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Membraneless granules assemble in different cell types and cellular loci and are the focus
of intense research due to their fundamental importance for cellular organization. These
dynamic organelles are commonly assembled from RNA and protein components and
exhibit soft matter characteristics of molecular condensates currently characterized with
biophysical approaches and super-resolution microscopy imaging. In addition, research
on the molecular mechanisms of the RNA–protein granules assembly provided insights
into the formation of abnormal granules and molecular aggregates, which takes place
during many neurodegenerative disorders including Parkinson’s diseases (PD),
Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal
dementia (FTD). While these disorders are associated with formation of abnormal
granules, membraneless organelles are normally assembled in neurons and contribute
to translational control and affect stability of neuronal RNAs. More recently, a new subtype
of membraneless granules was identified in Drosophila glia (glial granules). Interestingly,
glial granules were found to contain proteins which are the principal components of the
membraneless granules in germ cells (germ granules), indicating some similarity in the
functional assembly of these structures in glia and germline. This mini review highlights
recent research on glial granules in the context of other membraneless organelles,
including their assembly mechanisms and potential functions in the nervous system.

Keywords: membraneless organelles, glia, germ granules, stress granules, Tudor domain, PIWI, neurodegenerative
disease

INTRODUCTION

Since description of characteristic membraneless granules in germ cells of over 80 animal species in
eight phyla documented several decades ago (Eddy, 1975), it is now recognized that the assembly of
large intracellular organelles, which lack the membrane, is one of the fundamental landmarks of
cellular organization. In addition to formation of cell type-specific granules (such as germ granules in
germ cells or neuronal granules in neurons), the membraneless structures are commonly assembled
in nuclei and cytoplasm of most cells and include nucleoli, Cajal bodies, processing (P) bodies, and
stress granules (Kiebler and Bassell, 2006; Anderson and Kedersha, 2008; Arkov and Ramos, 2010;
Voronina et al., 2011; Gao and Arkov, 2013; Feric et al., 2016; Protter and Parker, 2016; Luo et al.,
2018; Formicola et al., 2019; Marnik and Updike, 2019; Strom and Brangwynne, 2019; Trcek and
Lehmann, 2019; Campos-Melo et al., 2021; Courchaine et al., 2021). In addition, multiple subcellular
loci with crucial general functions such as silent chromatin (heterochromatin) and the RNA
polymerase II-bound regions of transcriptionally active genes show properties of membraneless
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granules (Larson et al., 2017; Strom et al., 2017; Boehning et al.,
2018; Lu et al., 2018). These soft matter properties are based on
the granules’ assembly mechanisms which often can be described
as protein/nucleic acid demixing (condensation) or phase
separation from the rest of the cytosol (or nucleoplasm).

A recent study pointed to a number of common principles of
the assembly of several membraneless ribonucleoprotein (RNP)
granules. First, it was found that RNA components of the germ
granules assemble in the large granule as homotypic
clusters—large aggregates of the same RNA species (Little
et al., 2015; Trcek et al., 2015; Trcek et al., 2020). In addition,
some protein components of germ granules assemble into the
granules as distinct clusters as well; however, the proteins show
some overlap in the granules. Interestingly, the extent of the
overlap for the same proteins and the distribution of the proteins
within the granules can drastically change during development
(Vo et al., 2019). Similar “docking” of two protein clusters,
namely, coilin and survival of motor neuron (SMN) clusters,
was recently described during the formation of Cajal body/gems
granule in the nucleus (Courchaine et al., 2021). Also, a recent
study provided a mechanistic view for the role of MEG-3 protein
clusters, assembled at the interfaces of germ granules in
Caenorhabditis elegans (P granules), in the regulation of
granule condensates’ dynamics and stability (Folkmann et al.,
2021). Interestingly, the function of these protein clusters is
similar to the role of commonly used emulsion stabilizers
(Pickering agents) adsorbed to interfaces of emulsion droplets.

Overall, for different membraneless granules, including germ
granules, nucleoli, and Cajal bodies/gems, common structural
features have emerged that show non-homogenous distribution
of granule components within the granules, which can change
during development and can be regulated by specific post-
translational modifications of protein components. The
functional significance and molecular mechanisms driving this
non-random distribution of granule components is the subject of
current research.

