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Glycosylation (Glyc) is prevalently related to gastric cancer (GC) pathophysiology.
However, studies on the relationship between glycosylation regulators and tumor
microenvironment (TME) and immunotherapy of GC remain scarce. We extracted
expression data of 1,956 patients with GC from eight cohorts and systematically
characterized the glycosylation patterns of six marker genes into phenotype clusters
using the unsupervised clustering method. Next, we constructed a Glyc. score to quantify
the glycosylation index of each patient with GC. Finally, we analyzed the relationship
between Glyc. score and clinical traits including molecular subtype, TME, and
immunotherapy of GC. On the basis of prognostic glycosylation-related differentially
expressed genes, we constructed the Glyc. score and divided the samples into the
high– and low–Glyc. score groups. The high–Glyc. score group showed a poor prognosis
and was validated in multiple cohorts. Functional enrichment analysis revealed that the
high–Glyc. score group was enriched in metabolism-related pathways. Furthermore, the
high–Glyc. score group was associated with the infiltration of immune cells. Importantly,
the established Glyc. score would contribute to predicting the response to anti–PD-1/L1
immunotherapy. In conclusion, the Glyc. score is a potentially useful tool to predict the
prognosis of GC. Comprehensive analysis of glycosylation may provide novel insights into
the epigenetics of GC and improve treatment strategies.
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INTRODUCTION

Gastric cancer (GC) is one of the leading contributors to the global cancer disease burden, which has
brought heavy burden to societies and families (Siegel et al., 2020). Despite the many treatments
available to tackle GC, it still ranks third in tumor-related mortality (Smyth et al., 2020). Previous
studies have shown that the onset of GC is due to cumulative mutations in key signaling pathways
(Zhang and Zhang, 2017; Yeoh and Tan, 2021). Although cumulative mutations may be part of the
cause of GC, glycosylation in GC-related genes is also associated with GC (Fernandes et al., 2020;
Aziz et al., 2021). More than half of the proteins in organisms have glycosylation modification,
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including transcription factors and metabolism-related enzymes
(Ferreira et al., 2021; Sun et al., 2021; Zheng et al., 2021).
Glycosylation modification affects protein spatial
conformation, activity, transportation, and positioning and is
widely involved in intercellular recognition, regulation, and signal
transduction (Hombu et al., 2021). Protein glycosylation has been
proved to play an important role in the occurrence and
progression of various metabolic diseases (Dozio et al., 2021)
and malignant tumor diseases (Reily et al., 2019). Because protein
glycosylation usually occurs in the early stage of the malignant
changes, therefore, further exploring the molecular mechanisms
of glycosylation regulation will help to identify new GC markers
and, thus, improve the prognosis of patients with GC.

Glycosyltransferase and glycosidase are the key enzymes in
glycosylation (Glyc) (Munkley and Elliott, 2016). It can transfer
the monosaccharide part of its corresponding donor to sugars,
lipids, and proteins, thus to perform glycosylation processing on
the latter and realize its biology function. According to different
glycosidic bonds, proteins can be glycosylated into
N-glycosylation, O-glycosylation, glycophosphatidylinositol,
and C-mannosylation (Varki, 2017). Mounting evidence
demonstrated that glycosylation regulators involved multiple
biological processes at the posttranscriptional level and
immunomodulatory abnormality. Studies have found that the
overexpression of GnT-V in GC cells increased the β1,6GLcNAc
branching N-glycosylation modification of e-cadherin, inhibited
intercellular adhesion and downstream signal transduction, and
promoted the invasion and metastasis of tumors (Ihara et al.,
2002). Meanwhile, glycosylation of RIPK3 at T467 was found to

be crucial for RIPK3-mediated inflammatory response and
necrosis pathway (Li et al., 2019). Despite extensive research
on glycosylation, clinical research on the relationship between
glycosylation and cancer development is inadequate. The
investigation of various transcript isoforms derived from
glycosylation patterns may provide new insights into the
mechanisms of GC tumorigenesis and development. To better
understand the relationship between these glycosylation patterns
and the prognosis of GC, we constructed a prognostic scoring
system on the basis of the glycosylation.

In this study, we integrated the transcriptome data of 1,956 GC
samples to comprehensively evaluate the biological patterns derived
from glycosylation regulators. We identified two distinct Glyc
patterns and found that they were significantly related to cancer-
related signaling pathways. Next, we constructed a Glyc. score to
quantify the efficacy of different modification patterns in each patient
with GC. We revealed that the distribution of Glyc. score was
consistent with multiple cohorts, suggesting that this scoring
system based on glycosylation plays an important role in
predicting the prognosis and immunotherapy of GC.

