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Objective: Colon cancer is one of the most frequent and lethal neoplasias. Altered
metabolic activity is a well-known hallmark for cancer. The present study is aiming to
screen key genes associated with tumor metabolism and construct a prognostic signature
of colon cancer patients.

Methods: Glutamine- and UC- metabolism related genes were downloaded from GSEA
MsigDB. Three key genes were screened by Cox regression analysis with data samples
downloaded from TCGA and GSE29623 database. Consistent clustering based on the
prognostic genes identified was employed to divide the colon cancer samples into two
clusters with significant OS differences. The mRNA and protein expression of the key
genes in colon tissues and matched adjacent noncancerous tissues of 16 patients were
detected by IHC, qPCR, and Western blot to validate the constructed clustering model.
GO, GSVA, and IPA were used to predict the relevant metabolic pathways.

Results: According to the three key genes identified, i.e., ASNS, CEBPA, and CAD, the
cohort can be divided into two clusters with prognosis differences. Clinical specimen
results confirmed that the risk model established was effective, and the different

Edited by:
Oronzo Brunetti,

Bari John Paul II Cancer Institute,
National Cancer Institute Foundation

(IRCCS), Italy

Reviewed by:
Eric Stephen Goetzman,

University of Pittsburgh, United States
Josep Centelles,

University of Barcelona, Spain
Ovidio Bussolati,

University of Parma, Italy

*Correspondence:
Zhaoyi Wang

wangzhaoyi@jlu.edu.cn
Yaping Li

yaping@jlu.edu.cn
Xuedong Fang

fangxd@jlu.edu.cn

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 10 November 2021
Accepted: 17 January 2022
Published: 31 January 2022

Citation:
Sun W, Jia C, Zhang X, Wang Z, Li Y
and Fang X (2022) Identification of Key

Genes Related With Aspartic Acid
Metabolism and Corresponding

Protein Expression in Human Colon
Cancer With Postoperative Prognosis

and the Underlying Molecular
Pathways Prediction.

Front. Cell Dev. Biol. 10:812271.
doi: 10.3389/fcell.2022.812271

Abbreviations: ASNS, asparagine synthetase; BP, biological process; CAD, carbamoyl-phosphate synthetase 2, aspartate
transcarbamylase, and dihydroorotase; CC, cellular components; CDF, cumulative distribution function; CEBPA, CCAAT/
enhancer binding protein alpha; CLP, common lympoid progenitors; CRC, colorectal cancer; CRE, cAMP response element;
CREB, cAMP response element-binding protein; CXCR4, CXC chemokine receptor 4; FDR, false discovery rate; GEO, gene
expression omnibus; GO, gene ontology; GSVA, gene set variation analysis; HRP, horseradish peroxidase; IHC, immuno-
histochemistry; IPA, ingenuity pathway analysis; KEGG, Kyoto Encyclopedia of genes and genomes; NER, nucleotide excision
repair; OS, overall survival; PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1; PPAR, peroxisome
proliferators-activated receptors; RNA pol II, RNA polymerase II; ssGSEA, single sample gene set enrichment Analysis; TCGA,
The cancer genome Atlas; Th2 cells, T-helper 2 cells; TIDE, tumor immune dysfunction and exclusion; TME, tumor mi-
croenvironment; TNM staging, Tumor-Node-Metastasis staging; t-SNE, t-distributed stochastic neighbor embedding; UC, urea
cycle.
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expression pattern of ASNS and CEBPA was correlated with TNM stage and lymph node
metastasis, whilst that of CAD was correlated with post-operative tumor metastasis and
recurrence. Molecular mechanism prediction indicated that CREB, insulin, and RNA Pol II
were the key nodes affecting CEBPA and ASNS expression. Moreover, TIDE algorithm
reflected the better immune response of the cluster with shorter OS. Further immune
infiltration and checkpoints analyses provided important reference for clinicians to perform
individualized immunotherapy.

Conclusion: Differential expression profile of three aspartic acid metabolic-associated
genes, ASNS, CEBPA, and CAD, can be considered as a risk model with a good
evaluation effect on the prognosis of colon cancer patients.

Keywords: consensus clustering, colon cancer, immune infiltration, prognostic signature, aspartic acid metabolism

