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G protein-coupled receptors (GPCRs), as the largest family of receptors in the human
body, are involved in the pathological mechanisms of many diseases. Heterotrimeric G
proteins represent the main molecular switch and receive cell surface signals from
activated GPCRs. Growing evidence suggests that Gα12 subfamily (Gα12/13)-mediated
signaling plays a crucial role in cellular function and various pathological processes. The
current research on the physiological and pathological function of Gα12/13 is constantly
expanding, Changes in the expression levels of Gα12/13 have been found in a wide range of
human diseases. However, the mechanistic research on Gα12/13 is scattered. This review
briefly describes the structural sequences of the Gα12/13 isoforms and introduces the
coupling of GPCRs and non-GPCRs to Gα12/13. The effects of Gα12/13 on RhoA and other
signaling pathways and their roles in cell proliferation, migration, and immune cell function,
are discussed. Finally, we focus on the pathological impacts of Gα12/13 in cancer,
inflammation, metabolic diseases, fibrotic diseases, and circulatory disorders are
brought to focus.
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INTRODUCTION

G protein-coupled receptors (GPCRs) family are a superfamily of membrane receptors responsible
for signal transduction in cells. GPCRs are extensively studied drug targets because they participate in
a broad range of human physiological and pathological processes. There are currently 481 drugs
(about 34% of all drugs approved by the FDA) acting on 107 unique GPCRs to treat different
diseases, including neurological disorders, metabolic and cardiovascular diseases, cancer, and
inflammation (Hauser et al., 2017; Wang et al., 2020). Heterotrimeric G proteins are sensors for
GPCR active conformations and trigger intracellular signal transduction (Maziarz et al., 2020).
Heterotrimeric G proteins are composed of Gα, Gβ, and Gγ subunits, which are mainly located on
the inner leaflet of the plasmamembrane (Bondar and Lazar, 2021). Gα proteins are divided into four
categories based on sequence homology and downstream effectors: Gαs (s stands for stimulation),
Gαi/o (i stands for inhibition), Gαq/11, and Gα12/13 (Hilger et al., 2018; Yang et al., 2020). The function
of Gαs, Gαi/o, and Gαq have been well documented. Meanwhile, the progress in understanding the
function of the Gα12/13 family, which was discovered in the early 1990s, has been relatively slow (Kim
et al., 2018a). Nevertheless, with the development of new research tools (for example, constitutively
active mutants, fusion proteins, and gene knockout, etc.), progress has been made in further to
understanding the function of Gα12/13 in recent years (Worzfeld et al., 2008).
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Gα12/13 subunits are expressed in most cell types and are able
to induce diversified cellular signaling and responses that are
important players in health and disease. Gα12 and Gα13 share 67%
of their amino acid sequence and have many downstream
signaling targets in commm (Montgomery et al., 2014; Stecky
et al., 2020). Some of the pathways that are triggered by both Gα12
and Gα13 include phospholipase C (PLC)-ε and phospholipase D,
mitogen-activated protein kinase (MAPK), and Na/H-exchange
which promote cytoskeletal alterations, carcinogenic responses,
and apoptosis (Litosch, 2012; Dusaban et al., 2013; Xie et al.,
2016). Moreover, Gα12/13 interacts with specific guanine
nucleotide exchange factors (GEFs) (e.g., p115RhoGEF,
leukemia-related RhoGEF, and PDZ-RhoGEF) to activate
downstream effectors, including ras homolog family member
A (RhoA), PLC, adenylate cyclase, and a variety of ion
channels (Mikelis et al., 2013). These effectors, in turn,
regulate the concentration of secondary messengers in the
cells, such as diglycerides, cyclic adenosine monophosphate
(cAMP), sodium ions, and calcium ions. Together, the
activated RhoA and sencodary messengers eventually lead to
physiological responses (Jiang et al., 2008; Kalwa et al., 2015;
Wang et al., 2019). Furthermore, Gα12/13 subunits also regulate
the activity of a variety of transcription factors, such as signal
transducer and activator of transcription 3, serum response factor
(SRF), activator protein 1 (AP-1), and activated T cell nuclear
factor (NFAT) (Kumar et al., 2006; Lee et al., 2009; Song et al.,
2018; Yagi et al., 2019). Abnormally elevated upstream stimuli
promote the incidence and development of diseases by increasing
the corresponding receptor coupling to Gα12 and/or Gα13 (Yang
et al., 2020; Rasheed et al., 2021). In this review, the structure of
Gα12 and Gα13 is reviewed along with their roles in GPCR signal
pathways, cell function, and disease pathogenesis.

The Amino Acid Structure of Gα12 and Gα13
The Gα12/13 subfamily consists of two α subunits encoded by
GNA12 and GNA13. The Gα12/13 subunits were originally
discovered based on the amino acid sequence similarity with
other Gα subunits and their insensitivity to pertussis toxin (Arang
and Gutkind, 2020). The structure of Gα12/13 subunit consists of
an amino-terminal α-helical domain and a Ras-like GTPase
domain. There is a link between these two domains involved
in binding to GDP and GTP (Syrovatkina et al., 2016; Smrcka and
Fisher, 2019). In response to activation of GPCR, the
conformation of GDP-bound inactive Gα12/13 is transformed
into the active form with GTP binding, triggering the
dissociation of Gα12/13 from Gβγ and activation of
downstream effectors (Arthofer et al., 2016). After
dissociation, free Gβγ subunits transmit signals through
regulating canonical effectors, including adenylate cyclase,
PLC, and various ion channels (Senarath et al., 2018). Gβγ
subunits also regulate a series of non-canonical effectors, such
as the nuclear import of the extracellular regulated protein
kinases (ERK) 1/2, oxidative phosphorylation, and mRNA
processing (Khan et al., 2016). The large number of Gβγ
subunits in mammal cells define much of the diversity that
occurs within GPCR signaling with resepect to spatial and
temporal bias and are extensively involved in the pathogenesis

of diseases (Masuho et al., 2021). Gβγ signaling has been
previously well summarized.

Although Gβγ-mediated effects of GPCR signaling are diverse,
the assorted isoforms of Gα also have a wide variety of influences.
These varied functions are highly related to their structures.
Under present consideration, Gα12 has four isoforms, of which
isoform 1 is the longest isoform containing 381 amino acids
(Figure 1). Compared with isoform 1, the encoded isoform 2 (305
amino acids) and isoform 3 (322 amino acids) are shorter and
have different N-termini. Both Gα12 isoform 2 and 3 have distinct
5′ untranslated region and 5′ coding region for different
N-termini. The isoform 4 of Gα12 lacks in-frame exons in the
3′ coding region relative to the isoform 1; the encoded isoform 4
(364 amino acids) is also shorter than isoform 1. Gα13 has two
isoforms, of which isoform 1 is the longer isoform containing 377
amino acids. The isoform 2 of Gα13 uses an alternative 5′ exons
resulting in a downstream start codon AUG. Thus, the encoded
isoform 2 of Gα13 has a shorter N-terminus than the isoform 1.
The isoform sequences of Gα12 or Gα13 show similar structural
domains, including an adenylyl cyclase binding site, a β-γ
complex binding site, a switch I region (one of two surface
loops that undergo conformational changes upon GTP
binding), a switch II region, and a putative receptor binding
site, respectively, (Lambright et al., 1996; Sunahara et al., 1997;
Tesmer et al., 1997). Additional difference in the amino acid
sequence of each isoform may provide tissue specific expression
and cellular localization to fulfill the broad functional roles of the
Gα12 or Gα13.

While literature clearly show that Gα12/13 has different
functions from other Gα subtypes, the functional difference
between the isoforms of Gα12 and Gα13 has not been reported.
Future studies on the structure-functional relationship between
these isoforms will help understanding their roles in cells and
diseases.

Regulation Network of Gα12/13
Gα12/13 has been shown to couple to more than 30 GPCRs.
Activated by various upstream stimuli, Gα12/13 can transmit to
divergent downstream signaling pathways and regulates cell
function in pathophysiological processes (Ackerman et al.,
2015; Yung et al., 2017; Yanagida et al., 2018; Spoerri et al.,
2020). Gα12 and Gα13 are broadly expressed, yet gene deficiency
in mice shows that they are not interchangeable (Yang et al.,
2020). Some GPCRs preferentially couple to either Gα12 or Gα13
(Ayoub and Pin, 2013; Yung et al., 2017; Mackenzie et al., 2019).
Moreover, non-GPCRs are also shown to couple to Gα12 and
Gα13 (Shen et al., 2013; Shen et al., 2015; Piccinin et al., 2019)
(Table 1).

