol, intracellular
membrane-bounded organelle, nuclear lumen, nucleoplasm,
and nucleus (Figure 7E). As shown in Figure 7F, the marker
genes had the molecular functions of kinase binding, metal ion

FIGURE 5 | Identification of cell types and their marker genes. (A,B) Identification of cell types in the diabetic kidney specimens and controls. Each cell type was
marked by a unique color. (C) The expression patterns of marker genes among cell types (D) Heat map for the top ten marker genes in each cell type. The expression
distribution of marker genes in (E) podocytes, (F) endothelium, (G) tubular cells; (H) collecting duct; (I) immune cells; (J) distal convoluted tubule; (K) the thick ascending
limb; (L) proximal tubule; (M) parietal epithelial cells; and (N) mesangial cells.
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binding, protein kinase binding, RNA binding, and transition
metal ion binding. Moreover, calcium signaling pathway, herpes
simplex virus one infection, mTOR signaling pathway, pathway
in cancer, and tuberculosis were significantly enriched by the
marker genes (Figure 7G). The aforementioned findings
indicated the important biological functions of the
differentially expressed marker genes of immune cells.

Single-Cell Regulatory Network Analysis
SCENIC was applied to infer the AUC values of each
transcription factor corresponding to each cell on the basis of
the expression profiles of each cell. The AUC was used to reveal
whether a key subset of the input gene set was enriched in the
expressed genes of each cell. By clustering cells by this regulator
activity, we can find whether there were cell populations that
tended to have the same regulator activity, and reveal the network
state that occurred repeatedly in multiple cells. By using the
limma package, we calculated the AUC difference of each
transcription factor between diabetic nephropathy and
controls. Figure 8A lists the top 50 transcription factors

according to the t values. Among them, GABPA, CHD2,
KDM5A, MAX, and SP1 were considered as the main
transcription factors. Compared to controls, GABPA, CHD2,
and KDM5A had higher AUC values.MAX and SP1 had
lowered AUC values in diabetic nephropathy (Figure 8B).
Immune cells had the high regulation activity of CHD2, MAX,
SP1, KDM5A, and GABPA based on scRNA-seq data
(Figure 8C).

Validation of the Expression of mTOR
Pathway Markers in External Datasets
Accumulated evidence has confirmed the crucial role of the
mTOR pathway in diabetic nephropathy (Qiao et al., 2019).
We found that differentially expressed marker genes (EIF4B,
RICTOR, and PRKCB) of immune cells were enriched in the
mTOR pathway, indicating that these marker genes could
participate in mediating the pathway. The GSE111154 and
GSE142025 datasets were utilized for validating the expression
of mTOR pathway markers EIF4B, RICTOR, and PRKCB in the

FIGURE 6 | Comparisons of the difference in various cell types between diabetic kidney specimens and controls and the establishment of a ligand–receptor
network. (A) Box plots showing the differences in the cell ratios of collecting duct, distal convoluted tubule, endothelium, immune cells, mesangial cells, parietal epithelial
cells, podocytes, proximal tubule, the thick ascending limb, and tubular cells between the diabetic kidney specimens and controls. (B) Stacked graph for the cell ratios
among the aforementioned cell types both in diabetic kidney specimens and controls. (C) The ligand–receptor network among the aforementioned cell types. The
number represents the number of relationship pairs.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 79831610

Lu et al. scRNA-Seq Identify Diabetic Nephropathy Pathophysiology

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


kidneys from controls and diabetic nephropathy patients. As
expected, their expression was significantly up-regulated in
diabetic nephropathy compared with controls both in the
GSE111154 (Figure 9A) and GSE142025 (Figure 9B) datasets.

Construction of Diabetic Nephropathy Rat
Models
After streptozotocin-induced diabetic rats were fed with a high-fat
and high-sugar diet for 4 weeks after being modeled, the rats in the

FIGURE 7 | Identification of differentially expressed marker genes of immune cells in diabetic nephropathy and analysis of their biological implications. (A)
Volcano diagram showing the expression differences in marker genes of immune cells between the diabetic kidney specimens and controls. Blue: down-regulation;
red: up-regulation and grey: no significance. (B) Hierarchical clustering analysis visualizing the expression patterns of differentially expressed marker genes of
immune cells between diabetic kidney specimens and controls. Blue indicates down-regulation and red indicates up-regulation. (C) The PPI network based on
the differentially expressed marker genes of immune cells. The depth of the color of bubble was proportional to |log2fold-change|. Blue indicated down-regulation
and red indicated up-regulation. (D) Biological processes, (E) cellular components, (F) molecular functions, and (G) KEGG pathways enriched by the differentially
expressed marker genes of immune cells. The size of the bubble was proportional to the number of enriched genes.
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model group showed significant polydipsia, polyphagia, polyuria,
weight loss, listlessness, and hair exhaustion, indicating that the rats
in the model group had already developed obvious symptoms of
diabetic nephropathy. H&E staining showed that the structure of
the rat kidney in the control group was neat and clear, and the
glomerular morphology, the renal tubules, and the cytoplasmic
staining were normal (Figure 9C). Compared with the control
group, the renal tubule lumen of the diabetic nephropathy model
group became larger, with hyaline casts visible in the lumen with
obvious vacuolization, lighter cytoplasmic staining, and pyknosis
of renal tubular epithelial cells (Figure 9C). The glomerulus

became smaller, the mesangium was enlarged, the basement
membrane was thickened, and the nucleus pyknosis was obvious.