INTRODUCTION

After dismissing the revelation of the “Warburg effect” for almost
a century, the study of metabolic reprogramming has been
revived as the understanding of cancer occurrence,
development, and metastasis mechanism deepened (Ward and
Thompson, 2012). Aside from the fact that tumor cells rely on
aerobic glycolysis rather than the mitochondrial oxidative
phosphorylation to survive (Vander et al., 2009), other
metabolic alterations on malignant tumors have been
gradually discovered, including both the lipid and amino acid
metabolisms. Lipid uptake and storage are elevated in malignant
tumors, while lipogenesis is strongly up-regulated to
accommodate increased membrane biogenesis (Röhrig and
Schulze, 2016; Pascual et al., 2017). Regarding the
reprogramming of amino acid metabolism, glutamine, the
most abundant circulating amino acid, is one of the hubs
linking the metabolic processes (Altman et al., 2016). The high
glutamine level in the blood provides carbon and nitrogen for
cells. The glutamine-derived carbon can be used to synthesize
amino acids and fatty acids, while the nitrogen from glutamine
directly affects the biosynthesis of purines and pyrimidines
(Rubin, 1990; Lane and Fan, 2015). Abnormal changes in
glutamine related metabolic processes are considered to be
hallmarks of tumorigenesis. Under glutamine deficiency
condition, asparagine can complement glutamine as an
important nitrogen source to support tumor cell proliferation
(Zhang et al., 2014). Since glutamine is often found to be limited
in the tumor microenvironment (TME), asparagine can even
support epithelial breast cancer cells to proliferate in the absence
of exogenous glutamine. In this context, asparagine supports de
novo biosynthesis of glutamine through enhancing the expression
of glutamine syntheses (Pavlova et al., 2018). And asparagine
restriction reduces the expression of genes involved in the
epithelial-mesenchymal transition, a key step for metastasis to
initiate (Knott et al., 2018). While glutamine metabolism is
crucial for ammonium assimilation, UC is the main pathway
converting excess nitrogen into disposable form, which is an
important process for ammonium alienation. UC dysregulation is
considered to be a general tumor metabolic hallmark based on
recent discoveries, for instance, UC rewiring toward pyrimidine

synthesis promotes carcinogenesis (Krebs, 1970; Spinelli et al.,
2017).

It is noteworthy to mention that other than tumor cells, the
immune cells located in the surrounding TME also undergo
amino acid metabolic reprogramming. For example, glutamine
levels alteration can activate the tumor-infiltrating T cells and
influence tumor growth by directly contacting or stimulating
other cells in the TME (Keshet et al., 2018).

As one of the most prevalent and high-incidence cancers, CRC
is a very heterogeneous disease that develops through a gradual
accumulation of genetic and epigenetic changes (Simon, 2016).
Although inexhaustive, some initial attempts have been made to
uncover the mechanism of metabolic reprogramming in CRC
(Renner et al., 2017). Typically, metabolomics analysis of serum/
plasma samples from patients revealed the six most affected
metabolic pathways in CRC, including protein biosynthesis,
glutamine metabolism, ammonia cycle, alanine metabolism,
aspartic acid metabolism and citric acid cycle (Wilkinson
et al., 2010).

Indeed, CRC comprises both colon cancer and rectal cancer
because they share many physiological features. Compared with
that of rectal cancer, the early diagnosis and treatment of colon
cancer patients shows much better prognosis (Freeman, 2013).
However, in many patients with colon cancer, TNM staging-the
existing “gold standard” prediction model-does not accurately
predict tumor recurrence, metastasis, or survival. TNM staging is
suboptimal as seen by the variation in target-therapy outcomes
that exists amongst patients of the same stage. Thus, we employed
bioinformatics techniques to obtain critical nitrogen metabolism-
related genes and explored their survival predictive potential by
classifying the colon cancer patients into two clusters. We further
compared the underlying molecular mechanism and the immune
behavior of the two clusters, and indicated their benefits for
individualized target- and immuno-therapy.

MATERIALS AND METHODS

Data Collection
The transcripts and complete clinical data of 415 patients were
downloaded from the Cancer Genome Atlas (TCGA) database.
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Gene Expression Omnibus (GEO) data source: GSE29623, 67
cases of colon cancer samples with complete clinical data were
selected to verify the results of TCGA data analysis. The gene sets
of UC metabolism and glutamine metabolism were downloaded
from GSEA MsigDB. Gene set of UC metabolism: GO_ UREA_
CYCLE, GO_ UREA_ METABOLIC_ Process, including 13
genes. Glutamine metabolism gene set: GO_ GLUTAMINE_
METABOLIC_ Process, including 23 genes.

Cox Regression Analysis
Univariate Cox regression analysis was employed to select the
genes with p-value < 0.2 by the proportional hazards model. The
selected genes were incorporated into the multivariate Cox
regression analysis, and genes with p-value < 0.05 were
selected as prognostic genes. Cox regression analysis was used
to determine the independent clinical risk factors, including
patient age, gender, tumor TNM staging, etc.

Consistent Clustering
Consistent clustering of the TCGA and GEO databases were
based on the prognostic genes obtained previously. The software
package “ConsensusClusterPlus” was used for consistent
clustering, and the optimal number of subgroups was
evaluated using cumulative distribution function and
consensus matrices (Li et al., 2014). Moreover, t-distributed
Stochastic Neighbor Embedding (t-SNE) clustering algorithm
was conducted to verify the clustering results.

GeneOntology, Gene Set Variation Analysis,
and Ingenuity Pathway Analysis Enrichment
Analysis
Using the limma package, the differential expression of 415
different TCGA samples was analyzed, and the cutoff criteria
set as log2FoldChange <0.5 and false discovery rate (FDR) < 0.05.