GPCRs Triggered Gα12/13 Signaling
Lysophosphatidic Acid Receptors
Lysophosphatidic acid (LPA) is a biologically active
phospholipid, which mediates various biological functions
through six homologous LPA receptors (LAPRs) (Plastira
et al., 2020). Activated LPARs promote Gα12, but not Gα13,
association with v-raf murine sarcoma viral oncogene homolog
A which than activates ERK. The activated ERK promotes ring
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finger and FYVE like domain-containing E3 ubiquitin protein
ligase transcription and fibroblast migration (Gan et al., 2013).
LPAR-Gα12/13 signaling also plays an important role in
embryonic blood vessel development (Tanaka et al., 2006).
Additionally, LPAR1/2 couple with Gαi/o, Gαq/11, as well as
Gα12/13 to activate a variety of downstream pathways, such as
protein kinase B (PKB, commonly known as AKT), RhoA,
MAPK, and phosphatidylinositol 3-kinase (PI3K), and
regulates cell proliferation, migration, and cytoskeleton
rearrangement (Kihara et al., 2014). Previous studies have
identified that LPAR4/6 can effectively couple to Gα12/13 to
stimulate Rho GTPase, which subsequently activates Rho-
associated protein kinase (ROCK) I/II, leading to changes in
the tension of the actin cytoskeleton (Noguchi et al., 2003;
Yanagida et al., 2009). The LPAR4/6-activated Gα12/13-Rho-
ROCK signal also promotes nuclear translocation of Yes-
associated protein/transcriptional coactivator with PDZ-
binding motif (YAP/TAZ) (Yasuda et al., 2019). YAP/TAZ
promotes the proliferation of cancer cells (such as liver,
bladder, and lung cancers) and accelerates the progress of
cancer (Yagi et al., 2016; Maziarz et al., 2020). Activation of
LPAR5 also induces axon retraction and stress fiber formation
through an LPA-LPAR5-Gα12/13 pathway (Lee et al., 2006). As of

today, there is no evidence supporting a coupling between LPAR3
and Gα12/13.

Frizzleds
Frizzled (FZD) receptors are unconventional GPCRs, which can
be activated by theWingless/Int-1 lipoglycoprotein (WNT) family
(Janda et al., 2017). FZD4 interacts with Gα12/13 and does not
interact with other subunits of the G protein family. The complex
formed by FZD4 and Gα12/13 is dissociated under WNT
stimulation. The FZD4-Gα12/13 signaling mediates cytoskeletal
rearrangement and Rho signaling through p115RhoGEF,
affecting angiogenesis in embryonic and tumor development
(Arthofer et al., 2016). WNT5a/b and WNT3a bind to the
receptor tyrosine kinase-like orphan receptor 1/2-FZD
complex, activating Rho GTPases through Gα12/13. The
activated Rho inhibits the activity of large tumor suppressor 1/
2 (LATS1/2), leading to YAP/TAZ dephosphorylation and
nuclear translocation and promoting bone formation and cell
migration (Park et al., 2015). Interestingly, a similar mechanism
has been found in brain endothelial cells. The FZD10-Gα13
complex dissociates under WNT5a/7a stimulation, and Gα13
transmits a signal to YAP/TAZ through Rho family members
(Hot et al., 2017). In osteoblasts, WNT family member 16 binds to

FIGURE 1 | The interaction site of the Gα12/13 isoform. (A) The interaction sites on the amino acid fragment of Gα12 isoforms. (B) The interaction sites on the amino
acid fragment of Gα13 isoforms. The information on the interaction sites of Gα12 and Gα13 is from NCBI. In NCBI reference sequence database, the human GNA12
isoforms are NP_031379.2, NP_001269369.1, NP_001269370.1, and NP_001280021.1. (https://www.ncbi.nlm.nih.gov/gene/2768). The humanGNA13 isoforms are
NP_006563.2 and NP_001269354.1. (https://www.ncbi.nlm.nih.gov/gene/10672).
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FZD receptors to activate canonical WNT signaling and non-
canonical Gα12/13 signaling and regulate bone homeostasis
(Hendrickx et al., 2020).

Protease-Activated Receptors
Protease-activated receptors (PARs) consist of four subtypes
(PAR1-4). PARs play an important role in blood vessel
development, cell proliferation, tumorigenesis, and thrombosis
(Chandrabalan and Ramachandran, 2021). In fibroblasts, PAR1/2
send signals to integrin α5β1 through Gβγ and PI3K to induce
fibronectin binding and initiate cell adhesion. PAR1/2 also send

signals through Gα13, Gαi, ROCK, and Src to enhance integrin
α5β1-mediated adhesion (Spoerri et al., 2020). The PAR1-
mediated Gα12/13 activation stimulates RhoGEF and
simultaneously activates the RhoA-ROCK pathway and
myosin light chain (Flaumenhaft and De Ceunynck, 2017).
Stimulation of PAR1 also initiates the assembly of F-actin
through the Gα12/13-RhoA pathway, which induces YAP
dephosphorylation and nuclear translocation, thereby
promoting cell migration and invasion (Regué et al., 2013).
PAR2 couples with Gαq, Gαi, and Gα13 to stimulate RhoA-
ROCK activity independently of the cyclic adenosine

TABLE 1 | List of biologically significant Gα12/13-associated receptors and their physiological functions.

Receptors G proteins Functions References

GPCRs

LPA receptor Gα12 Migration of fibroblasts Gan et al. (2013)
LPA receptor Gα12/13 Embryonic blood vessel development Tanaka et al. (2006)
LPAR1 Gα12 Proliferation of astrocytes Loskutov et al. (2018)
LPAR1/LPAR2 Gα12/13 Cell proliferation, migration, and cytoskeleton changes Kihara et al. (2014)
LPAR4/LPAR6 Gα12/13 Changes in the tension of the actin cytoskeleton (Noguchi et al. (2003), Yanagida et al. (2009)
LPAR4/LPAR6 Gα12/13 Angiogenesis Yasuda et al. (2019)
LPAR5 Gα12/13 Axon retraction and stress fiber formation Lee et al. (2006)
FZD Gα12/13 Bone formation and cell migration Park et al. (2015)
FZD Gα12/13 Bone homeostasis Hendrickx et al. (2020)
FZD4 Gα12/13 Angiogenesis Arthofer et al. (2016)
FZD10 Gα13 Angiogenesis Hot et al. (2017)
PAR1/PAR2 Gα13 Fibroblast adhesion maturation, spreading, and migration Spoerri et al. (2020)
PAR1 Gα12/13 Stress fiber formation Regué et al. (2013)
PAR2 Gα13 Smooth muscle contraction Sriwai et al. (2013)
S1PR1/S1PR3/S1PR5 Gα12 Inflammation Ki et al. (2007)
S1PR2 Gα12/13 Vascular smooth muscle cell migration and neointimal hyperplasia Kim et al. (2011)
S1PR2 Gα12/13 Myofibroblast contraction Sobel et al. (2015)
S1PR2 Gα13 Cardiomyocyte migration Ye and Lin, (2013)
S1PR2/S1PR3 Gα12/13 Stress fiber formation Olivera et al. (2003)
S1PR2/S1PR3 Gα12/13 Cardiac progenitor cell proliferation Castaldi et al. (2016)
S1PR3 Gα12/13 Inflammation Dusaban et al. (2017)
S1PR3 Gα13 Cardioprotection Yung et al. (2017)
M1R Gα13 Impaired growth Sabbir et al. (2018)
M3R Gα12 Human airway smooth muscle cells contraction Yoo et al. (2017)
CXCR4 Gα13 Tumor cell migration and adhesion Scarlett et al. (2018)
CXCR4 Gα13 Breast cancer metastasis Yagi et al. (2011)
Calcium-sensing receptor Gα12/13 Gene expression, cytoskeleton, and cell shape Leach et al. (2012), Leach et al. (2013)
AT1R Gα12/13 Vasoconstriction Lymperopoulos et al. (2021)
Thromboxane A2 receptor Gα12/13 Neointima formation and restenosis Feng et al. (2016)
Ghrelin receptor Gα12 Food intake Mende et al. (2018)
Dopamine D3 receptor Gα12 Inhibit inflammation Wang et al. (2015)
5-HT4R Gα13 Hippocampal synaptic function Müller et al. (2021)
5-HT4R Gα13 Angiogenesis Profirovic et al. (2013)
UII receptor Gα13 Tumor invasion Lecointre et al. (2015)
Complement C5a receptor Gα12/13 Macrophage tail retraction Raghavan et al. (2018)
GPR56 Gα12/13 Myelination Ackerman et al. (2015)
Purinergic receptor 6 Gα13 Cell migration Girard et al. (2020)
Gastrin type 2 cholecystokinin receptor Gα13 Cell migration Masià-Balagué et al. (2015)
GPR40 Gα12/13 Release of insulin vesicles Rives et al. (2018)
GPR56 Gα12/13 Muscle protein synthesis and myotube hypertrophy White et al. (2014)
GPR91 Gα12 Mitochondrial fission and cell migration Ko et al. (2017)
ET-1 type A receptor Gα12/13 Formation of myofibroblasts Nishida et al. (2007)