MATERIALS AND METHODS

Data Source and Preprocessing
The workflow of this study is shown in Figure 1. We
systematically searched GC-related array datasets from the
public databases and selected the GC microarray data since
2010. The GC microarray datasets were recruited from Gene

FIGURE 1 | Flow chart of the study.
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Expression Ominibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/) with the following criteria: 1) only from
Affymetrix platform; 2) GC; 3) the number of patients ≥ 50;
4) with more than 12,000 protein-coding genes. We deleted
samples with overall survival (OS) less than 50 days. Finally,
GSE84437 (N = 431) (Yoon et al., 2020), GSE34942 (N = 56)
(Chia et al., 2015), GSE15459 (N = 191) (Ooi et al., 2009),
GSE57303 (N = 70) (Qian et al., 2014), ACRG/GSE62254 (N
= 300) (Cristescu et al., 2015), GSE29272 (N = 126) (Wang et al.,
2013), and GSE26253 (N = 432) (Lee et al., 2014) microarray
datasets were retrieved. One dataset was from The Cancer
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/
repository): TCGA-STAD (N = 350). Another immunotherapy
dataset was from IMvigor210 (n = 348) (Necchi et al., 2017). We
processed the raw data of these datasets using the Robust Multi-
array Average method implemented in the affy package for
background adjustment, quantile normalization, and final
summarization of oligonucleotides per transcript via median
polish algorithm (Gautier et al., 2004). The FPKM data were
used for differential expression analysis; the FPKM values were
transformed into TPM values, which are more similar to the data
distribution from microarrays and more comparable between
samples analyzed on different platforms (Zhao et al., 2020).
Information on the data obtained is summarized in Table 1.
Batch effects among different cohorts were removed using the
“ComBat” algorithm of the “sva” package in R (Parker et al.,
2014). In addition, corresponding clinical information was
extracted and manually organized either by directly
downloading from the corresponding websites in GEO,
IMvigor210, and TCGA or by searching the published primary
reports.

Selection of Glycosylation Regulators in GC
A gene set of 169 glycosylation regulators was extracted from
GlycoGene DataBase (GGDB; https://acgg.asia/ggdb2/)

(Supplementary Table S1). Next, use the “Limma” software
package in the R statistical software to extract and analyze the
TCGA-STAD data and screen out the differentially expressed
glycosylation regulators between GC and non-tumor tissues
(Ritchie et al., 2015). We set the adjusted p-value < 0.05 as a
significance threshold. Then, univariate Cox regression analysis
was used for differentially expressed glycosylation regulators, and
the differentially expressed glycosylation regulators related to the
patient’s OS were screened out on the basis of p < 0.05.

Consensus Clustering
Combined analysis on multiple datasets for the six marker genes
was conducted to identify glycosylation patterns and classify
samples for further analysis, using the unsupervised clustering
algorithm. Consensus clustering is a method used for estimating
the clustering consensus and assessing stability based on repeated
subsampling and clustering, thereby providing the clustering
numbers that best fit the data matrix. We used the
“ConsensusClusterPlus” package to perform consensus
clustering for the gene expression matrix of 1,524 samples and
performed 1,000 iterations to ensure the stability of the
classification (Wilkerson and Hayes, 2010).

Differentially Expressed Genes (DEGs)
Between the Glycosylation Clusters
After consensus clustering, we classified the samples with
different glycosylation patterns into Glyc. cluster.A and Glyc.
cluster.B. To identify the phenotype-related DEGs between the
two clusters, we used the “limma” package in R, which evaluates
the gene expression changes through t-statistics and p-values
calculated by the empirical Bayes estimation in a linear model.
The p-values were adjusted using the “Benjamini and Hochberg”
method. We set the adjusted p-value < 0.05 as a significance
threshold.

TABLE 1 | Basic information of series used in this study.

Series accession
numbers

Platform used No.
of input
patients

AJCC_stage Gender Mean age,
[min, max]

Region Survivval
outcome

GSE84437 Illumina HumanHT-12 V3.0
expression beadchip

431 I: 18; II: 206; III: 209 Female: 137,
Male: 296

60.1, [27, 86] Korea OS

GSE34942 Affymetrix Human Genome
U133 Plus 2.0 Array

56 I: 11; II: 11; III: 19; IV: 13;
NA: 2

Female: 20,
Male: 36

69, [43, 85] Singapore OS

GSE15459 Affymetrix Human Genome
U133 Plus 2.0 Array

191 I: 31; II: 29; III: 72; IV: 60 Female: 67,
Male: 125

64.4, [23, 92] Singapore OS

GSE57303 Affymetrix Human Genome
U133 Plus 2.0 Array

70 I: 3; II: 9; III: 41; IV: 17 Female: 18,
Male: 52

60.7, [37, 79] China OS

ACRG/GSE62254 Affymetrix Human Genome
U133 Plus 2.0 Array

300 I: 30; II: 97; III: 96; IV: 77 Female: 101,
Male: 199

64, [24, 86] Asia OS

GSE29272 Affymetrix Human Genome
U133A Array

126 I: 5; II: 5; III: 105; IV: 11 Female: 29,
Male: 97

56.7, [23, 73] United States OS

GSE26253 Illumina HumanRef-8 WG-
DASL v3.0

432 I: 68; II: 167; III: 130;
IV: 67

NA NA Korea RFS

TCGA-STAD Illumina RNAseq 350 I: 52; II: 139; III: 122; IV:
25; NA: 12

Female: 126,
Male: 224

67, [35, 90] NA OS

IMvigor210 Illumina RNAseq 348 NA Female: 76,
Male: 272

67, [32, 91] NA OS
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Construction of a prognostic model by principal component
analysis (PCA)