Many membraneless structures share landmark molecular
characteristics, such as the presence of intrinsically disordered
proteins (IDPs) or protein regions (IDPRs), which lack a defined
folded structure, and low-complexity regions (LCRs), which may
or may not have a distinct structure but show low diversity of
their amino acids (Martin and Mittag, 2018). These protein
regions are important components that can drive the assembly
(condensation) of membraneless granules using their multivalent
low-affinity associations with their interacting partners. Given the
high occurrence of IDPs and IDPRs (about 51% of human
proteins are either IDPs or contain IDPRs (Deiana et al.,
2019)), it is surprising that different cell types use the same
proteins to assemble membraneless granules. In particular,
previous research works identified proteins that are found in
both neuronal and germ granules, supporting the notion that
neurons and germ cells utilize the same components to assemble
the granules for specific similar functions in these cells (Kulkarni
et al., 2020), and indicating that in addition to generally
ubiquitous IDPRs, specifically structured protein domains may
be selected to build the granules in different cells. Consistent with
this, it was recently found that a structured Tudor (Tud) domain

of SMN protein, and not its two IDPRs, is sufficient for formation
of membraneless condensates (Courchaine et al., 2021).

In this mini review, the author highlights novel membraneless
granules identified in glia of the adult Drosophila brain (referred
to as “glial granules”) (Tindell et al., 2020), which were found to
contain protein components of germ granules and discuss the
potential significance of glial granules for brain functions in the
context of other membraneless organelles.

GLIA AND GLIAL GRANULES

Glial Cells in Drosophila
Since one of the principal components of the Drosophila germ
granules, Tud scaffold protein (Arkov et al., 2006; Gao et al., 2015;
Vo et al., 2019), was found to be expressed not only in germline

FIGURE 1 | Glial granules in the Drosophila adult brain contain germline
proteins, and they assemble from distinct protein clusters. This figure gives
examples of glial granules recently published in Tindell et al. (2020). (A) A
super-resolution microscopy image of a cortex region of the adult
Drosophila brain shows multiple glial granules containing Tud protein (red
channel) in surface glia (the outermost layer of surface glia, perineurial glia, is
labeled with the membrane marker GFP-mCD8, green channel) and in the
neighboring cortex glia. (B) Overlays of super-resolution optical sections of
individual glial granules, which show Tud (red) and Vas (green) proteins (left
panels), and corresponding 3D reconstructions of the individual protein
clusters (middle panels) and composite granules (right panels) are shown.
Scale bar in (A) is 7 μm. In (B), scale bar, shown in the first optical section (top
left), is the same for the other optical section and is 1 μm.
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but also in the Drosophila head, distribution of Tud in the adult
brain was recently examined in more detail (Tindell et al., 2020).
These experiments led to the identification of Tud-containing
large granules of about 0.5–2 μm in size in the cytoplasm of
specific types of glial cells (but not in the neurons of the adult
brain) (Tindell et al., 2020), Figure 1).

In the adult Drosophila brain, there are several types of glial
cells, including surface glia, composed of perineurial and
subperineurial glia, cortex glia, astrocyte-like glia, and
ensheathing glia (Freeman, 2015; Kremer et al., 2017; Bittern
et al., 2021). Interestingly, Tud-containing glial granules were
observed in perineurial, subperineurial, and cortex glia, which are
located at the surface and cortex of the brain. Perineurial and
subperineurial glia form a barrier at the brain surface, and while
the perineurial glia layer is porous and permeable, subperineurial
glial cells, located below perineurial glia, are tightly connected
with septate junctions, which prevent paracellular diffusion of the
molecules, and thereby, surface glia is analogous to the
blood–brain barrier in the mammalian brain. While both
perineurial and subperineurial glia together form a continuous
layer covering the entire central and peripheral nervous systems
(Kremer et al., 2017), these glial cells employ different
developmental strategies to form the layer. In particular,
during development and expansion of the nervous system,

perineurial glial cells constantly divide to produce a large
number of relatively small narrow and elongated cells
(Awasaki et al., 2008; Avet-Rochex et al., 2012). In contrast,
subperineurial glial cells keep their small numbers during
development but greatly enlarge their size by endoreplication
(Unhavaithaya and Orr-Weaver, 2012).

As directly connected with hemolymph, perineurial glia is
involved in transportation of nutrients from the hemolymph into
the nervous system through its membrane transporters. In
addition, perineureal glia plays an important role in ethanol
tolerance using its A-kinase anchoring protein (Akap200)-
dependent structural remodeling of actin cytoskeleton
(Parkhurst et al., 2018). Interestingly, perineurial glia have
circadian molecular clock (Zhang et al., 2018), and it is
involved in the regulation of circadian locomotion behavior
(Kozlov et al., 2020).