Non-GPCRs
Integrin β1 Gα13 Cell migration Shen et al. (2013), Shen et al. (2015)
Integrin αIIbβ3 Gα13 Cell retraction and migration Gong et al. (2010)
Integrin αIIbβ3 Gα13 Promote thrombosis Pang et al. (2018)
PPARγ Gα13 Inhibit thrombosis Unsworth et al. (2017)
Smoothened Gα12 Tumor growth and anti-apoptosis Qu et al. (2013)
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monophosphate-protein kinase A pathway to induce smooth
muscle contraction (Sriwai et al., 2013). An earlier study
found that in endothelial cells, PAR3 directly interacts with
PAR1 to change the binding conformation of PAR1/Gα13,
induce the activation of downstream signaling pathways, and
promote endothelial barrier dysfunction (McLaughlin et al.,
2007). Presently, there is no clear evidence showing a direct
interaction between PAR3/4 and Gα12/13.

Sphingosine 1-Phosphate Receptors
Sphingosine 1-phosphate (S1P) is a natural biologically active
lipid molecule that binds to five different S1P receptors (S1PR1-
5). Activated S1PRs couple with Gα12/13 to induce downstream
signals (Zhang et al., 2020). An earlier study shows that S1PR2/
S1PR3 couple to Gα12/13 and send an “inside-out” signal to
mediate the formation of stress fibers (Olivera et al., 2003).
After binding to S1P, S1PR1/3/5 couple with Gα12 and activate
the c-Jun N-terminal kinase (JNK)-nuclear factor-kappa B (NF-
κB) pathway to promote the expression of cyclooxygenase-2 and
accelerate local inflammation (Ki et al., 2007). S1PR3 activates the
Gα12/13-RhoA pathway and promotes the expression of
inflammatory gene in astrocytes (Dusaban et al., 2017). S1PR3
activates Gα13-RhoA in cardiomyocytes and mediates cardio-
protection during ischemia/reperfusion (I/R) (Yung et al., 2017).
In vascular smooth muscle cells, S1PR2 couples to Gα12/13 to
activate AP-1-dependent induction of cysteine-rich protein 61
and promote the migration of vascular smooth muscle cells and
neointimal hyperplasia (Kim et al., 2011). S1PR2 also induces the
contraction of myofibroblasts through the Gα12/13-Rho-ROCK
pathway (Sobel et al., 2015). Moreover, Gα12, activated by S1PR2,
is recruited to E-cadherin to form a complex after mechanical
stress. Gα12 then recruits and activates p114RhoGEF, driving
RhoA signaling and increasing the tensile strength of
multicellular connections (Acharya et al., 2018).

Muscarinic Acetylcholine Receptors
Muscarinic acetylcholine receptors have five different subtypes
(M1R-M5R) (Ruan et al., 2021). The increase of acetylcholine
signal in neurons leads to the overexpression of M1R, promoting
the polymerization of Gα13 and Gβγ (Sabbir et al., 2018). Gα13
disrupts the stability of tubulin polymer through the RhoA-
ROCK signal, reducing mitochondrial transport and impairing
growth in neurites (Sabbir et al., 2018). Early study has shown
that M3R promotes the activity of phospholipase D through Gα12
in HEK-293 cells (Rümenapp et al., 2001). It has also been found
that Gα12 binds to M3R in human airway smooth muscle cells.
The M3R-Gα12 signaling is important in promoting the
contraction of human airway smooth muscle cells by inducing
PI3K-mediated ROCK activation in a RhoA-dependent manner
(Yoo et al., 2017).

Chemokine Receptors
The binding of chemokine C-X-C motif chemokine 12 (CXCL12)
to C-X-C chemokine receptor 4 (CXCR4) activates RhoA
through Gα13, which leads to ROCK phosphorylation of
myosin light chain and promotes cell migration and adhesion
(Scarlett et al., 2018). In metastatic breast cancer cells, CXCR4

activates small Rho GTPases through Gα13 to initiate cell motility
and trans-endothelial migration (Yagi et al., 2011).

Non-GPCRs Triggered Gα12/13 Signaling
Integrin “outside-in” signaling requires Gα13 and monomeric
small G proteins (i.e., Rho) to mediate cell retraction, migration,
and spreading (Shen et al., 2012). Gα13 directly binds to the ExE
motif in the cytoplasmic domain of the integrin β3 subunits,
which is important in transducing the “outside-in” integrin
signaling (Shen et al., 2013). Gα13 also binds to the
cytoplasmic domain of the integrin β1 subunit in platelets,
which mediates the Src-dependent transient inhibition of
RhoA, activates the Rac1 and PI3K pathways, and promotes
cell migration (Shen et al., 2013; Shen et al., 2015). Interfering
with the expression of Gα13 reduces αIIbβ3-dependent activation
of c-Src, inhibits cell migration, and accelerates cell contraction,
thereby spreading platelets on fibrinogen (Gong et al., 2010).
Integrin αIIbβ3 also serves as a mechanical sensor that transmits
“outside-in” signals through Gα13-Src-Rac1-dependent pathways
in platelets and facilitates coagulation in vitro and intravascularly
in vivo (Pang et al., 2018). Therefore, the Gα13-integrin
interaction is important in thrombosis.

Additionally, peroxisome proliferator-activated receptor-γ
(PPARγ), a member of the nuclear hormone superfamily,
regulates lipid and glucose metabolism and homeostasis in
many metabolic pathways (Piccinin et al., 2019). Treatment of
platelets with PPARγ agonists leads to decreased binding between
Gα13 and integrin β3, which prevents c-Src-dependent integrin β3
phosphorylation and talin dissociation and weakens the
downstream signal transduction of integrin αIIbβ3, thereby
regulating platelet activation and reducing thrombosis
(Unsworth et al., 2017). Moreover, in diffuse large B-cell
lymphoma (DLBCL), smoothened recruits Gαi and Gα12 and
activates the protein kinase C (PKC)-caspase recruitment domain
and membrane-associated guanylate kinase-like domain protein
1-dependent signaling cascade, which promotes activation of NF-
κB, tumor growth, and anti-apoptosis (Qu et al., 2013).

Gα12/13 and Biased Signaling
Traditionally, each GPCR is thought to initiate the “canonical”
signal transduction through a single homologous G protein class
(Seyedabadi et al., 2019). With the advances in the study of the
ligand-receptor-effector relationship, it has been found that
specific ligands induce a GPCR to selectively bind to a
particular G protein subunit, transducing biased intracellular
signaling toward one of many downstream pathways. This
phenomenon is called “biased signaling”; and functionally
selective ligands are called “biased ligands” (Tan et al., 2018).

Up to now, only a fewGPCRs have shown biased signaling, but
it is still the early days of understanding the biased signaling
mechanisms. The characteristics of biased ligands, which have
strong or weak activity in different pathways, may provide
significant clinical advantages for developing new drugs.
However, attention should be paid to testing conditions,
ligand verification, and patient and disease selection to achieve
successful biased ligand therapy (Seyedabadi et al., 2019). So far a
few of the receptor types seen to produce biased signaling
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involving Gα subunit switch include calcium-sensing receptors,
angiotensin receptors, PARs, prostaglandin receptors, and ghrelin
receptor.