First, we identified 6,352 DEGs with adjusted p-value < 0.05 as
the significance threshold. Next, to identify which genes are
related to the prognosis of GC, we analyzed the DEGs by a
univariate Cox regression model. This analysis revealed 2,592
significant prognostic genes (p < 0.05). As a result, we performed
the consensus clustering again for 2,592 phenotype-related genes
from the 1,524 samples to identify the gene clusters among the
patients with GC. Finally, all the 2,592 genes were selected as
feature genes to construct a PCA scoring system. PCA is one of
the most widely used data dimensionality reduction algorithms
that preserve the dimensional features with most of the
differences (David and Jacobs, 2014). After obtaining the
principal component coefficient of each sample, we used a
method similar to gene-gene interaction analysis to define the
Glyc. score of each sample:

Glyc.Σ(PC1i + PC2i)
where “i” means the significant genes.

Gene Set Enrichment Analysis (GSEA)
We performed GSEA to identify differences in the enrichment of
pathways and biological processes between different IRGs
between high–Glyc. score group and low–Glyc. score group.
GSEA was conducted using the “clusterProfiler”, “enrichplot”,
“patchwork”, and “DOSE” packages in R (Subramanian et al.,
2007). We downloaded the gene sets of “c2. cp.kegg.v7.3.
symbols” and “h.all.v7.3. symbols” from the MSigDB database
for GSEA (http://www.gsea-msigdb.org/gsea/downloads.jsp). A
significance level of 0.05 (FDR) was considered to indicate
statistical significance.

Immune Cell Infiltration
We performed the ssGSEA, CIBERSORT, and xCell algorithm
methods to calculate the composition of immune cells between
the clusters (Bindea et al., 2013; Finotello and Trajanoski, 2018).

Immunohistochemistry
Tissues of 30 patients with GC and corresponding adjacent
tissues were collected to explore the expression of six marker
genes in the tissue samples by using immunohistochemical (IHC)
staining. IHC staining was performed according to the
manufacturer’s instructions.

Quantitative Reverse Transcription
Polymerase Chain Reaction (qRT-PCR)
Assays
Total RNA from tissues was isolated using TRIzol (Invitrogen,
Canada) reagent, and the specific operation is carried out with
reference to the instructions for the operation of the kit. RNA
(1 μg) was converted into cDNA using the RevertAid First Strand
cDNA Synthesis Kit (Takara, China). qRT-PCR was performed
using SYBR Green Mixture (Takara, China) in the ABI StepOne-
Plus System (ABI7500, USA). Target gene expression was
normalized against GAPDH.

Statistical Analysis
The normality of the variables was evaluated using the
Shapiro–Wilk normality test. We used parametric one-way
ANOVA or non-parametric Kruskal–Wallis test to compare
between more than two groups. Kaplan–Meier analysis was
used to generate survival curves using the “survival” and
“survminer” packages, and the cutoff values were determined
through the “surv_cutpoint” function in the packages. To
calculate the hazard ratios and identify the independent
prognostic factors, univariate and multivariate Cox regression
analyses were performed using the “survival” package.
Subsequently, we employed the area under the ROC curve to
measure the prediction accuracy of response to immunotherapy.
All statistical analyses were two-sided and considered p < 0.05 as
the threshold for statistical significance. The statistical results
were all analyzed by R (version3.6.2).

RESULTS

Identification of Glycosylation Regulators in
TCGA-STAD Patients
A total of 169 glycosylation regulators based on the GGDB were
identified in this study (Supplementary Table S1). To analyze the
expression pattern of glycosylation regulators between the GC
and normal control, 103 differentially expressed glycosylation
regulators between tumor and adjacent normal tissue in TCGA-
STAD dataset were identified (Supplementary Table S2). Next,
we sought to evaluate the predictive value of glycosylation
regulators for prognosis in GC. Kaplan–Meier log-rank
analysis revealed that 17 glycosylation regulators were
significantly correlated with OS in patients with GC
(Supplementary Table S3). Finally, a total of 11 prognostic
Glyc-related DEGs were preserved (Figure 2A). Of these, high
expressions of 11 glycosylation regulators were significantly
correlated with poor OS in TCGA-STAD dataset (Figure 2B).
Besides, the results demonstrated that six glycosylation regulators
(GALNT10, EXT2, GLT8D1, GXYLT2, POGLUT2, and CHSY3)
were highly expressed in GC than in normal tissues. However,
five glycosylation regulators (ST8SIA6, MGAT4C, GALNT15,
ST6GALNAC3, and GALNT16) were more lowly expressed in
GC than in normal tissues (Figures 2C–M). Ultimately, six
glycosylation regulators were included in the following analysis.

Consensus Clustering Based on the Six
Glycosylation Regulators and Functional
Enrichment Analysis
To classify the glycosylation patterns, we used consensus
clustering on the basis of the expression data of the six
recognized marker genes. Eventually, we identified two distinct
groups termed phenotype Glyc. cluster.A (n = 790), and Glyc.
cluster.B (n = 734) (Figure 3A). Kaplan–Meier analysis showed
that the prognosis of Glyc. cluster.B was poor than that of Glyc.
cluster.A (Figure 3B, p < 0.001). Then, we performed KEGG to
compare pathway enrichment between Glyc. cluster.A and Glyc.
cluster.B. Hallmark gene sets comprehensively summarized
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specific well-defined biological processes and displayed high
consistency in most published studies. As shown in
Figure 3C, compared with Glyc. cluster.A, Glyc. cluster.B was
significantly enriched in some immunity- and cancer-related
pathways.