Subperineurial glia has been implicated in male courtship
(Hoxha et al., 2013) and sleep behavior (Artiushin et al.,
2018). In addition, subperineurial glia’s efflux transporters are
regulated by the circadian clock in perineurial glia, and they are
responsible for pumping xenobiotics out into hemolymph most
actively during daytime (Zhang et al., 2018).

Cortex glial cells encapsulate virtually all neuronal cell bodies
in the fly brain (Figure 2) and are functionally equivalent to

FIGURE 2 | Schematic of the adult Drosophila brain indicating novel glial granules assembled in surface and cortex glia. Recent evidence points to the function of
these granules in transcriptome regulation and silencing of transposable elements in the Drosophila brain (Tindell et al., 2020). Future research will test whether glial
granules are involved in specific aspects of brain development and function including neuronal survival and metabolic support, behavior, and response to external/
environmental factors.
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mammalian protoplasmic astrocytes (Pereanu et al., 2007;
Awasaki et al., 2008; Freeman, 2015). Cortex glia are involved
in several essential physiological and behavioral aspects such as
metabolic neuronal support, control of neuronal excitability,
sleep, locomotion, ethanol response, and removal of dead
neurons using phagocytosis (Coutinho-Budd et al., 2017; Farca
Luna et al., 2017; Delgado et al., 2018; Lee et al., 2019; Mclaughlin
et al., 2019; Nakano et al., 2019; Weiss et al., 2019). In addition,
defects in the membrane of the cortex glia cause light-induced
seizures (photosensitive epilepsy) (Kunduri et al., 2018).
Interestingly, a recent study demonstrated that fragile X
mental retardation protein (FMRP), which is one of the
crucial components of neuronal granules, has an additional
role in glia-mediated phagocytosis that is responsible for
neuronal clearance after injury and during neurodevelopment
(O’Connor et al., 2017). Importantly, during development,
neuronal FMRP signals to cortex and ensheathing glia to
activate glial phagocytosis to carry out removal of transient
neurons (Vita et al., 2021).

Germline Components of Glial Granules
Tudor and Tudor Domains
Tud protein is one of the principal components of germ granules
and plays a role of molecular scaffold due to its 11
protein–protein interaction modules (Tud domains) (Arkov
et al., 2006; Liu et al., 2010; Gao et al., 2015; Zheng et al.,
2016). The Tud domain is a 50–55 amino acid β-barrel
structure, which forms an interaction cavity referred to as
“aromatic cage” since it is lined with aromatic amino acids.
Aromatic cage of the Tud domain interacts with methylated
amino acids of Tud partner proteins such as methylated arginines
and lysines. In germ cells, Tud is required for the assembly of
germ granules at the posterior pole of the egg (polar granules),
and it is essential for formation of primordial germ cells during
early embryogenesis (Boswell and Mahowald, 1985; Thomson
and Lasko, 2004; Arkov et al., 2006). Tud domain-containing
proteins are molecular landmarks of germline in many animals
and important contributors to the mechanisms responsible for
silencing of transposable elements (Arkov and Ramos, 2010).
Similarly, glial granule Tud protein is required for silencing of
transposable elements in theDrosophila adult brain (Tindell et al.,
2020).

Interestingly, neuronal granule FMRP contains two tandem
domains of Tud family (Ramos et al., 2006; Myrick et al., 2015). In
Drosophila germ cells, FMRP homolog was also found to
associate with Piwi family proteins, Piwi and Aubergine (Aub),
and contribute to silencing of transposable elements (Megosh
et al., 2006; Bozzetti et al., 2015).

Piwi Family Proteins
Drosophila genome encodes three Piwi family proteins (Piwi,
Ago3, and Aub), which belong to a distinct clade of a larger group
of argonaute (Ago) proteins (Ku and Lin, 2014; Iwasaki et al.,
2015; Arkov, 2018). Similar to other Argonautes, which associate
with small guide RNAs, Piwi proteins associate with 24–31
nucleotides long Piwi-interacting RNAs (piRNAs). In
germline, piRNAs guide Piwi proteins to the transposon RNA

targets, and thereby Piwi proteins silence these targets by either
direct endonucleolytic cleavage (Nishida et al., 2015) or by
repressing transcription of transposon genes by the assembly
of heterochromatin at transposon genomic loci (Le Thomas et al.,
2013).