The biased signaling can occur due to different underlying
principles. The well-documented biased signaling is triggered
by biased ligands. For instance, calcium-sensing receptor
induces the activation of four G protein subfamilies (Gαq/11,
Gαi/o, Gα12/13, and Gαs) (Abid et al., 2021). The ligands NPS-
2143/NPS-R568 binds to a calcium-sensing receptor to
specifically mediate the activation of Gα12/13-RhoA signal,
which in turn activates various other signal checkpoints
that regulate gene expression, cytoskeleton, and cell shape
(Leach et al., 2012; Leach et al., 2013). Similarly, the
prostaglandin F2α receptor, a Gαq-coupled GPCR, is
activated by prostaglandin F2α (Pathe-neuschäfer-rube
et al., 2005). PDC113.824 acts on the prostaglandin F2α
receptor, which biasedly increases Gαq-PKC-ERK1/2
signaling while inhibiting Gα12-Rho-ROCK signaling,
blocking cell contraction and skeletal reorganization, and
inhibiting uterine contraction (Goupil et al., 2010). PAR2 is
activated mainly by trypsin-like serine proteases and regulates
various signaling pathways in coupling with Gαi/o, Gαq/11, and
Gα12/13 (Kim et al., 2018b). Among PAR2 antagonists, I-287
inhibits Gαq, but biasedly activates Gα12/13 without affecting
Gαi/o signaling and β-arrestin recruitment, thereby attenuating
the PAR2-mediated inflammatory response (Avet et al., 2020).
Likewise, the ghrelin receptor in the arcuate nucleus of the
hypothalamus, activated by Ghrelin, induces an intracellular
signaling cascade through Gαq, Gαi/o, Gα12/13, and β-arrestin
(Hedegaard and Holst, 2020). The biased ligand YIL781
selectively activates Gαq/11 and Gα12 through the ghrelin
receptor without intrinsic activity for β-arrestin
recruitment, leading to an increased food intake and a
reduced gastric emptying (Mende et al., 2018). However,
other factors, including ionic strength, lipid environments,
and downstream signaling partners, can also contribute to
biased signaling observed in native cells and tissues. For
instance, receptors can couple in a cell type-specific
manner. The binding of angiotensin II (Ang II) to the Ang
II type 1 receptor (AT1R) causes AT1R interaction with Gαq/11,
Gα12/13, and Gαi, depending on cell type (Forrester et al.,
2018). When Ang II stimulates vascular smooth muscle
cells, AT1R binds to Gα12/13 instead of Gαq/11 to activate
RhoA-ROCK and promote vasoconstriction (Lymperopoulos
et al., 2021). Cleaving a receptor is another method that often
leads to a change in downstream signaling. For PAR1, the
endogenous ligand thrombin promotes PAR1 binding to
heterotrimeric G proteins of the Gαq/11, Gα12/13, Gαi, and
Gαs families. The activation of matrix metalloproteinase-1
in platelets cleaves the N-terminal extracellular domain of
PAR1, activating the Gα12/13-Rho-MAPK signal instead of
Gαq/11, and promotes cell shape changes and platelet
thrombosis (Trivedi et al., 2009).

Gα12/13Signaling and Cell Function
As discussed above, the well-characterized downstream effector
of active Gα12/13 is the Rho GTPases through stimulating

RhoGEF, which regulates the actin cytoskeleton and
participates in various cellular functions, including cell
proliferation, migration, contractility, and gene expression
(Bodmann et al., 2017) (Figure 2).

Cell Growth and Apoptosis
Gα12/13 was initially identified as an oncogene with the potential
for tumor transformation of fibroblasts (Chan et al., 1993; Xu
et al., 1993). Subsequent studies have shown that Gα12/13 can
promote mitogenic response and cell growth by transducing a
RhoA-dependent signal, which increases YAP/TAZ-dependent
gene expression (Goldsmith and Dhanasekaran, 2007;
Syrovatkina and Huang, 2019).

Subsequent publications have revealed that Gα12/13 coupling
with several different receptor types promotes proliferation. S1P
activates S1PR2/3 to trigger Gα12/13-RhoA signaling, leading to
the proliferation of mouse cardiac progenitor cells and regulating
gene transcription in hearts (Castaldi et al., 2016). Stimulation of
the thromboxane A2 receptor also promotes the activity of Rho
GTPase through Gα12/13. The activated Rho GTPase regulates
actin cytoskeleton, increases nuclear translocation of YAP/TAZ,
and promotes proliferation and migration of T/G HA-vascular
smooth muscle cells (Feng et al., 2016). After the loss of primary
cilia on human astrocytes, LPA promotes association between
LPAR1 and Gα12/Gαq, augmenting mitogenic signaling and cell
proliferation (Loskutov et al., 2018). Furthermore, the
acetylcholine signaling via M1R activates Gα13 protein to
disrupt tubulin polymerization in axons and inhibit
mitochondrial transport, thereby limiting the growth of
neurites (Sabbir et al., 2018). G protein-coupled receptor 56
(GPR56) interacts with Gα12/13 to mediate RhoA signaling and
regulates zebrafish oligodendrocytes’ development and
subsequent myelination (Ackerman et al., 2015).

Gα12/13 is also very important in the proliferation of tumor
cells. The activation of Gα12/13 promotes cell growth and tumor
development of hepatocellular, small cell lung carcinoma, and
ovarian cancer cells, but not in breast and prostate cancer cells
(Grzelinski et al., 2010; Rasheed et al., 2013; Yagi et al., 2016;
Syrovatkina and Huang, 2019). The synthetic ligand, Clozapine
N-oxide, stimulates GPCR-Gα12/13 signaling and promotes the
proliferation of ovarian cancer cells by activating YAP1 (Yagi
et al., 2016). Bombesin secreted by small cell lung carcinoma cells
activates the gastrin-releasing peptide receptor (GRPR)-Gα12/13-
Rho-NF-κB signaling cascade. Subsequently, the activated NF-κB
increases the production of Sonic Hedgehog, which activates the
Gli transcription factor and promotes cell proliferation, survival,
blood vessel generation, and local invasion (Castellone et al.,
2015).

Meanwhile, the combination of muscle-restricted coiled-coil
protein and caveolin-1 promotes Gα13-mediated p115RhoGEF
activation, leading to subsequent activation of the Rho-ROCK
signal and enhancing the proliferation and migration of human
pulmonary artery smooth muscle cells (Nakanishi et al., 2016).
Moreover, Gα13 dynamically regulates the RhoA signaling
through the combination of RhoGEF GTPase and integrin β1,
promoting integrin β1-mediated proliferation of CHO cell lines
(Shen et al., 2015). In addition to autophagy-mediated
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mitochondrial damage and oxidative stress, lysosomal
dysfunction in cystopathy stimulates Gα12/Src-mediated
phosphorylation of zona occludin-1. The activated zona
occludin-1-related signaling cascade promotes the proliferation
of epithelial cells and disrupts the cell lining along the proximal
tubules of mouse kidneys (Festa et al., 2018).

Studies have also found that Gα12 and Gα13 regulate
apoptosis. In Madin-Darby canine kidney cells, the
activation of endogenous Gα12 and thrombin stimulation
increase the activity of JNK1, inhibit the activity of NF-κB,
and promote cell apoptosis (Yanamadala et al., 2007). In
melanoma cells, US28, a GPCR encoded by human
cytomegalovirus, is coupled with Gα13 to induce cell
apoptosis; silencing Gα13 inhibits cell apoptosis driven by
US28 (Joshi et al., 2015). Notably, this event has been only
observed in human melanoma cell lines but not in murine
cells. The emerging discovery of ligand-GPCR-Gα12/13 signals
will offer insight into the regulation of apoptosis on
cancer cells.

Cell Migration
The ability of cell migration is essential for cell growth,
proliferation, the inputs and outputs of nutrients and signal
intermediates, and normal cell physiology. Cell movement also
enhances tumor cell invasion andmetastasis (Svitkina, 2018). The
process of cell migration is usually accompanied by changes in the
actin cytoskeleton. Gα12/13 activates RhoA through their
respective RhoGEF effectors and promotes the dynamic
changes of cell shape controlled by actin cytoskeleton
reorganization (Castillo-Kauil et al., 2020).