Next, we explored whether there is a correlation between
the two clusters and immune infiltration levels in GC.
Therefore, we used the ssGSEA method to evaluate the
composition of immune cells between the two clusters. As
shown in Figure 3D, we found that immune cells in the Glyc.
cluster.B group exhibited higher expression levels in patients
with GC. Subsequent analyses showed that stroma activity was
significantly enhanced in Glyc. cluster.B such as the activation
of epithelial–mesenchymal transition and angiogenesis
pathways, which confirmed our speculation (Figure 3E).
Next, we used the CIBERSORT and xCell algorithm
methods to calculate the composition of immune cells
between the two clusters. As shown in Supplementary
Figures 1A,B, we found that immune cells in the Glyc.
cluster.B group exhibited higher expression levels in
patients with GC.

Construction of Glyc.gene Signature
First, Glyc. cluster.A group and Glyc. cluster.B group denoted a
markedly discrimination each other, suggesting that there are
different genes between the two groups (Supplementary Figure
S2). We identified 6,352 DEGs with adjusted p-value < 0.05 as the
significance threshold (Supplementary Table S4). To identify the
prognostic genes in GC, we selected these DEGs to perform
univariate Cox regression analysis. This analysis revealed 2,592
significant genes (p < 0.05, Supplementary Table S5). We further
identified the genomic subtypes on the basis of the prognostic
genes using the consensus clustering method. There were three
subtypes, termed Glyc. gene.cluster.A, Glyc. gene.cluster.B, and
Glyc. gene.cluster.C with 661, 667, and 246 samples, respectively
(Figure 4A). Kaplan–Meier analysis showed that the prognosis of
Glyc. gene.cluster.C was poor than that of Glyc. gene.cluster.A
and Glyc. gene.cluster.B (Figure 4B, p < 0.001). Next, we explored
whether there is a correlation between the three clusters and
immune infiltration levels in GC. Therefore, we used the ssGSEA
method to evaluate the composition of immune cells between the
three clusters. As shown in Figure 4D, we found that immune
cells in the Glyc. gene.cluster.C group exhibited higher expression

FIGURE 2 | Landscape of expression and prognosis of 11 glycosylation regulators in TCGA-STAD cohort. (A) Venn diagram to identify differentially expressed
genes between tumor and adjacent normal tissue that were correlated with overall survival. (B) Forest plots showing the results of the univariate Cox regression between
11 glycosylation regulators and overall survival in gastric cancer. (C–M) The illustration shows the expression distribution of 11 glycosylation regulators between paired
normal (blue) and gastric cancer (red) tissues. The boxes indicate the median ±1 quartile, with the whiskers extending from the hinge to the smallest or largest value
within 1.5× IQR from the box boundaries.
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levels in patients with GC. Subsequent analyses showed that
stroma activity was significantly enhanced in Glyc.
gene.cluster.C such as the activation of
epithelial–mesenchymal transition and angiogenesis pathways
(Figure 4C). We also used the CIBERSORT and xCell
algorithm methods to calculate the composition of immune
cells between the three clusters. As shown in Supplementary

Figures 3A,B, we found that immune cells in the Glyc.
gene.cluster.C group exhibited higher expression levels in
patients with GC. Then, we also observed that there were
significant differences between the Glyc. gene.cluster.A, Glyc.
gene.cluster.B, and Glyc. gene.cluster.C for the N, stage,
gender and age, and fustat (Supplementary Figure S4).
Moreover, we further analyzed the relationship between three

FIGURE 3 | Patterns of glycosylation and functional enrichment analysis. (A) Unsupervised consensus clustering for 1,524 gastric cancer patients in a meta cohort
(GSE84437, GSE34942, GSE15459, GSE57303, GSE62254, GSE29272, and TCGA-STAD). (B) Kaplan–Meier curve showed a significant difference between the two
glycosylation (Glyc) clusters. The yellow represented Glyc. cluster (B), and the blue represented Glyc. cluster.A. (C) KEGG enrichment analysis. The illustration was used
to visualize these biological processes, where red represented activated pathways and blue represented inhibited pathways. (D) The abundance of each TME
infiltrating cell in two Glyc clusters. The upper and lower ends of the boxes represented the interquartile range of values. The lines in the boxes represented median value,
and black dots showed outliers. (E) Differences in stroma-activated pathways including EMT, TGF beta, and angiogenesis pathways among two Glyc clusters. The
asterisks represented the statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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Glyc. gene.clusters and the expression of six glycosylation genes.
The result showed the expression of six glycosylation genes in
gene Glyc. gene.cluster.C was higher than that in the other groups
(Figure 4E). On the basis of the above analyses, most of the
samples in Glyc. gene.cluster.A and Glyc. gene.cluster.B could be
classified into phenotype Glyc. cluster.A. Samples in Glyc.
gene.cluster.C were closely related to phenotype Glyc. cluster.B.