The GO system comprised three sections: biological process,
molecular functions, and cellular components. To further
explore the functions of the differential genes, GO function
enrichment analysis was performed using the cluster profiler
software. The screening condition was |t-value| > 2 and
p-value < 0.05 (Hänzelmann et al., 2013). The GSVA is a
non-parametric unsupervised analysis method, mainly used to
evaluate the gene set enrichment of chips and transcriptomes.
GSVA transforms a matrix of “sample × gene” into a matrix of
“sample × pathway”, which directly reflects the connection
between the sample and the reaction pathway. Similarly, using
the limma package to do the same analysis on the results of GSVA
(still a matrix) can find pathways with significant differences
between samples. A more comprehensive functional enrichment
analysis was conducted using the IPA software to elucidate the
affected genes and signal pathways.

XCell Immune Infiltration Analysis
XCell (http://XCell.ucsf.edu/) is a single sample Gene Set
Enrichment Analysis (ssGSEA) based approach. The
abundance scores of 64 immune cell types were enriched by
XCell (Aran et al., 2017). TIDE (tumor immune dysfunction and
exclusion) (http://tide.dfci.harvard.edu) algorithm was used to
predict the immunotherapy response of each patient.The
statistical model of TIDE was trained on clinical tumor
profiles without immune checkpoint blockade treatments since
the immune evasion mechanisms in treatment-naïve tumors are
influence patient response to immunotherapies (Jiang et al.,
2018).

Patients Specimens and Clinical Data
Collection
The primary colon cancer tissues and corresponding adjacent
nontumor samples were retrieved from the China-Japan Union
Hospital of Jilin University between January 2016 and January
2017. The eligibility criteria for the specimens are as follows: 1)
patients aged 55–70 who received radical colon cancer surgery
without any chemotherapy, radiotherapy or other intervention
within 3 years; 2) no history of serious basal metabolic disease; 3)
patients with follow-up information for more than 3 years
available to determine whether other organ metastasis or
recurrence occurred. A total of 16 colon cancer patients
meeting the above conditions were screened. Specimens from
these patients satisfied these criteria were immediately stockpiled
at −80 after surgery and progressed for analysis. All patients were
confirmed as colon cancer by postoperative histopathological
examination, and the type identification and TNM staging
were carried out by the pathology department of the China-
Japan Union Hospital of Jilin University. Besides, the clinical data
of patients were acquired from the electronic medical record of
the department of gastrointestinal colorectal and anal surgery of
China-Japan Union Hospital of Jilin University.

Immunohistochemistry
The slides were incubated at 65°C for 45 min and then dewaxed.
Subsequently, we retrieved the antigen using citrate buffer and

FIGURE 1 | Multivariate analysis of genes associated with glutamine
metabolism and the urea cycle to identify key genes. HR stands for risk ratio,
the lower/Upper 95% CI was the 95% confidence interval of the risk value.
n = 415.
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blocking endogenous peroxidase with 3%H2O2. After nonspecific
antigen blocking, the slides were incubated with antibodies at 4°C
overnight. The antibodies against ASNS (dilution 1:200) and
CEBPA (dilution 1:200) were purchased from Cellsignal
(92479S; 8178S), and the antibody against CAD (dilution 1:
200) was purchased from Proteintech (16617-1-AP). The next
day, slides were incubated with secondary antibody labeled with
Horseradish Peroxidase (HRP) at room temperature for 1 h.
Finally, the reaction was visualized using Diaminobezidin and
the slides were counter stained with hematoxylin. The digital
scanner of tissue section was used to collect the image on the
immunohistochemical section. The Seville image analysis system
was used to automatically read the tissue measurement area, as
well as the number of weak, medium, and strong positive cells in
the measurement area (negative without coloring, 0 point; weak
positive light yellow, 1 point; medium positive brown yellow, 2
points; strong positive brown, 3 points). The total number of cells
were analyzed and calculated respectively. The positive cell rate
reflecting the protein expression on the section was also
calculated.

qRT-PCR
Primers used for qPCR were designed using the Primer 5.0 gene
primer design software. All primers were synthesized by Comate
Bioscience Company Limited (Jilin, China) (ASNS-F: CTTTTA
TCAGGGGGCTTGGAC, ASNS-R: CAGTAAATCGGGGCT
GTCTTC; CEBPA-F: CACACCAGAAAGCTAGGTCGTG,
CEBPA-R: AATGCTGAAGGCATACAGTACAAAC; CAD-F:
CCAGACGTTGCTGATCAACCC, CAD-R: CCACACCAC
AGTTCAGAGCAGTC). The mRNA expression levels were
detected in triplicate using the SYBR Green Ⅰ dye method. The
β-actin was used as a reference gene. The RT-PCR reaction
mixture consisted of cDNA (1 μl), PCR-Master Mix (5 μl),
PCR-F-Primer (0.5 μl), PCR-R-Primer (0.5 μl), and RNase-free
H2O (3 µl) in a total volume of 10 μl. The RT-PCR reaction
conditions were as follows: denaturation at 95°C for 1 min,
followed by 40 cycles of denaturation at 95°C for 15 s,
annealing at 60°C for 15 s, and extension at 72°C for 15 s. At
the end of the reaction, the melting curve was recorded for the
60–95°C temperature range, and the reaction products were
stored at 4°C. Data from the Eppendorf real-time PCR