Gα12/13 plays pivotal roles in cell migration that occurs during
development. For instance, the 5-hydroxytryptamine type 4
receptor (5-HT4R) triggers Gα13-mediated RhoA signal
transduction, promoting the reorganization of filamentous
actin and the morphology of mouse astrocytes, and enhancing
hippocampal synaptic function (Müller et al., 2021). The 5-HT4R
also mediates human endothelia cell migration and angiogenesis
through the Gα13-RhoA-ROCK pathway in vitro (Profirovic et al.,
2013). In zebrafish development, the S1PR2-Gα13-RhoGEF signal
is necessary for the convergent movement of the endoderm by
promoting myocardial migration at all stages of heart
development (Ye et al., 2015). Disrupting the S1PR2-Gα13-
RhoGEF pathway jeopardizes the endoderm’s convergence and
themyocardium’s migration during the segmentation process (Ye
and Lin, 2013). With the high concentrations of urotensin II
stimulation, urotensin II receptors recruit Gα13 to activate the
Rho-ROCK pathway and promote actin polymerization, which
contributes to glioma cells invasion and new blood vessel
formation (Lecointre et al., 2015). Gα12 participates in cell
differentiation through the nuclear factor of activated T-cell c1
(NFATc1) and regulates cell migration and resorption through
RhoA in the process of osteoclast formation in mice (Song et al.,
2018). Resistance to inhibitors of cholinesterase 8A (Ric-8A) is a
guanine nucleotide exchange factor of Gα subunits and an
important partner of Gαi, Gαq, and Gα13 proteins (Papasergi-
Scott et al., 2018). In Xenopus cranial neural crest cells, the Ric-
8A-Gα13-focal adhesion kinase (FAK) signal regulates focal
adhesion dynamics and neurite formation to control cell
migration (Toro-Tapia et al., 2018). The activated Ric-8A
catalyzes the nucleotide exchange on Gα13, induces the

FIGURE 2 | The crosstalk between Gα12/13 signaling and cell proliferation/migration. Under different physiological/pathological environments, GPCRs on the cell
membrane receive different signals, couple Gα12 or Gα13, activate signal cascades, and promote synthesis of transcription factors or secretion of inflammatory factors.
These signals ultimately lead to different cell activities, such as cell proliferation, survival, differentiation, migration, invasion, etc. TP, thromboxane A2 receptor; UT,
urotensin II receptor; P2Y6, purinergic receptor 6; shh, sonic hedgehog; MST1/2, mammalian sterile 20-like kinases 1/2.
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reorganization of the actin cytoskeleton, and promotes the
migration of mouse embryonic fibroblasts (Wang et al., 2011).

Cell migration that is mediated by Gα12/13 is also important in
metastasis. For example, the activated purinergic receptor 6
increases the number of filopodia and adhesions of human
lung cancer cells (A549) and colorectal cancer cells (Caco-2)
through both Gαq-Ca2+-PKCα and Gα13-ROCK signals,
regulating cell migration (Girard et al., 2020). The GRPR-
Gα13-RhoA-ROCK signaling is necessary for GRP to stimulate
the migration of human colon cancer cells. This signaling also
promotes the expression of COX-2, which contributes to cell
migration (Patel et al., 2014). Similarly, Gα12/13 signal facilitates
the invasion of human cervical cancer cells through a RhoA-
ROCK-JNK signal axis (Yuan et al., 2016). Gα12/13 increases the
gene expression of metalloproteinase-2 through p53, which is
necessary for inducing the invasion and migration phenotypic
changes of untransformed human breast epithelial cells (Kim
et al., 2010). Gα12, which is overexpressed in many hepatocellular
carcinoma patients, relieves the regulation of p53-responsive
miRNA and promotes the metastasis and invasion of tumor
cells (Yang et al., 2015). The Gα12-mediated pathway
promotes metastasis and invasion of human nasopharyngeal
carcinoma cells by regulating the reorganization of the actin
cytoskeleton (Liu et al., 2009).

Increased Gα12/13 mediated cell migration also greatly
contributes to primary solid tumor growth. Take as example
that Gα13, which is up-regulated in breast cancer, inhibits the
transcription of kallikreins through the RhoA-ROCK pathway
and promotes the invasion and metastasis of breast cancer cells
(Teo et al., 2016). The expression of GNA13 in breast cancer
cells is primarily regulated by MicroRNA (miR)-31, and the
absence of miR-31 increases the expression of GNA13 and the
invasion of cancer cells (Rasheed et al., 2015). Similarly, Gα13
is overexpressed in pancreatic ductal adenocarcinoma and
enhances the invasion of human pancreatic cancer cells in
three-dimensional collagen by destroying cell adhesion;
however, this process does not go through ROCK signal
transduction (Chow et al., 2016). Gα13 is also involved in
cell fusion (Carloni et al., 2013). Disintegrins and
metalloproteinases stimulate Gα13 to activate RhoA. The
up-regulated RhoA activity causes dephosphorylation of
ezrin/radixin/moesin proteins and destruction of plasma
membrane-cortical actin interaction, promoting fusion of
human metastatic colon cancer cells and cell acquisition of
drug resistance (Carloni et al., 2013).

These observations highlight the importance of Gα12/13-RhoA
signaling in cell proliferation or migration. The expression of
Gα12/13 and the downstream signaling are often elevated in cancer
cells. However, in some disease states (especially cancer), the
upstream ligand and receptor of Gα12/13 remain unknown.

Immune Cell Function
Due to the lack of specific inhibitors of Gα12/13, the research of
Gα12/13 in immune cells was stagnant for many years. However,
with various transgenic models, the studies on the role of Gα12/13
in immune cells are accelerating.

T Cells
After naive T cells are activated, CD4+ T cells differentiate into
different effector subsets: T helper (Th) 1, Th2, Th17, and T
follicular helper (Tfh) cells, which perform their specific auxiliary
functions (Dong, 2021). During T cell activation, Gα12/13
regulates actin polymerization and contributes to cell adhesion
and migration (Wang et al., 2013). A recent study has found that
Gα13-RhoA-ROCK2 signaling plays a key regulatory role in the
differentiation and function of early Tfh cells. The Gα13-deficient
Tfh cells impair the function of adhering B cells to form
conjugates and stimulating B cells to produce
immunoglobulins (Kuen et al., 2021). Morover, receptors
coupled to Gα12/13 have been demonstrated to be essential for
T cell adhesion, differentiation, and retention in lymph nodes
(Moriyama et al., 2014; Mathew et al., 2019). For example, S1PR2
promotes the maturation of Tfh cells by directing co-localization
with B cells in the germinal center; and the deficiency of S1PR2 in
Tfh cells inhibits the retention in lymph nodes (Moriyama et al.,
2014). In response to the stimulation of CXCL12, the Gα13-Rho
signal in human T cells mediates the endosomal trafficking of
CXCR4 (Kumar et al., 2011). CXCL12 also promotes the
migration of Jurkat T cells through the CXCR4-Gα13-Rho
signal axis (Tan et al., 2006). Meanwhile, Gα12/13 negatively
regulates the activation state of integrin leukocyte-function-
antigen-1 to modulate CD4+T cells trafficking and
proliferation and susceptibility to immune diseases (Herroeder
et al., 2009). In response to the activation of T cell receptor
signals, the interleukin-2 inducible T cell kinase directly interacts
with Gα13 to mediate the activation of SRF transcriptional activity
(Huang et al., 2013). Conversely, Gα12 is a key mediator of T cell
receptor-mediated interleukin-2 production and controls the
differentiation of Th2 and Th17 cells (Won et al., 2010).
Additionally, Gα13, but not Gα12, mediated signal transduction
is necessary for early thymocyte proliferation and survival
(McNeil Coffield et al., 2004).

B Cells
Mature B lymphocytes express LPAR2/5, LPA negatively
regulates B cell receptor signaling through the LPAR5–Gα12/
13–Arhgef1 pathway, inhibiting the release of calcium stored in
the cell and the antibody response (Hu et al., 2014). Gα12/13 also
regulates the maturation, migration, and polarization of marginal
zone B cells. In mice with depletion of Gα12/13 in B cells, the
number of zone B cells and zone B cell precursors are significantly
reduced, but the formation of pseudopods is increased (Rieken
et al., 2006).