Verification of the Expression of mTOR
Pathway Markers in Diabetic Nephropathy
Rat Models
The expression of mTOR pathway markers EIF4B, RICTOR, and
PRKCB was verified in kidney tissues from the control group and
the diabetic nephropathy rat model group. Our data showed that in
comparison to the control group, EIF4B, RICTOR, and PRKCB

FIGURE 8 | Single-cell regulatory network analysis. (A) The top 50 transcription factors according to the t values by comparing AUC values between diabetic
nephropathy and controls. (B) Heat map for the AUC values of the main transcription factors in diabetic kidney specimens compared to controls. (C) The expression
levels (upper) and AUC values (bottom) of the main transcription factors in immune cells.
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FIGURE 9 | Validation of the expression of the mTOR pathway markers in diabetic nephropathy. (A,B) Box plots of the expression of mTOR pathway markers
EIF4B, RICTOR, and PRKCB in control and diabetic nephropathy samples in the (A) GSE111154 and (B) GSE142025 datasets. DN: diabetic nephropathy. (C) H&E
staining of the morphology of kidney tissues in the control group and the diabetic nephropathy rat model group. Scale bar, 100 μm; magnification, ×400. (D) The mRNA
expression of EIF4B, RICTOR, and PRKCB was determined in kidney tissues from the control and diabetic nephropathy groups through RT-qPCR. (E,F) The
expression of EIF4B, RICTOR, and PRKCB proteins was determined in kidney tissues from the control and diabetic nephropathy groups throughWestern blot. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001.
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displayed markedly higher mRNA expression in diabetic
nephropathy rats (Figure 9D). Meanwhile, Western blot results
confirmed the significant up-regulation of EIF4B, RICTOR, and
PRKCB proteins in kidney tissues of diabetic nephropathy rats
than that of control rats (Figures 9E,F). This confirmed the
activation of the mTOR pathway in diabetic nephropathy.

DISCUSSION

ScRNA-seq allows observing gene expression changes on the cell-by-
cell basis. Through scRNA-seq, we identified highly variable genes that
strongly cause variations between cells across homogeneous cell
populations (Cao et al., 2020). Identification of cell types is a
common method to interpret scRNA-seq data and resolve cellular
heterogeneity based on the interactions between the transcriptomes and
phenotypes (Wang et al., 2020). By scRNA-seq profiles, we identified
specific cell types and their marker genes in diabetic nephropathy,
whichmight assist in finding new treatments for diabetic nephropathy.

Herein, this study identified 10 cell types in diabetic nephropathy
tissues and controls, including tubular cells, endothelium, parietal
epithelial cells, podocytes, collecting duct, mesangial cells, immune
cells, distal convoluted tubule, the thick ascending limb, and proximal
tubule in diabetic kidney specimens and controls. Among them,
immune cells had the highest proportion in diabetic nephropathy,
indicating that immune cells played a prominent role in the
progression of diabetic nephropathy. Epidemiological and
preclinical evidence suggests the relationships between
inflammation and diabetic nephropathy pathogenesis. Targeting
inflammation such as anti-inflammatory mediators and anti-
intracellular pathways has showed favorable therapeutic effects in
experimental diabetic nephropathy models, such as reducing
proteinuria and renal lesions (Rayego-Mateos et al., 2020).

The mTOR pathway participates in the pathogenesis of diabetic
nephropathy (Ma et al., 2018). Inhibiting the mTOR pathway can
prevent the early structural alterations in the renal tissues developing
towards diabetic nephropathy (Ma et al., 2018). Here, our study found
thatmarker genes of immune cells EIF4B, RICTOR, and PRKCBwere
significantly enriched in the mTOR pathway, which were significantly
up-regulated in the diabetic kidney specimens than in the controls. To
verify the expression of EIF4B, RICTOR, and PRKCB proteins, we
established a diabetic nephropathy rat model. Our RT-qPCR and
Western blot results confirmed the significant up-regulation of EIF4B,
RICTOR, and PRKCB in diabetic kidney specimens. Consistently, a
previous study has detected the significant overexpression of RICTOR
in renal tissues of diabetic nephropathy ratmodels (Wang et al., 2019).
MiRNA-424 facilitates diabetic nephropathy progression through
targeting RICTOR both in diabetic nephropathy rat models and
high-glucose–induced glomerular mesangial cell models (Wang
et al., 2019). Inhibiting RICTOR could alleviate high-
glucose–induced podocyte apoptosis (Song et al., 2020). PRKCB is
markedly up-regulated in kidney biopsies of diabetic patients
(Langham et al., 2008). Polymorphisms of the PRKCB1 protein
may facilitate kidney diseases in type 2 diabetes (Araki et al.,
2006). Collectively, marker genes of immune cells EIF4B, RICTOR,
and PRKCB in the mTOR pathway might participate in diabetic
nephropathy progression.

Several limitations of our study should be acknowledged. Although
the expression of EIF4B, RICTOR, and PRKCB was verified in a
diabetic nephropathy ratmodel, a deeper analysis should be conducted
for confirming their functions in diabetic nephropathy progression.

CONCLUSION

Collectively, our study identified 10 specific cell types and their
marker genes in diabetic nephropathy. Among all cell types, immune
cells had the highest ratio in diabetic nephropathy tissues, which
were considered as a determinant during diabetic nephropathy
progression. Also, we established diabetic nephropathy rat
models; marker genes (EIF4B, RICTOR, and PRKCB) of the
immune cells were confirmed to be up-regulated in diabetic
nephropathy. Thus, immune cells and their marker genes might
be important pathophysiologic factors of diabetic nephropathy.
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