FIGURE 2 | (A) The expression levels of the three genes obtained between tumor samples and normal control samples. (B) Construction of the prognostic
signature based on TCGA cohort and consensus clustering. The cohort was divided into two distinct clusters when k = 2. (C) The tSNE clustering algorithm divides colon
cancer samples from TCGA into two clusters. (D) Construction of the prognostic signature based on GSE29623 cohort and consensus clustering. The cohort was
divided into two distinct clusters when k = 2. (E) The tSNE clustering algorithm divides colon cancer samples from GSE29623 into two clusters.
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instrument (Hamburg, Germany). We obtained the mRNA CT
value of the target gene through qPCR, and then calculated it with
the mRNA CT value of the GAPDH, and finally obtained the
relative expression of the mRNA of the target gene. The specific
formula is as follows:

△CT = CT target gene -Ct GAPDH; △△CT = △CT
experimental-△CT control; Relative expression = 2̂-△△CT

Western Blotting
Total protein from tissue samples or cells was extracted and
protein concentrations were quantified using a BCA assay kit
(Beyotime Biotechnology, China). Then protein samples were
electrophoresed on 12% sodium dodecyl sulfate-polyacrylamide
(SDS-PAGE) gels and subsequently transferred to polyvinylidene
difluoride (PVDF) membranes, which were blocked with 5%
skimmed milk and incubated at 4°C overnight with targeted
primary antibodies on a rotating wheel. The membranes were
washed three times and immediately following the incubation
with corresponding HRP-conjugated secondary antibodies for
1 h and then imaging. The gray value was calculated by the
AlphaEase FC software. The ratio of the gray value of the target
band to the corresponding internal reference β-Actin reflected the
relative expressions.

The antibodies against ASNS (dilution 1:500) and CEBPA
(dilution 1:500) was purchased from Cellsignal (92479S; 8178S),
the antibody against the CAD (dilution 1:500) was purchased
from Proteintech (16617-1-AP), and the antibody against β-Actin
(dilution 1:500) was purchased from Servicebio (GB12001).

RESULTS

Construction of a Cluster Model Using
Three Key Genes Identified, i.e., ASNS,
CEBPA, and CAD, for Colon Cancer.
Thirty-six genes related to glutamine metabolism and UC
metabolism were obtained from GSEA MsigDB database.
These genes were analyzed by univariate Cox regression
analysis in 415 colon cancer samples from TCGA database. 11
genes with p < 0.2 related to OS were screened (Supplementary
Figure S1). Then the 11 genes were analyzed by multivariate Cox
regression analysis. Three genes with p value <0.05 related to OS
were screened (Figure 1; Supplementary Figure S2), i.e., ASNS,
CEBPA, and CAD, as the key genes to differentiate the cohort.
Their expression was significantly different in colon cancer and
normal colon samples in TCGA (Figure 2A).

Based on the expression profiles of ASNS, CEBPA, and CAD,
415 TCGA colon cancer samples were analyzed by consistent
clustering (Figure 2B) and tSNE algorithm (Figure 2C), and the
samples were divided into two clusters, Cluster 1 and Cluster 2,
with longer and shorter survival time, respectively. In order to
verify our clustering results, we applied the three genes obtained
for consistent clustering and tSNE algorithm analysis in 67 colon
cancer samples fromGSE29623, and stratified the cohort into two
clusters successfully (Figures 2D,E). However, the specific
expression of ASNS, CEBPA, and CAD in the two clusters
remains unclear.

FIGURE 3 | (A) The overall survival rate of Cluster 1 was significantly longer than that of Cluster 2 in TCGA. p < 0.05. (B) The overall survival rate of Cluster 1 was
significantly longer than that of Cluster 2 in GSE29623. p < 0.05. Analyzed using unpaired t-test.
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FIGURE 4 | (A)Typical images of IHC in 16 pairs of colon cancer tissues showing the protein expression of ASNS, CEBPA and CAD in colon cancer tissues and
adjacent nontumor tissues. Up panel, scale bar 1000 µm; down panel, scale bar 100 µm. (B) Immunohistochemical positive cell rates of ASNs, CEBPA, and CAD in 7
colon cancer tissues and adjacent nontumor tissues in group 1. (C) Immunohistochemical positive cell rates of ASNS, CEBPA and CAD in 9 colon cancer tissues and
adjacent nontumor tissues in group 2. *p < 0.05, **p < 0.01 and ***p < 0.001, analyzed using unpaired t-test. Group 1, n = 7; Group 2, n = 9.
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TABLE 1 | Clinical information on selected colon cancer patients for validation, which were divided into two groups, i.e., Group 1 and Group 2, according to different N
stages.