Knockout of Gα13 also results in the loss of restriction of B cells
in the germinal center, thus spreading to lymph nodes and blood
(Muppidi et al., 2014). Meanwhile, Gα13 plays a direct role in the
growth inhibition of B cells, affecting their survival and
differentiation. It has been noted that the impaired
phosphorylation of AKT at the Ser473 site is related to Gα13
activity and may affect the growth and survival of B cells (Green
et al., 2011; O’Hayre et al., 2016). The mechanism by which the
Gα12/13-RhoA axis inhibits the growth of B cells needs to be
further explored.
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Macrophages
In macrophages, complement C5a couples to Gα12/13 to
activate Rho GTPases and tail retraction in migrating cells.
Macrophages without Gα12/13 show complete chemotaxis but
increased migration speed and a moderately impaired tail
contraction (van den Bos et al., 2020). Thrombin, a major
platelet activator, selectively induces the expression of CD36, a
plasma membrane fatty acid transporter, and foam cell
formation of RAW264.7 cells through PAR1-Gα12 signaling
and facilitates atherosclerosis (Raghavan et al., 2018).
Thrombin also induces the migration of monocytes or
macrophages through the PAR1-Gα12 pathway (Gadepalli
et al., 2013). The loss of Ric-8A in lymphocytes and bone
marrow-derived macrophages leads to a decrease in the
expression of Gαi2/3, Gαq, and Gα13, but not Gα12, leading
to anemia and leukocytosis (Boularan et al., 2015).

The above studies suggest that dysregulation of Gα12 or Gα13
in immune cells may lead to pathophysiological consequences,
such as cancer and autoimmunity. So far, the research of Gα12/13
in immune cells is relatively scarce. More research is needed to
bring new therapeutic targets for cancers and autoimmune
diseases.

Gα12/13 Signaling and Diseases
Gα12/13 plays an important role in multiple stages of disease
development in different tissues and organs. An increasing
number of cancers have shown overexpressed Gα12/13, which is
correlated to abnormal cell proliferation, metastasis, and
invasion (Montgomery et al., 2014). The high abundance or
constitutive activation of Gα12 and Gα13 are effective
stimulators of oncogenic transformation. Gα12/13 also
interacts with cell surface GPCRs and participates in the
inflammation regulation (Dusaban et al., 2013; Hou et al.,
2021). Meanwhile, Gα12/13 levels in metabolic organs,
including liver and muscle, are altered in metabolic diseases
(Koo et al., 2017; Kim et al., 2019). However, the mechanism by
which Gα12/13 regulates the progression of these diseases has
not been fully elucidated.

Gα12/13 and Cancer
Gα12/13 are called the gep proto-oncogenes and are usually
overexpressed in cancers (Yagi et al., 2016). Besides the
functional roles in cancer cell migration and invasion, Gα12/
13 and Rho GTPases exert pro- or anti-cancer effects in a
cancer type and background-dependent manner.

The results of Gene Expression Omnibus and The Cancer
Genome Atlas database analysis have shown that GNA12 can
be used as a biomarker for the personalized treatment of head
and neck squamous cell carcinoma (HNSCC) patients and one
of the prognostic genes for patients with HNSCC (Liu et al.,
2021). GNA13 is also a biomarker for the prognosis and
metastasis of solid tumors, including HNSCC, ovarian
cancer, lung cancer, and gastric cancer (Cerami et al., 2012;
Gao et al., 2013; Cancer Genome Atlas, 2015). GNA13
mutations are present at a high frequency in gastric cancer,
nasopharyngeal cancer, prostate cancer, breast cancer,

lymphoma, and bladder cancer (Muppidi et al., 2014; Wu
et al., 2019; Arang and Gutkind, 2020).

The increased expression and activity of Gα12/13 contribute to
the pathogenesis of different cancers. The copy number ofGNA12
is significantly increased in ovarian cancer, which enhances the
function of Gα12 to promote cancer growth and metastasis (Wu
et al., 2019). In two prostate cancer cell lines (C4-2B and PC3),
both Gα12 and Gα13 are abundantly expressed (El-Haibi et al.,
2013). The highly expressed GNA13 also acts through Rho
GTPase to drive the NF-κB transcription program and induce
the expression of CXCL5 (Lim et al., 2019). A study on HNSCC
has demonstrated that GNA13 promotes the aggressive
phenotype and drug resistance of tumor-initiating cells
through the MAPK/AP-1 and NF-κB pathways (Rasheed et al.,
2018). In bladder cancer, the Arg-200 (residue required to
hydrolyze GTP) mutation of Gα13 strongly activates YAP/
TAZ-dependent TEAD and myocardin-related transcription
factor-A/B-dependent SRF transcriptional activities through
the RhoGEF-Rho GTPase cascade (Maziarz et al., 2020).
Additionally, the low expression of MiR-30b-5p in renal cell
carcinoma up-regulates the activity of Gα13, which promotes cell
proliferation, metastasis, and epithelial cell-mesenchymal
transition (Liu et al., 2017). The reduction of regulators of G
protein signaling protein (RGS) 12 promotes the Gα12/13-RhoA-
YAP pathway and Ezrin expression, which leads to the growth
and progression of osteosarcoma and lung metastasis (Li et al.,
2021). Moreover, Gα13-mediated down-regulation of LATS1
promotes phenotypic changes of epithelial cell-mesenchymal
transition in ovarian cancer cells (Yagi et al., 2019). These
findings identify the Gα13-Hippo signaling as a potential target
for cancer therapeutic interventions.

A few GPCR ligands have been identified upstream of Gα12/13
in cancers. LPA promotes the combination of Gα12 and EFA6
through LPAR2 and activates the ADP-ribosylation factors 6
mesenchymal pathway, thereby promoting the invasion,
metastasis, and drug resistance of renal cancer cells
(Hashimoto et al., 2016). High concentrations of LPA are also
accumulated in the ascites of patients with ovarian cancer (Yu
et al., 2016). The heterodimerization of LPAR1 and CD97
amplifies the LPA-mediated Gα12/13-Rho signal transduction
and promotes the invasion of prostate cancer cells (Ward
et al., 2011). Gastrin induces the activation of paxillin and
FAK through the cholecystokinin B receptor-Gα12/13-RhoA-
ROCK signaling pathway, thereby promoting the redirection
of the Golgi apparatus and the directional migration of
pancreatic cancer cells (Mu et al., 2018). Gastrin also
promotes the activation of Gα13 through the gastrin type 2
cholecystokinin receptor in colon cancer cells. The recruitment
of p190RhoGEF by Gα13 enhances the phosphorylation of FAK
and paxillin, leading to RhoA activation and promoting the
migration of cancer cells (Masià-Balagué et al., 2015). In
addition, the down-regulated GPR65 in a variety of
hematological malignancies promotes Gα13/Rho signal
transduction, which leads to the decrease of c-myc oncogene
expression and promotes growth, migration, and metastasis of
blood cancer cells (Justus et al., 2017). Gα13 binds to CXCR5 in
response to CXCL13 treatment and promotes prostate cancer cell
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movements; however, silencing Gα13 does not affect CXCL13-
dependent cell invasion (El-Haibi et al., 2013).

Interestingly, the Gα13-Rho GTPase signaling has also been
shown to alleviate hematological malignancies (Justus et al.,
2017). In malignant tumors of the hematopoietic and
lymphatic system, GNA13 and RhoA mutations are present in
B-cell lymphomas, mainly in DLBCL and Burkitt’s lymphoma
(Justus et al., 2017). The mutation of GNA13 in germinal center
B cells is resistant to programmed cell death (Healy et al., 2016).
These B cells are differentiated, facilitating genetic instability
through continuous somatic hypermutation (Muppidi et al.,
2014). Over time, the accumulation of driver mutations in
persistent germinal center B cells may cause lymphoma. Loss
of Gα13 facilitates germinal center B cells to spread to the lymph
node and blood, leading to the pathogenesis of DLBCL (Healy
et al., 2016). Moreover, in the absence of Gα13 signaling, S1P acts
through S1PR3 to promote mouse germinal center B cells
migration into the circulation (Muppidi et al., 2015). S1PR2
signals through Gα13 to induce tumor cell apoptosis and exert
its tumor suppressor function (Flori et al., 2016). However, in
DLBCL, the forkhead box protein 1 directly inhibits S1PR2 and
promotes tumor cell survival (Flori et al., 2016). The restoration
and activation of the Gα13-Rho pathway help reduce tumor
growth and progression, supporting that the Gα13-RhoA axis
has a tumor suppressor effect (Justus et al., 2017). Meanwhile,
analyzing the genome of tumor tissues from patients with
classical Hodgkin lymphoma has revealed that GNA13 is one
of the genes repeatedly mutated (Tiacci et al., 2018). GNA13
variants are mostly heterozygous, including nonsense, frameshift,
and missense mutations, like the mutation patterns in DLBCL
and Burkitt’s lymphoma (Muppidi et al., 2014; Justus et al., 2017).