Construction of Glyc.score
We further constructed a scoring system using the PCA method
to quantify the Glyc patterns of individual patients with GC. This
scoring systemwas named the Glyc. score. First, we found that the
Glyc. score of Glyc. cluster.B was significantly higher than that of

Glyc. cluster.A (Figure 5A, p < 0.001), and the Glyc. score of Glyc.
gene.cluster.C was significantly higher than that of Glyc.
gene.cluster.A and Glyc. gene.cluster.B (Figure 5B, p < 0.001).
Kaplan–Meier analysis revealed that the prognosis of patients
with a high Glyc. score was significantly poor than that of patients
with a lowGlyc. score (Figure 5C, p < 0.001). The predictive value
of Glyc. score in GC cohorts was 0.761, suggesting that Glyc. score
can better predict the prognosis of GC (Figure 5D). We further
analyzed the relationship between Glyc. score and immune cells.
The result showed immune cells in the high–Glyc. score group
exhibited higher expression levels in patients with GC
(Figure 5E). Functional enrichment analysis revealed that the
high–Glyc. score group was enriched in metabolic- and cancer-

FIGURE 4 | Construction of Glyc. gene signature. (A) Unsupervised consensus clustering based on prognostic Glyc-related differentially expressed genes to
classify patients into three groups termedGlyc. gene.clusters A, Glyc. gene.clusters B, and Glyc. gene.clusters C. (B)Kaplan–Meier curve showed a significant difference
between the three Glyc. gene.clusters. (C) Differences in stroma-activated pathways including EMT, TGF beta, and angiogenesis pathways among three Glyc.
gene.clusters. (D) The abundance of each TME infiltrating cell in three Glyc. gene.clusters. The upper and lower ends of the boxes represented the interquartile
range of values. The lines in the boxes represented median value, and black dots showed outliers. (E) The expression of six Glyc regulators in three Glyc. gene.clusters.
The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The
asterisks represented the statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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related pathways, including cell cycle, heme metabolic process,
pigment metabolic process, and tetrapyrrole metabolic process
(Figures 5F,G).

Independent Prognostic Analysis of
Glyc.score
Next, to investigate whether Glyc. score could serve as an
independent prognostic factor for GC, we performed
multivariate Cox regression analyses. The results indicated that
Glyc. score is a robust independent prognostic factor in TCGA

cohort (1.72 [1.36–2.41], p < 0.001) and ACRG cohort (1.31
[1.14–1.50], p < 0.001) (Figures 6A,B). We further analyzed the
Glyc. score in No. adjuvant chemotherapy group (ADJC) and
adjuvant chemotherapy group, and patients received ADJC had a
lower Glyc. score than that patients received No. ADJC
(Figure 6C). In addition, both in patients receiving ADJC or
not, high Glyc. score had an obvious poor survival than that of
patients with a low Glyc. score (Figure 6D). To analyze the
clinical significance of Glyc. score, we observed the correlation
between Glyc. score and ACRG molecular subtype and TCGA
molecular subtype. Consistent with the OS analysis of the ACRG

FIGURE 5 | Construction of Glyc. score. (A) Differences in Glyc. score among two Glyc. clusters in meta cohort. (B) Differences in Glyc. score among three Glyc.
gene.clusters in meta cohort. (C) Kaplan–Meier curves for high– and low–Glyc. score patient groups. (D) The predictive value of Glyc. score in meta cohort. (E) The
abundance of each TME infiltrating cell in high– and low–Glyc. score groups. The upper and lower ends of the boxes represented the interquartile range of values. The
lines in the boxes represented median value, and black dots showed outliers. (F)GSEA GO identified high– and low–Glyc. score groups related signaling pathways
in gastric cancer. (G) GSEA KEGG identified high and low Glyc. score–related signaling pathways in gastric cancer.
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cohort, the Glyc. score of patients with the EMT subtype was
relatively high, followed by MSS/TP53+, MSS/TP53−, and finally
the MSI subtype (Figure 6E). Meanwhile, consistent with the OS
analysis of the TCGA cohort, the Glyc. score of patients with the
GS subtype was relatively high, followed by CIN, EBV, and,
finally, the MSI subtype (Figure 6F). In addition, we revealed that
diffuse histological subtype and advanced patients were
significantly associated with a higher Glyc. score, which means
that these patients had a poorer clinical outcome (Figures 6G,H).

Validation of the Prognosis of Glyc. Score in
Multiple Cohorts
To further validate Glyc. score in GC, GSE15459, GSE84437,
GSE26253, TCGA-STAD, and GSE62254 cohorts were used to
measure the Glyc. score. Kaplan–Meier analysis revealed that the
prognosis of patients with a high Glyc. score was significantly
poor than that of patients with a low Glyc. score (Figure 7A, 1.66
[1.40–1.97], p < 0.001). The predictive value of Glyc. score in all
GC cohorts except GSE26253 was 0.776 (Figure 7B).
Simultaneously, Kaplan–Meier analysis revealed that the
prognosis of patients with a high Glyc. score was significantly
poor than that of patients with a low Glyc. score in TCGA-STAD
(Figure 7C, 1.56 [1.11–2.18], p = 0.010), GSE15459 (Figure 7E,
1.70 [1.11–2.80], p = 0.015), GSE62254 (Figure 7G, 2.19
[1.57–3.05], p < 0.001), and GSE84437 (Figure 7I, 1.83
[1.37–2.43], p < 0.001). The predictive value of Glyc. score in
TCGA-STAD, GSE15459, GSE62254, and GSE84437 was 0.716