Sample ID Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Gender M M M F M M M
Age 69 65 64 67 63 61 59
Tumor size (cm) 20 12 24 31.5 5.25 11.76 2.4
TNM stage T3N0Mx T3N0Mx T3N0Mx T3N0Mx T3N0Mx T3N0Mx T3N0Mx
Date of surgery 2016.5 2016.5 2016.6 2016.7 2016.9 2016.11 2017.1
Metastasis or recurrence within 3 years Occurrence Not occurrence Occurrence Not occurrence Occurrence Not occurrence Occurrence
Group 1

Sample ID Case
8

Case
9

Case
10

Case
11

Case
12

Case
13

Case
14

Case
15

Case
16

Gender M F F M F F F M M
Age 69 69 68 59 67 66 61 69 67
Tumor size (cm) 9 13.13 21 14 6.75 202.5 24 40.5 7.5
TNM stage T3N1Mx T3N1Mx T3N1Mx T3N2Mx T4N1Mx T3N1Mx T3N1Mx T3N1Mx T3N1Mx
Date of surgery 2016.4 2016.5 2016.5 2016.7 2016.7 2016.8 2016.9 2016.11 2017.1
Metastasis or recurrence
within 3 years

Not
occurrence

Not
occurrence

Occurrence Not
occurrence

Occurrence Occurrence Not
occurrence

Occurrence Occurrence

Group 2

FIGURE 5 | (A) ASNS, CEBPA, and CAD expression levels in Case 1 and Case 16 of tumor specimens and adjacent normal specimens. (B) The relative gray values
of western blot, which represent the relative protein expression level, of ASNS, CEBPA, and CAD in 7 Colon cancer tissues and adjacent nontumor tissues in (B)Group 1
and (C) Group 2.*p < 0.05, **p < 0.01 and ***p < 0.001, analyzed using unpaired t-test. Group 1, n = 7; Group 2, n = 9.
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Comparision of OS Differences and Clinical
Risk Scores Between Each Two Clusters
Obtained From TCGA and GSE29623
Databases.
Kaplan-Meier analysis was performed on the clusters of colon
cancer samples from TCGA (Cluster 1: n = 241 v.s. Cluster 2: n =
174) and GSE29623 databases (Cluster 1: n = 44 v.s. Cluster 2: n =
21). The OS of Cluster 2 was significantly lower than that of
Cluster 1 in both databases (Figures 3A,B).

The clinical risk features for each colon cancer patient
included age, gender, tumor grade, stage, etc. The colon cancer
samples in TCGA were analyzed by Cox regression. Univariate
cox regression analysis showed that tumor stage, T stage, N stage,
M stage, and our clustering were risk factors associated with
clinical prognosis (Supplementary Figure S3).

Validation of the Constructed Cluster
Models With Clinical Samples.
We further examined the expression of ASNS, CEBPA, and CAD
in tumor tissues and adjacent normal tissues from different colon
cancer patients. It was verified that our clustering model could
divide colon cancer patients into two clusters with different
clinical characteristics.

More specifically, 16 pairs of primary colon cancer tissues
from the Department of Gastrointestinal Colorectal Surgery in
China-Japan Union Hospital of Jilin University were analyzed by
IHC staining (Figure 4A). Among them, patients 1–7 (Group 1)
had no lymph node metastasis (N0 stage), and patients 8–16
(Group 2) had lymph node metastasis (N1 or N2 stage) (Table 1).
Results showed that in Group 1, the protein level of ASNS and
CEBPA was higher in tumor tissues than in adjacent normal

colon tissues, while in Group 2, the results were opposite. As for
the CAD expression, the level in the tumor and non-tumor
normal tissues was similiar in both Group 1 and Group 2
(Figures 4B,C).

Further Western blotting and blot gray value analysis were
performed to verify the protein expression in 16 pairs of samples
(Figure 5A; Supplementary Figure S4). The results were
consistent with IHC staining. The expression of ASNS and
CEBPA in tumor tissues of Group 1 was higher than that in
non-tumor normal tissues, while the expression of ASNS and
CEBPA in tumor tissues of Group 2 was lower than that in non-
tumor normal tissues. There was no significant difference in the
expression of CAD in tumor tissues and non-tumor tissues in
different groups (Figures 5B,C). The low expression of ASNS and
CEBPA in colon cancer tissues was closely related to the
occurrence of lymph node metastasis, which had an impact on
prognosis and shortened OS (Freeman., 2013).

The mRNA expressions of ASNS,CEBPA, and CAD in 16
pairs of specimens were detected by qPCR (Table 2), and the
correlation analysis was conducted with the clinical
characteristics and prognosis of patients. The results showed
that the expression of ASNS was correlated with the size of
tumor growth,that of CEBPA was correlated with the gender of
patients and TNM stage of tumor, and that of CAD was highly
correlated with recurrence and metastasis (Table 3).

The above experiments have preliminary verified the
clustering model. According to the different expressions of
ASNS, CEBPA, and CAD, colon cancer patients could be
divided into two clusters with different postoperative outcomes.