Despite the emerging evidence supporting the critical roles of
Gα12/13 in cancers, many questions remain about how the ligands
and receptors trigger Gα12 or Gα13 signaling in a cancer type-
specific manner. A comprehensive understanding of these
mechanisms may provide a promising prospect for targeting
specific Gα12/13 signaling processes in cancer therapies.

Gα12/13 and Inflammation
Gα12/13 has been implicated in both induction and suppression of
inflammation. In the context of inflammation, thrombin, LPA,
and S1P transmit signals through Gα12/13-coupled receptors to
amplify inflammatory responses (Gavard and Gutkind, 2008;
Dusaban et al., 2017; Lee et al., 2019).

Early studies have found a direct connection between Gα12/13
signaling and arachidonic acid in cells (Dermott et al., 1999;
Mariggiò et al., 2006). NIH-3T3 cells transformed with Gα12QL
show increased secretion of arachidonic acid and transcriptional
activation of cyclooxygenase-2 (Dermott et al., 1999). Thrombin
stimulates CHO cells to activate the Gα13-RhoA-ERK1/2
signaling through PAR1, leading to the phosphorylation of
cytosolic phospholipase A2 and the increase of arachidonic
acid (Mariggiò et al., 2006). The activation of LPAR and S1PR
also promotes the expression of inflammatory genes (such as
cyclooxygenase-2) and the proliferation of astrocytes through
Gα12/13-RhoA-PLCε-protein kinase D (PKD)-NF-κB signaling,
which contributes to neuroinflammation (Dusaban et al., 2013).

Recent work has shown that S1P promotes the
NLRP3 inflammasome-mediated inflammatory response and
the secretion of pro-inflammatory cytokines such as
interleukin-1β and interleukin-18 through the S1PR2-Gα12/13-
MAPK pathway (Hou et al., 2021). Meanwhile, a variety of pro-
inflammatory ligands promote the interaction of Gα13 to VE-
cadherin, inducing Src activation and VE-cadherin
phosphorylation, leading to the internalization of VE-cadherin,
the loss of endothelial barrier function, and vascular
inflammation (Gong et al., 2014). The deficiency of Gα13 in
leukocytes and platelets inhibits thrombosis and inflammation
and significantly optimizes the survival rate of septic mice (Cheng
et al., 2021).

Gα12 and Gα13 have opposite effects on osteoclasts. The
silencing of Gα13 enhances the AKT-GSK3β-NFATc1 signal
cascade by inhibiting RhoA, strongly promoting the formation
and size of osteoclasts (Wu et al., 2017). This observation depicts
that Gα13 is the main endogenous negative switch for osteoclast
production. Gα13 also protects against various bone loss disease
models from inflammation (Wu et al., 2017; Nakano et al., 2019).
In comparison, a study has shown Gα12 is involved in the
pathophysiology of bone diseases such as osteoporosis or
rheumatoid arthritis (Song et al., 2018). Interestingly, the
volume of trabecular bone increases in Gα12 knockout mice,
whereas the number of osteoclasts decreases, contrary to the
phenotype of Gα13 deletion (Song et al., 2018). The underlying
mechanisms of these opposite phenotypes are unclear, possibly
because that Gα12-/- mice are whole body knocked out, whereas
Gα13-/- mice undergo an osteoclast lineage-specific conditional
knockout.

Gα12/13 and Metabolic Diseases
Gα12 is extensively expressed in metabolic organs, for instance,
the liver (Strathmann and Simon, 1991; Kim et al., 2018a). Fasting
of normal mice for 24–48 h significantly enhances the expression
of Gα12 in the liver (Kim et al., 2018a).GNA12-knockout mice are
prone to hepatic steatosis and obesity after being fed a high-fat
diet due to reduced energy consumption (Kim et al., 2018a). A
study using cDNA microarray analysis with the liver of GNA12-
knockout mice has found that Gα12 regulates mitochondrial
respiration through the Sirtuin 1/PPARα network (Kim et al.,
2018a). Sirtuin 1, a class III histone deacetylases activated by
NAD+, is an important regulator involved in the fatty acid
oxidation transcription network (Kalliora et al., 2019). Gα12
induces ubiquitin-specific peptidase 22 through HIF-1α to
promote the stability of Sirtuin 1, controlling lipid metabolism
and mitochondrial respiration (Kim et al., 2018a). Interestingly,
Gα12 also exists in the endoplasmic reticulum and participates in
the endoplasmic reticulum export (Subramanian et al., 2019).
With the coat protein II subunit Sec24 binds to the cargo, it acts as
a GEF to activate Gα12 at the export site of the endoplasmic
reticulum, promoting cargo export and inhibiting protein
synthesis (Subramanian et al., 2019).

The role of Gα13 in energy metabolism has opposite effects in
skeletal muscle (prodiabetic) and liver (antidiabetic) (Koo et al.,
2017; Kim et al., 2019). Gα13 is more highly expressed in skeletal
muscle than other metabolic organs (Koo et al., 2017). The
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knockout Gα13 in skeletal muscles contributes to systemic energy
homeostasis, increasing glucose metabolism and insulin
sensitivity and inhibiting diet-induced obesity and hepatic
steatosis (Koo et al., 2017). The level of Gα13 in skeletal
muscle is reduced by exercise but is increased under
conditions of metabolic diseases. Loss of Gα13 in skeletal
muscle inhibits the RhoA-ROCK2 pathway and activates
NFATc1, which induces the conversion of skeletal muscle
fibers into oxidized form and enhances energy metabolism
(Koo et al., 2017). On the contrary, the lack of Gα13 in the
liver of mice leads to the overproduction of inter-α-trypsin
inhibitor heavy chain 1, which exacerbates systemic insulin
resistance (Kim et al., 2019).

GPR40 is a clinically proven molecular target for the treatment
of diabetes. A GPR40 allosteric full agonist promotes glucose-
stimulated insulin secretion in pancreatic β cells through GPR40-
mediated Gα12 signaling (Rives et al., 2018). In response to
mechanical overload, GPR56 elevates the expression of the
mammalian target of rapamycin and insulin-like growth factor
1 through Gα12/13 and promotes muscle protein synthesis and
myotube hypertrophy (White et al., 2014). Succinate activates the
Gα12-PKC-p38-dynamin-related protein 1 signaling through
GPR91 to increase mitochondrial fission, enhances ATP
production and membrane potential of mitochondria, and
promote the migration of human mesenchymal stem cells (Ko
et al., 2017). LPA is a key product of fatty acid metabolism.
LPAR4 is selectively coupled with Gα12/13 in adipocytes to limit
the remodeling and healthy expansion of white adipose tissue in
high-fat diet mice (Yanagida et al., 2018). The above studies have
shown that the GPCR-Gα12/13 axis can be an attractive target for
treating metabolic diseases.

Gα12/13 and Fibrotic Diseases
Gα12/13 has a pro-fibrotic effect mainly mediated by the RhoA-
ROCK activation (Haak et al., 2020). Early studies have
demonstrated that Gα12/13 play a key role in regulating the
phenotype of cardiac fibroblasts (Fujii et al., 2005; Nishida
et al., 2007). The stimulation of Ang II induces the production
of reactive oxygen species (ROS) through the AT1R-Gα12/13-Rac
pathway. The ROS-mediated JNK activation promotes the
activity of AP-1 and NFAT, leading to the proliferation of
cardiac fibroblasts (Fujii et al., 2005). Recently, it has been
found that targeted inhibition of the Gα12/13-RhoA-ROCK
pathway successfully alleviates Ang II-induced cardiac
dysfunction and the fibrotic response of cardiac fibroblasts
(He et al., 2017). Endothelin-1 activates the Endothelin-1 type
A receptor-Gα12/13 axis in cardiac fibroblasts and promotes the
formation of myofibroblasts through Rac-dependent ROS
production and JNK activation (Nishida et al., 2007). The
osteoglycin in the heart binds to LPAR3 and mediates the
Gα12/13-Rho-ROCK signal to attenuate the transactivation of
epidermal growth factor receptors, thus inhibiting the
proliferation and migration of cardiac myofibroblasts and
negatively regulating cardiac fibrotic remodeling (Zuo et al.,
2018).