In different animals, Tud domain-containing proteins interact
with symmetrically dimethylated arginines (sDMAs) of Piwi
proteins in germ granules (Kirino et al., 2009; Vagin et al.,
2009). In particular, in Drosophila germline, methylated Aub
associates with Tud domain proteins Tud and Krimper (Nishida
et al., 2009; Kirino et al., 2010; Huang et al., 2021; Vrettos et al.,
2021). In glial granules, both Piwi and Ago3 were identified;
however, Aub protein was not detected in these granules. In
addition to Ago3 assembly in glial granules, Ago3 was also
expressed in a distinct population of neurons (Tindell et al.,
2020). Consistent with these data, previous study showed
expression of Aub and Ago3 in neurons of mushroom body,
which is crucial for olfactory memory, and provided genetic
evidence that, similar to the role of Aub and Ago3 in germ
cells, these proteins repress transposable elements in the adult
brain (Perrat et al., 2013). Interestingly, Aub principal interacting
partner in germ granules, Tud protein, is not detected in neurons
of the adult brain, and whether Aub is assembled in neuronal
granules in mushroom body and associates with other Tud
domain-containing proteins awaits further investigation.

ATP-Dependent RNA Helicase Vasa
Vasa (Vas) is a DEAD-box RNA helicase, which is required for
development and specification of germline in different organisms
(Raz, 2000) (see Figure 1B, which shows Vas and Tud in glial
granules (Tindell et al., 2020)). Similar to Tud domain and Piwi
proteins, Vas is essential for silencing of transposable elements in
germline and is one of the principal components of germ granules
(Dehghani and Lasko, 2017). Generally, in the granules, Vas may use
its RNA helicase activity to remodel RNA in ribonucleoprotein
complexes and to function as an RNA chaperone and regulator of
RNA stability and translation (Sengoku et al., 2006; Arkov and
Ramos, 2010). In particular, it was shown that Vas helps to
dissociate target RNA fragments from Aub homolog from
Bombyx mori (silkworm) (Siwi) after Siwi’s cleavage of its target
RNA, thereby increasing the efficiency of transposon silencing
mechanisms (Nishida et al., 2015; Arkov, 2018).

Polar Granule Component
The polar granule component (pgc) encodes a 71 amino acid
protein, and in germ cells it localizes to the nuclei where it
represses elongation of transcription by preventing the action of
positive transcription elongation factor (P-TEFb). P-TEFb is
composed of cyclin-dependent kinase 9 (Cdk9) and cyclin T
(CycT), and Pgc protein binds to Cdk9 subunit of the P-TEFb
complex, which interferes with association of P-TEFb with
transcriptionally active regions (Hanyu-Nakamura et al., 2008).
Recently, Pgc was shown to play a role in repressing production of
miRNA precursors in germ cells, thereby enabling expression of
germline mRNAs, which are targeted by miRNAs, thus
preventing germ cell death during embryogenesis (Hanyu-
Nakamura et al., 2019). While all the reported functions of
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Pgc in germ cells are associated with its role in transcription,
identification of Pgc protein in cytoplasmic glial granules may
point to a novel role of this protein in glia. Alternatively, Pgc
protein may be stored in glial granules and, upon a signaling
event in glia, Pgc could be released from the granules and
translocated to the nucleus for transcriptional regulation.

FUNCTIONAL ASPECTS OF THE
MEMBRANELESS ORGANELLES

Different membraneless granules have been implicated in a
variety of functions, including regulation of translation and
RNA storage/localization (P-bodies, stress granules, germ
granules, and neuronal granules) (Arkov and Ramos, 2010;
Voronina et al., 2011; Gao and Arkov, 2013; Luo et al., 2018;
Formicola et al., 2019; Marnik and Updike, 2019; Trcek and
Lehmann, 2019; Campos-Melo et al., 2021),
compartmentalization of distinct steps of ribosome assembly
in nucleoli (Feric et al., 2016), and bringing together different
piRNA pathway components to enable efficient silencing of
transposable elements in germ granules (Arkov, 2018).

In particular, in the nervous system, neuronal or transport
membraneless granules are assembled to control translation of
neuronal mRNAs. One of the principal components of neuronal
granules, FMRP, is a well characterized RNA-binding protein and
translational repressor (Tsang et al., 2019; Lai et al., 2020). Upon
the assembly of the granules, translation of multiple neuronal
mRNAs is repressed during transport of these mRNAs from
neuronal cell body to the synaptic regions. When granules arrive
in the synaptic region, they release or unmask these mRNAs for
local translation. Interestingly, there is evidence that this mRNA
unmasking and translational activation during neuronal
stimulation is promoted by disassembly of the neuronal
granules which is induced by dephosphorylation and
methylation of FMRP, decreasing its property to form
RNA–protein condensates by phase separation (Tsang et al.,
2019).