Different Expressions of Pathways Related
to Biological Function and Substance
Metabolism in the Two Clusters
In TCGA database, we describe differences in gene expression
between two clusters. Differential expression analysis
demonstrated 157 significantly differentially expressed genes,
of Cluster 2 relative to Cluster 1, including 26 up-regulated
genes and 131 down-regulated genes (Figure 6A). Then GO
annotation was performed to understand the influence of these
different genes on various functions in the cell. GO BP analysis
revealed that these genes were markedly enriched in lipid
transport, lipid localization, and alcohol metabolic process.
For GO CC analysis, the top three significantly enriched
terms were apical part of cell, apical plasma membrane, and
cell projection membrane (Figure 6B). We associated the first
11 cell function items obtained by GO analysis with the
enriched differential genes (Figure 6C). It is worth
mentioning that we enriched the biological process of
reduced glutathione. Since reduced glutathione is closely
related to glutamine metabolism (glutamine is the precursor
of reduced glutathione), we further analyzed the differential
genes in the biological process of reduced glutathione,
SLC7A11, CHAC1, and GGT6. Correlations between them
and the three key genes previously screened were
determined (Figure 6D). The results showed that ASNS was
positively correlated with CHAC1, while CEBPA was

TABLE 2 |mRNA relative expression of ASNS, CEBPA, and CAD in Group 1 and
Group 2.

Group 1 ASNS CEBPA CAD

N T N T N T

Case 1 1.00 1.67 1.00 1.85 1.00 1.86
Case 2 0.69 1.61 1.52 2.24 0.66 1.06
Case 3 0.97 1.45 0.94 1.72 1.51 0.88
Case 4 0.86 1.98 0.60 2.30 1.78 0.42
Case 5 1.62 1.84 1.77 2.14 1.34 1.55
Case 6 0.66 1.65 0.79 1.92 1.64 0.46
Case 7 1.49 1.63 3.41 2.46 1.07 1.56

Group 2 ASNS CEBPA CAD

N T N T N T

Case 8 1.81 1.54 2.42 1.43 1.17 1.61
Case 9 1.53 1.57 2.04 1.38 1.06 1.61
Case 10 2.07 0.78 2.99 0.59 0.35 2.42
Case 11 1.93 1.62 2.44 1.99 1.65 1.19
Case 12 1.76 0.62 2.17 0.81 1.12 0.58
Case 13 2.19 0.96 2.33 0.84 2.06 0.56
Case 14 1.70 1.41 2.54 2.17 0.92 2.52
Case 15 1.30 1.17 2.33 1.13 1.65 0.73
Case 16 1.81 1.36 2.10 1.31 0.95 1.01
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negatively correlated with SLC7A11. This provided the
explaination of the correlation between ASNS, CEBPA, and
glutathione metabolism.

In the TCGA colon cancer sample, GSVA analysis was
performed to correlate the differential gene set with the KEGG

pathway. It was found that 81 pathways were active in Cluster 1
(T < 2), such as metabolic pathway, cellular signal transduction
pathway, and tumor pathway, while 19 pathways were active in
Cluster 2 (T > 2), such as glycine, nitrogen and tetrahydrofolate
metabolism pathway (Figure 7A). Among the 25 pathways with

TABLE 3 | Relationship between ASNS, CEBPA, and CAD expression level and clinicopathological variables in 16 colon cancer patients.

Pathological characteristics n Low expression (n) High expression (n) p value

Age(years) 0.547
≥65 10 3 7
<65 6 4 2
Gender 0.174
M 10 3 7
F 6 4 2
Tumor size (cm) 0.043
≥20 7 5 2
<20 9 2 7
TNM stage 0.674
T3N0Mx 7 3 4
T3N1Mx 7 3 4
T3N2Mx 1 0 1
T4N1Mx 1 1 0
Metastasis or recurrence within 3 years 0.953
Occurrence 9 4 5
Not occurrence 7 3 4

Pathological characteristics n Low expression (n) High expression (n) p value

Age(years) 0.156
≥65 10 3 7
<65 6 0 6
Gender 0.01
M 10 0 10
F 6 3 3
Tumor size (cm) 0.409
≥20 7 2 5
<20 9 1 8
TNM stage 0.034
T3N0Mx 7 0 7
T3N1Mx 7 2 5
T3N2Mx 1 0 1
T4N1Mx 1 1 0
Metastasis or recurrence within 3 years 0.102
Occurrence 9 3 6
Not occurrence 7 0 7

Pathological characteristics n Low expression (n) High expression (n) p value

Age(years) 0.547
≥65 10 5 5
<65 6 2 4
Gender 0.174
M 10 3 7
F 6 4 2
Tumor size (cm) 0.053
≥20 7 5 2
<20 9 2 7
TNM stage 0.674
T3N0Mx 7 3 4
T3N1Mx 7 3 4
T3N2Mx 1 0 1
T4N1Mx 1 1 0
Metastasis or recurrence within 3 years 0.001
Occurrence 9 1 8
Not occurrence 7 6 1
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the largest absolute t value, 20 pathways were activated in Cluster
1 samples, including renin-angiotensin system, PPAR signaling
pathway, WNT signaling pathway, etc.; while five pathways were
activated in Cluster 2 samples, including protein export, folate
carbon pool, nuclear maneuver repair, etc. (Figures 7B,C).