Among numerous G protein members, Gα12 is expressed
abundantly in hepatic stellate cells of the fibrotic liver, whereas

Gα13 is not (Kim et al., 2018c). The imbalance of miR-16 in
hepatic stellate cells leads to the overexpression of Gα12, which
promotes autophagy through the transcription of JNK-dependent
autophagy-related genes 12-5 and accelerates the progression of
liver fibrosis (Kim et al., 2018c). Meanwhile, deficiency of Gα12
significantly blocks bleomycin-induced pulmonary fibrosis in
mice. LPA stimulates the phosphorylation and activation of
PKC-δ through Gα12 and the mammalian target of rapamycin
complex 2, which is important for fibroblast migration and the
development of pulmonary fibrosis (Gan et al., 2012).

In short, the role of Gα12 or Gα13 in fibrotic diseases is unclear.
Using various omics (e.g., genomics, proteomics) to detect the
expression of Gα12/13 in specific tissues/cells of fibrotic diseases,
exploring its upstream receptors and downstream signals may
lead to a better understanding of the pathological mechanisms of
the fibrotic diseases.

Gα12/13 and Circulatory and Renal Disorders
Gα13 is involved in heart remodeling induced by pressure
overload and plays a central role in the transition to heart
failure (Takefuji et al., 2012). The Ang II-AT1R-Gα13-RhoA-
myocardin-related transcription factor signal cascade regulates
the expression of hypertrophy and fibrosis genes in
cardiomyocytes (Takefuji et al., 2012). In response to low
concentrations of thrombin, disabled-2, a linker protein,
regulates Gα12/13-mediated RhoA-ROCK activation and
enhances ADP release, which increases the activity of AKT
and mammalian target of rapamycin and promotes platelet
aggregation and thrombosis (Tsai et al., 2014). Thrombin also
stimulates platelets to promote the interaction of Gα13 and
receptor-interacting protein kinase 3. Receptor-interacting
protein kinase 3 participates in the integrin-Gα13 signal to
promote platelet activation and thrombosis (Zhang et al.,
2017). The newly developed high-load ExE peptide
nanoparticles, based on the Gα13 binding ExE motif on the
cytoplasmic domain of integrin β3, inhibit thrombosis and
protect mice from cardiac I/R injury (Pang et al., 2020). This
study supports that the integrin-Gα13-RhoA-YAP pathway can
be targeted for anti-atherosclerosis therapy (Wang et al., 2016).
Inhibiting proteins that specifically interact with Gα13 is a
promising approach for the treatment of diseases such as
macular degeneration, atherosclerosis, and tumor angiogenesis
(Wang et al., 2017). In the process of angiogenesis, RGS5 converts
Gαq/11-mediated calcium-dependent contraction to Gα12/13-
mediated RhoA activation, leading to the formation of stress
fibers in the vascular smooth muscle cells of the artery and the
process of vascular remodeling (Arnold et al., 2014). Gα12/13 are
also essential for blood vessel formation. Gα13 interacts with Abl1
to form a complex, which regulates actin cytoskeleton
reorganization, remodeling, and endothelial cell migration and
promotes blood vessel formation (Wang et al., 2017).

Gα12 also plays a key role in inducing renal I/R injury through
various mechanisms, such as destruction of tight cell connections,
oxidative stress, inflammation, and cell apoptosis. Gα12 knockout
mice are almost completely protected from I/R injury (Yu et al.,
2012). In addition, kidney injury molecule-1 prevents tissue
damage by blocking the binding of GTP to Gα12 in renal I/R
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(Ismail et al., 2015). Gα12 is also necessary for the development of
a mouse renal cyst model induced by polycystin-1 mutation. The
lack of polycystin-1 promotes the activation of Gα12, leading to
alteration in the form of N-cadherin, destroying cell-matrix/cell
adhesion, inhibiting FAK, but promoting the formation of stress
fibers (Wu et al., 2016). The activation of Gα12 in mouse
podocytes also leads to the imbalance of collagen expression in
glomeruli, age-dependent proteinuria, and focal glomerular
sclerosis (Boucher et al., 2012). However, a study has found
that the activation of the dopamine D3 receptor increases
coupling to Gα12, leading to the reduction in ROS production
and inflammation, ultimately preventing renal I/R injury (Wang
et al., 2015).

The coupling of different GPCRs to Gα12/13 and the impacts
on the pathophysiology have not been fully elucidated. The
identification of the reciprocal binding domains of Gα12/13 to
related cellular proteins will facilitate the development of more
specific inhibitors to selectively disrupt the interaction. A
comprehensive understanding of the complex regulatory
mechanisms of Gα12/13 signaling may lead to novel
therapeutics targeting specific functions of Gα12 or Gα13 in a
disease-specific manner.

CONCLUSION

The mechanisms of signal transduction through Gα12/13 are
still one of the most enchanting problems in biology. Many
crucial questions remain to be addressed: what determines the
specificity of the receptor-Gα12/13 interaction (Montgomery
et al., 2014; Lymperopoulos et al., 2021)? What determines the
specific selectivity of the receptor to Gα12 or Gα13 (Corbisier
et al., 2015; Mackenzie et al., 2019)? Do receptor and Gα12/13
form a pre-coupling complex (Ayoub et al., 2012; Zhang et al.,
2017)? The importance of Gα12/13 in mediating the complexity
of signals, affecting the diversity of cell functions, and
participating in the pathogenesis of diseases are
continuously being explored. Gα12/13 are pathologically
relevant to cancer, bone diseases, liver steatosis, and

pulmonary fibrosis. Gα12/13 are considered an attractive
biomarker and target for diagnosing and treating related
diseases. However, it is unwise to directly stimulate or
inhibit the activity of Gα12/13 due to the complexity of its
regulatory network, the diversity of functions, and the high
likelihood of off-target effects. In comparison, stimulating/
inhibiting the upstream receptor/downstream pathways of
Gα12 or Gα13 in specific organs/cells may offer a chance of
successful therapy. A better understanding of the ligand-
receptor-Gα12/13-downstream signaling networks may guide
new drug development in the future.
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GLOSSARY

5-HT4R 5-hydroxytryptamine type 4 receptor

AKT protein kinase B

Ang II angiotensin II

AP-1 activator protein 1

AT1R Ang II type 1 receptor

CXCL12 C-X-C motif chemokine 12

CXCR4 C-X-C chemokine receptor 4

DLBCL diffuse large B-cell lymphoma

ERK extracellular regulated protein kinases

FAK focal adhesion kinase

FZD Frizzled

GEF guanine nucleotide exchange factors

GPCRs G protein-coupled receptors

GRP gastrin-releasing peptide

GPR56 g protein-coupled receptor 56

HNSCC head and neck squamous cell carcinoma

I/R ischemia/reperfusion

JNK c-Jun N-terminal kinase

LATS1/2 large tumor suppressor 1/2

LPA lysophosphatidic acid

LPAR LPA receptor

MAPK mitogen-activated protein kinase

MRTF myocardin-related transcription factor

NFAT activated T cell nuclear factor

NFATc1 nuclear factor of activated T-cell c1

NF-κB nuclear factor-kappa B

PARs protease-activated receptors

PI3K phosphatidylinositol 3-kinase

PKC protein kinase C

PLC phospholipase C

PPARγ peroxisome proliferator-activated receptor-γ

RGS regulators of G protein signaling

RhoGEF Rho guanine nucleotide exchange factor

RhoA ras homolog family member A

Ric-8A resistance to inhibitors of cholinesterase 8A

ROCK Rho-associated protein kinase

ROS reactive oxygen species

S1P sphingosine 1-phosphate

SRF serum response factor

Tfh T follicular helper

Th T helper

WNT Wingless/Int-1 lipoglycoprotein

YAP/TAZ yes-associated protein/transcriptional coactivator with PDZ-
binding motif
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