(Figure 7D), 0.770 (Figure 7F), 0.850 (Figure 7H), and 0.792
(Figure 7J), respectively. Finally, Kaplan–Meier analysis revealed
that the prognosis of patients with a high Glyc. score was
significantly poor relapse-free survival than that of patients
with a low Glyc. score in the GSE26253 cohort (Figure 7K,
1.42 [1.04–1.95], p = 0.028). The predictive value of Glyc. score in
GSE26253 was 0.796 (Figure 7L).

Glyc. Score Involved in Immunotherapy
Considering that Glyc. score appears to be associated with
tumor microenvironment (TME), we examined the power of
the Glyc. score to predict the response of patients to
immunotherapy. We found that patients with low Glyc.
score exhibited significant clinical benefits and had a
markedly prolonged OS in IMvigor210 cohort (Figure 8A).
The predictive value of Glyc. score in IMvigor210 cohort was
0.728 (Figure 8B). The 348 patients of the IMvigor210 cohort
exhibited different degrees of response to anti–PD-L1 blocker
(Table 2). The low–Glyc. score group also showed
significantly better therapeutic outcomes (Figure 8C). The
CR/PR patients showed the lower Glyc. score than patients
with other types of responses (Figures 8D,E). By detecting the
expression level of checkpoint, we found that the checkpoint
expression in the high–Glyc. score group was lower than in the
low–Glyc. score group (Figure 8F). To analyze the immune
phenotypes significance of Glyc. score, we observed the
correlation between Glyc. score and immune phenotypes.
The Glyc. score of patients with the exclusion and desert

FIGURE 6 | Independent prognostic analysis of Glyc. score. (A)Multivariate Cox regression analysis for Glyc. score in ACRG cohort shown by the forest plot. (B)
Multivariate Cox regression analysis for Glyc. score in TCGA cohort shown by the forest plot. (C) Difference in Glyc. score among ADJC and No. ADJC in ACRG cohort.
ADJC, adjuvant chemotherapy. (D)Kaplan–Meier curves for patients in the ACRG cohort stratified by both receipt of ADJC andGlyc. score. (E)Differences in Glyc. score
between different ACRG molecular subtypes. The upper and lower ends of the boxes represented interquartile range of values. (F) Differences in Glyc. score
between different TCGA-STAD molecular subtypes. The upper and lower ends of the boxes represented interquartile range of values. (G) Differences in Glyc. score
between different stage. (H) Differences in Glyc. score between different histology subtypes.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8110759

Li et al. Glycosylation and Gastric Cancer

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


immune phenotypes was relatively high (Figure 8G).
Subsequent analyses showed that stroma activity was
significantly enhanced in high Glyc. score such as the
activation of epithelial–mesenchymal transition and
angiogenesis pathway (Figure 8H). Importantly, we found

patients with combination of high Glyc. score and low
neoantigen burden showed a poor survival (Figure 8I). We
found patients with high Glyc. score were characterized
inflammatory phenotype (Figure 8J). In summary, our
work strongly indicated that the established Glyc. score

FIGURE 7 | External validation of Glyc. score model. (A) Kaplan–Meier curves for high– and low–Glyc. score patient groups in six GEO datasets (GSE84437,
GSE34942, GSE15459, GSE57303, GSE62254, and GSE29272). (B) The predictive value of Glyc. score in six GEO dataset. (C) Kaplan–Meier curves for high– and
low–Glyc. score patient groups in TCGA-STAD. (D) The predictive value of Glyc. score in TCGA-STAD. (E) Kaplan–Meier curves for high– and low–Glyc. score patient
groups in GSE15459. (F) The predictive value of Glyc. score in GSE15459. (G) Kaplan–Meier curves for high– and low–Glyc. score patient groups in GSE62254.
(H) The predictive value of Glyc. score in GSE62254. (I) Kaplan–Meier curves for high– and low–Glyc. score patient groups in GSE84437. (J) The predictive value of Glyc.
score in GSE84437. (K) Relapse-free survival analysis of Glyc. score in GSE26253 cohort. (L) The predictive value of Glyc. score in GSE26253.
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FIGURE 8 | Glyc. score in the role of anti–PD-1/L1 immunotherapy. (A) Survival analyses for low– and high–Glyc. score patient groups in the anti–PD-L1
immunotherapy cohort using Kaplan–Meier curves (IMvigor210 cohort). (B) The predictive value of Glyc. score in IMvigor210 cohort. (C) The proportion of patients with
response to PD-L1 blockade immunotherapy in low– or high–Glyc. score groups. SD, stable disease; PD, progressive disease; CR, complete response; PR, partial
response. (D) Differences in Glyc. score among distinct anti–PD-1 clinical response groups. (E) Distribution of Glyc. score in distinct anti–PD-L1 clinical response
groups. (F)Differences in checkpoint expression between low– and high–Glyc. score groups. (G) Differences in Glyc. score among distinct tumor immune phenotypes in
IMvigor210 cohort. (H)Differences in stromaactivated pathways and abundance of regulatory T cells (considered as immune suppression) between low– and high–Glyc.
score groups in anti–PD-L1 immunotherpy cohort. (I) Survival analyses for patients receiving anti–PD-L1 immunotherapy stratified by both Glyc. score and neoantigen
burden using Kaplan–Meier curves. NEO, neoantigen burden. (J) Differences in Glyc. score between immune subtypes (C1, wound healing; C2, IFN-gamma dominant;
C3, inflammatory; C4, lymphocyte depleted).
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would contribute to predicting the response to anti–PD-1/L1
immunotherapy.