IPA Gene Interaction Network Prediction of
Key Genes ASNS and CEBPA
The differential gene interaction network between Cluster 1 and
Cluster 2 was constructed by IPA software. Based on IPA data of

the identified molecular interactions reported in the literature, a
gene pathway network containing ASNS and CEBPA emerged
(Figure 8A). In our results, CREB, insulin, and RNA Pol II are
critical nodes in the CEBPA- related pathway (Figure 8B). CREB,
insulin, and RNA Pol II are the upstream of CEBPA, and their
overexpression may down-regulate CEBPA. We further obtained
all downstream differential genes of CEBPA, among which it is
noteworthy that CEBPA, as an upstream gene of ASNS,
upregulates the expression of ASNS (Figure 8C).

We clustered colon cancer samples in TCGA by the
differential expression of ASNS, CEBPA, and CAD, and the

FIGURE 6 | (A) Volcano plot displayed the 157 differentially expressed genes of Cluster 2 screened relative to Cluster 1 with 26 up-regulated (red dots) and
131 down-regulated (green dots).The black dots indicate genes that are not significantly different. (B) The enriched GO BP, CC, and MF terms of the differential genes.
(C) The GO entry network diagram, showing the top 11 network relationships of GO enrichment. The process of glutathione synthesis and the genes it contains are
indicated with red boxes. (D) Correlation diagram of the prognostic genes and glutathione synthesis process enriched genes.
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results showed that the interaction between ASNS and CEBPA
and their upstream and downstream genes was responsible for
the differences in cell functional status and substance metabolism
levels between Cluster 1 and Cluster 2.

Preliminary Survey of the Difference in the
Immune Microenvironment of the Two
Clusters Stratified.
We have already confirmed that ASNS and CEBPA expression were
associated with lymph node metastasis in colon cancer patients. To

further assist the individual immunotherapy, we investigated the
immune infiltrating and immune checkpoint genes in Cluster 1 and
Cluster 2 samples. The differential immune infiltration features and
the associated potential immunotherapeutic responses of the two
clusters were explored by XCell and TIDE algorithm. The XCell
software was employed to analyze the difference of the infiltrated
immune cells between Cluster 1 and Cluster 2 in colon cancer
samples from TCGA database. Th2 cells, CLP cells, and CD4+

memory T cells showed higher cell infiltration in Cluster 2; while
CD4+ Tcm cells, CD4+ Tem cells, eosinophiles, monocytes, and Tgd
cells were found to have the similar exhibition between the two

FIGURE 7 | (A) The bar plots show the results of GSVA in the TCGA cohort. A negative t-value means that the pathway is enriched in Cluster 1, and a positive
t-value means that it is enriched in Cluster 2. (B) The cluster heat map of the top 25 enriched KEGG pathways. (C) The boxplot showed different activation levels of
GSVA-enriched KEGG pathways in Clusters 1 and 2. ***p < 0.001, and ****p < 0.0001. Analyzed using unpaired t-test.
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clusters (Figures 9A,B). To link individual responses to
immunotherapeutic responses, the TIDE algorithm was used. The
lower TIDE score of Cluster 2 samples indicated that they may
respond better to immunotherapy (Figure 9C). The expression levels
of common immune checkpoints in Cluster 1 and Cluster 2 were also
checked. CEACAM1, LGALS9, and CD40LG were highly expressed
in Cluster 1, while CD274 (PD-L1) and CXCR4 were highly
expressed in Cluster 2 (Figure 9D).

DISCUSSION

It has become evident that CRC is a highly heterogeneous disease
with complex molecular pathogenesis. The classical TNM staging

system benefits the clinical management of CRC for years.
Consider the disappointing outcome of targeted drugs and
immune checkpoint therapies on CRC patients; it is
imperative to develop new biomarkers that enable the
stratification of patients with CRC, which can guide the more-
precise use of innovative therapies (Punt et al., 2017). Various
central metabolic pathways, which intimately entwined with cell
signaling and epigenetic networks, dysregulated in CRC cells.
Moreover, the metabolic machineries and nutrient-sensing
mechanisms orchestrated the behavior of immune cells located
in the TME (Li et al., 2019).

In this study, three key genes, ASNS, CEBPA, and CAD, were
screened by Cox regression analysis in colon cancer. ASNS
consumes ATP to catalyze the conversion of aspartic acid and

FIGURE 8 | (A) IPA gene interaction network prediction diagram of differential genes. The prognostic genes ASNS and CEBPA are circled in red. Red represents up
regulation and green represents down regulation. (B) The local interaction pathway diagram predicted by the IPA interaction network. The solid line represents the
existing work verification, and the dash line represents the prediction. (C) The downstream genes of CEBPA. The blue arrow indicates inhibition.
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glutamine to asparagine and glutamate (Lomelino et al., 2017).
Pyrimidines synthesis in cancerous proliferation can be regulated
by enhancing aspartate availability for the enzymatic complex
CAD. (Rabinovich et al., 2015). CEBPA, as a transcription factor,
is a key regulator of many metabolic processes, such as lipid
metabolism and amino acid metabolism (Diehl, 1998). Moreover,
C/EBP homology protein negatively regulates the stress-
dependent induction of the asparagine synthetase gene (Su
and Kilberg, 2008).