Similar to neuronal granules, stress granules repress
translation of their RNA components upon various stress
conditions and can transfer the RNAs to P-bodies for
degradation of these RNAs (Anderson and Kedersha, 2008).
However, recently it was also shown that some RNAs in stress
granules are translationally active (Mateju et al., 2020).
Importantly, dysregulation of RNA–protein granules, in
particular, stress granules, has been strongly implicated in
development of several neurodegenerative diseases, such as
Alzheimer’s, Huntington’s, ALS, and FTD, for which there is
currently no cure (Ash et al., 2014; Mcaleese et al., 2017; St-
Amour et al., 2018; Coudert et al., 2019; Ryan and Fawzi, 2019;
Wolozin and Ivanov, 2019; Dudman and Qi, 2020). Furthermore,
mutations in genes encoding stress granule RNA-binding
proteins including TAR-DNA binding protein (TDP-43), fused
in sarcoma/translated in liposarcoma (FUS/TLS), heterogeneous
nuclear ribonucleoprotein A1 (hnRNPA1), and T cell-restricted
intracellular antigen-1 (TIA-1) have been found in ALS/FTD
patients pointing to direct link between abnormal regulation of

stress granule formation in these neurodegenerative disorders
(Benajiba et al., 2009; Kwiatkowski et al., 2009; Pesiridis et al.,
2009; Gendron et al., 2013; Kim et al., 2013; Mackenzie et al.,
2017). Importantly, many of these mutations in stress granule
proteins are found in their LCRs, which result in the granule’s
decreased dynamics and increased liquid–liquid phase
separation, and ultimately, it leads to irreversibly insoluble
pathological granules (Baradaran-Heravi et al., 2020).

While glial granules have been described very recently, it is
possible that they are involved in post-transcriptional gene
regulation in glia, including translational repression, RNA
degradation, and recruitment of other RNAs for storage. It is
intriguing that Tud-containing glial granules have been detected
only in surface and cortex glia, which may indicate that the
granules have roles important for the specific functions of these
types of glia located at or close to the surface of the brain. For
example, these functions may be related to the brain response to
or protection from the environmental factors or pathogens
present in hemolymph and metabolic support of neurons
(Figure 2). In addition, to prevent a pathological cell
transformation, co-expression of germline genes in somatic
cells may need to be restricted to and tightly controlled in a
limited group of cells when germ-like granules are needed for
function since ectopic expression of several germline components
of glial granules including Piwi and Vas has been observed in
Drosophila larval brain tumors in lethal (3) malignant brain
tumor (l(3)mbt) mutants (Janic et al., 2010). Importantly,
ectopic expression of these genes contributes to tumor
development in the l(3)mbt mutants indicating that the
germline genes may act to drive tumorigenesis in somatic cells.

Transcriptomic data showed that glial granule component
Tud is required for silencing of transposable elements in the
brain (Tindell et al., 2020). Consistent with these data, Piwi
proteins, Piwi, and Ago3, which are the principal factors of
the transposon silencing mechanisms in the germ granules, are
bona fide components of glial granules. In addition, non-
transposon RNAs are likely to be regulated in glial granules
also, which is consistent with the finding that tud mutant
showed significant misregulation of multiple non-transposon
RNAs in the Drosophila brain (Figure 2).

FUTURE PERSPECTIVES

In conclusion, while it is intriguing that several proteins are
shared by glial and germ granules, these granules are likely to
include specific components needed for their functions in glia and
germline, respectively. Therefore, future research will
comprehensively analyze the glial granule composition and
test functional roles of the granule components in the brain.
In particular, future studies on glial granules should determine
whether specific neuron/glia or glia/hemolymph signaling affects
the assembly and potential roles of these novel granules in post-
transcriptional gene regulation, response to environmental
factors, and behavior (Figure 2). Furthermore, potential
functional links between glial granules and other
membraneless organelles, such as stress granules, should be
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explored. In addition, given the importance of glia in virtually
every aspect of neuronal activity, it will be important to determine
whether glial granules show age-related changes in dynamics and
composition, which may be linked to neurodegeneration. Overall,
future research works on glial granules may provide important
insights into biogenesis and formation of pathological granules in
the nervous system and suggest ways to reverse their assembly.
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