Validation the Expression of Six Marker
Genes by qRT-PCR and IHC
Next, to further validate six marker genes in GC, wemeasured the six
marker genes protein level by immunohistochemistry, and the result
showed that, compared with the normal group, the six marker genes
protein level was significantly higher in the GC group (Figure 9A). In
addition, RT-qPCR was used to detect the six marker genes mRNA
expression in GC. Compared with the normal group, the six marker
genes mRNA level was significantly higher in the GC group
(Figure 9B).

DISCUSSION

Glycosylation implicated in the occurrence and development of
cancer. The immune system mainly recognizes the forms of tissue
damage and the presence of pathogens. Damage-related molecular
patterns are often based on foreign polysaccharides and
glycoconjugates, which induce the release of pro-inflammatory

cytokines and the activation of immune cells (Khan et al., 2018).
However, proinflammatory signaling is inhibited by the
autocorrelation molecular pattern of host cells through the
expression of specific polysaccharide antigens, and glycosylation
modification of proteins may be involved in the regulation
(Cadena et al., 2019). In addition to its direct effect on
immunosuppression, glycosylation can also indirectly promote
immune evasion by enhancing immune checkpoint (Seeling et al.,
2017). In this study, we mainly focused on the glycosylation
regulators and classified them into two Glyc-related clusters on
the basis of the expression profile of six marker genes. Next, we
identified three genomic subtypes on the basis of 2,592 prognostic
Glyc-related DEGs and constructed the Glyc. score to quantify the
Glyc and predict the prognosis and immunotherapy of GC.

From a global perspective, the whole process of clustering and
the Glyc. score showed consistency and accuracy. The samples in
the high–Glyc. score group were mostly associated with
phenotype Glyc. cluster.B and Glyc. gene.cluster.C. The higher
the Glyc. score, the worse was the prognosis of GC. Functional
analysis demonstrated that, in samples with a high Glyc. score,
several cancer-related signaling pathways, including P53
signaling pathway, cell cycle, and DNA replication pathways,
were activated. Activation of the P53 signaling pathway occurs
not only through canonical mutations but also through the high-
level amplification of the P53 gene (Harris and Levine, 2005). The
P53 signaling pathway is associated with resistance to targeted
chemotherapies (Joerger and Fersht, 2016) and plays an
important role in the occurrence and development of
gastroesophageal cancers (Clemons et al., 2013). Cell cycle
signaling in tumor cells leads to self-renewal, proliferation, and
invasion (Evan and Vousden, 2001). In samples with a higher
Glyc. score, the cell cycle signaling pathway was aberrantly
activated, which promoted carcinogenesis and the
transformation of cancer stem cells. DNA replication pathway
plays a role in both tumor suppression and tumor promotion (Li
and Heyer, 2008). In this study, we also found that the EMT
pathway was activated in the high–Glyc. score group, and DNA
replication signaling is reported to promote GC development
through the induction of EMT (Wang et al., 2020). Consistently,
we found that, in GC, the Glyc. score was significantly high,
suggesting that a high Glyc. score might promote GC
development through the activation of the abovementioned
signaling pathways.

At present, immunological checkpoint blockade of CTLA-4
and PD-L1 has become one of the most promising
immunotherapies (Incorvaia et al., 2019). However, some solid
tumors respond poorly to immunotherapy (such as pancreatic
cancer) (Bear et al., 2020). Studies have shown that the efficacy of
tumor immunotherapy is still limited by the highly
immunosuppressed TME and the low immunogenicity of
cancer cells, which seriously affects the efficacy of treatment
(Kishton et al., 2017). In this study, functional enrichment
analysis revealed that the high Glyc. score was enriched in
metabolic related pathways. Metabolic changes are one of the
important characteristics of tumors. To maintain sustained
proliferation, tumor cells must adjust their metabolism and
nutritional access (Martinez-Outschoorn et al., 2017). Evidence

TABLE 2 | Summary of detailed clinical information of IMvigor210 (mUC) cohort.