TCGA data analysis and IHC staining of clinical tumor
samples showed that ASNS and CEBPA tended to be
underexpressed in the Cluster 2 with poor prognosis.
Subsequently, we identified CEBPA as the upstream gene of
ASNS, and showed a positive correlation between CEBPA and
ASNS. To further reveal the underlying mechanism, we
identified the upstream factors, i.e., CREB, Insulin, and
RNA Pol II in the predicted signal network. CREB levels
are generally positively correlated with tumor grade, stage,
metastasis, increased recurrence rate, and poor prognosis
(Steven et al., 2020). It has also been reported that CEBPA

binds to CRE in the liver and antagonizes CREB (Roesler,
2000). And CREB often antagonizes insulin in vivo (Altarejos
and Montminy, 2011). Insulin resistance is one of the factors
that induce colon cancer and other tumors (McNabney and
Henagan, 2017). Insulin can also activate CEBPA expression
(Marques-Oliveira et al., 2018). Therefore, it can be
speculated that CREB antagonizes the effect of insulin in
colon cancer, reduces the activation and expression of
CEBPA, and play a carcinogenic role. Furthermore, we
found that CREB directly upregulated SLC7A11 expression,
and CEBPA negatively correlated with SLC7A11. Studies have
shown that SLC7A11 can promote cysteine absorption and
glutathione biosynthesis, prevent oxidative stress, thus,
significantly increase glutamine metabolism, and promote
the growth of cancer cells (Koppula et al., 2018). It is
possible that CREB up-regulation of SLC7A11 also play a
carcinogenic role in colon cancer. Moreover, RNA Pol II was
predicted to be an upstream factor associated with both
CEBPA and ASNS. Rapid proliferation of tumor cells
increases the expression of RNA Pol II. Transcription-

FIGURE 9 | Immune behavior comparison between the two clusters. (A) The boxplots show the XCell scores for the enriched immunocytes. Within each group, the
scattered dots represent values for cellular expression; whereas the thick line represents the median value. The statistical difference of the two clusters was compared
using the Kruskal-Wallis test, and the asterisk above the box plot represents the degree of significance. (B) The heat map of the XCell immune infiltration analysis. (C) The
boxplot representation of TIDE scores in Cluster 1 versus Cluster 2. (D) The expression pattern of five common types of immune checkpoints. *p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001. Analyzed using unpaired t-test.
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coupled subpathway of nucleotide excision repair (NER) is
activated by the stalling of RNA Pol II during transcriptional
elongation (Marteijn et al., 2014). Our prediction model
suggested that overexpression of RNA pol II down-
regulated CEBPA and ASNS in Cluster 2.

The immune infiltration results showed that compared
with the Cluster 1 patients, the degree of Th2 cell
infiltration was much higher in Cluster 2 patients with a
shorter survival time. In addition, the TIDE score of
Cluster 2 patients was lower, indicating a better response
to immunotherapy. It was also found that the expression of
both CXCR4 and CD274 (PD-L1) in Cluster 2 were higher
through the immune checkpoint analysis. Recent PNAS study
reported that CXCR4 inhibition in combination with
blockade of the PD-1/PD-L1 induced T cell infiltration and
anticancer responses in human pancreatic and colorectal
cancers (Biasci et al., 2020). Therefore, due to the high
expression of CXCR4 and PD-L1 in Cluster 2, the
synergistic treatment of anti-PD-1 and blocking CXCR4
targeting Cluster 2 patients may produce better therapeutic
effects.

It was found that in our cluster model, ASNS and CEBPA play
an important role in the prognosis of colon cancer patients, and
patients with low ASNS and CEBPA expression had a worse
prognosis, i.e., more prone to lymph node metastasis.
Additionally, the expression profile of CAD was also
associated with prognosis, i.e., patients with high CAD
expression were more likely to metastasis and recurrence.
CEBPA was the upstream gene of ASNS, and the expression
of CEBPA and ASNS is positively correlated.We predict that
upstream factors such as CREB, insulin, and RNA Pol II can
regulate downstream genes, such as ASNS and SLC7A11, by
affecting the expression of CEBPA, ultimately changing the
cellular function and metabolism in colon cancer tissues. It
even affects the infiltration of immune cells in TME, which
may further affect the immunotherapy response of patients.
Besides, these results suggested that aspartic acid metabolism
play an important role in colon cancer and deserve further
exploration.

CONCLUSION

In summary, three genes associated with metabolic processes
were selected as the key genes for risk clustering model
establishment of colon cancer patients. The model was
verified by molecular biological experiments performed on
clinical specimens. The GO annotation and GSVA analysis
were carried out to distinguish the pathway activities between
the two clusters with OS differences. The signaling networks
were predicted by IPA, and hub nodes were identified. These
findings suggest that the key genes may serve as new
prognostic markers for colon cancer. Moreover, the
immune response comparison between the two clusters was
also conducted to provide references for individualized
immunotherapy.
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