IMvigor210 cohort Low (n = 124) High (n = 224) Total (n = 348)

Vital status
Alive 42 (33.9%) 74 (33.0%) 116 (33.3%)
Dead 82 (66.1%) 150 (67.0%) 232 (66.7%)
Gender
Female 20 (16.1%) 56 (25.0%) 76 (21.8%)
Male 104 (83.9%) 168 (75.0%) 272 (78.2%)
Overall response
CR 5 (18.5%) 20 (7.4%) 25 (8.4%)
PR 8 (29.6%) 35 (12.9%) 43 (14.4%)
SD 3 (11.1%) 60 (22.1%) 63 (21.1%)
PD 11 (40.7%) 156 (57.6%) 167 (56.0%)
Binary response
CR/PR 13 (48.1%) 55 (20.3%) 68 (22.8%)
SD/PD 14 (51.9%) 216 (79.7%) 230 (77.2%)
Enrollment IC
IC0 30 (24.2%) 69 (30.8%) 99 (28.4%)
IC1 51 (41.1%) 81 (36.2%) 132 (37.9%)
IC2 43 (34.7%) 74 (33.0%) 117 (33.6%)
IC level
IC0 32 (26.0%) 65 (29.0%) 97 (28.0%)
IC1 45 (36.6%) 87 (38.8%) 132 (38.0%)
IC2+ 46 (37.4%) 72 (32.1%) 118 (34.0%)
TC Level
TC0 91 (74.0%) 184 (82.1%) 275 (79.3%)
TC1 11 (8.9%) 11 (4.9%) 22 (6.3%)
TC2+ 21 (17.1%) 29 (12.9%) 50 (14.4%)
Immune phenotype
Desert 22 (19.5%) 54 (31.6%) 76 (26.8%)
Excluded 51 (45.1%) 83 (48.5%) 134 (47.2%)
Inflamed 40 (39.4%) 34 (19.9%) 74 (26.1%)
TCGA cluster
I 42 (33.9%) 76 (33.9%) 118 (33.9%)
II 46 (37.1%) 49 (21.9%) 95 (27.3%)
III 16 (12.9%) 53 (23.7%) 69 (19.8%)
IV 20 (16.1%) 46 (20.1%) 66 (19.0%)
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FIGURE 9 | The expression of six marker genes in GC. (A) Representative immunohistochemistry images of six marker genes expression in normal tissues and GC
tissues. (B) Six marker genes mRNA levels are shown for the GC and normal tissues.
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shows that the imbalance of energy metabolism in human body
can produce suppressive TME and, thus, inhibit anti-tumor
immune response and play a key role in tumor progression
and metastasis (Pearce and Pearce, 2013; Andrejeva and
Rathmell, 2017; Huby and Gautier, 2021). On the other hand,
we found that immune cells in the Glyc. cluster.B, Glyc.
gene.cluster.C, and high–Glyc. score group exhibited higher
expression levels in patients with GC. Previous studies
demonstrated that tumors with immuneexcluded phenotype
also showed the presence of abundant immune cells, whereas
these immune cells were retained in the stroma surrounding
tumor cell nests rather than penetrate their parenchyma. The
activation of stroma in TME were considered T-cell suppressive
(Chen and Mellman, 2017). Therefore, under this dual effect, the
immunotherapy of GC is not ideal.

TheACRGmolecular subtype, which focuses on the heterogeneity
of GC, comprises four molecular subtypes linked to distinct patterns
of molecular alterations, disease progression, and prognosis
(Cristescu et al., 2015). In the ACRG analysis, the MSI subtype
had the best prognosis, followed by MSS/TP53+ and MSS/TP53−,
with the MSS/EMT subtype showing the worst prognosis (Cristescu
et al., 2015). Consistent with the survival trends in the ACRG cohort,
we found a similar distribution in the Glyc. score; GC samples of the
EMT subtype were notably linked to high Glyc. score and had a
poorer prognosis. The TCGA molecular subtype, which also focuses
on the heterogeneity of GC, comprises four molecular subtypes. In
the TCGA analysis, theMSI subtype had the best prognosis, followed
by EBV and CIN, with the GS subtype showing the worst prognosis
(Cancer GenomeAtlas ResearchNetwork, 2014). Consistent with the
survival trends in the TCGA cohort, we found a similar distribution
in the Glyc. score; GC samples of the GS subtype were notably linked
to high Glyc. score and had a poorer prognosis.

GC classification methods frequently used in clinical practice,
such as Lauren classification and WHO classification, lack a
quantitative score for individual patients, and their clinical
utility is limited. The molecular subtype systems based on
molecular mechanisms and clinical outcomes, such as TCGA
subtypes and ACRG subtypes, are easily applicable to the
preclinical setting and facilitate clinical decision making. In
this study, we attempted to explore the molecular role of
glycosylation patterns in GC. We quantified glycosylation
modification for each individual patient and developed a

similar scoring system, which linked the Glyc. score with the
prognosis and immunotherapy of patients with GC.

Our study has some limitations. First, given the individual
heterogeneity of GC, the results of our study should be further
validated using more multicenter clinical data. Last, our findings
have substantial implications for glycosylation of GC, and the
detailed molecular mechanisms require further research to
explore deeper interactions.

In a conclusion, this study was focused on the analysis of
glycosylation in GC, and, on the basis of the modification
patterns, we constructed the Glyc. score to explore the
extensive regulation mechanisms by which glycosylation
modification affect tumorigenesis. The relationship between
the scoring system and clinical outcomes in patients with GC
was demonstrated, and model validation was performed using
several external datasets from the GEO and TCGA databases.
This study provides novel insights into the role of glycosylation
modification in GC development.
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