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Background: Colorectal cancer (CRC) is one of the leading causes of cancer-related
deaths worldwide. However, due to the heterogeneity of CRC, the clinical therapy
outcomes differ among patients. There is a need to identify predictive biomarkers to
efficiently facilitate CRC treatment and prognosis.

Methods: The expression profiles from Gene Expression Omnibus (GEO) database were
used to identify cancer hallmarks associated with CRC outcomes. An accurate gene
signature based on the prognosis related cancer hallmarks was further constructed.

Results: Hypoxia was identified to be the primary factor that could influence CRC
outcomes. Sixteen hypoxia-related genes were selected to construct a risk gene
signature (HGS) associated with individuals’ prognosis, which was validated in three
independent cohorts. Further, stromal and immune cells in tumor microenvironment (TME)
were found to be associated with hypoxia. Finally, among the 16 hypoxia-related genes, six
genes (DCBLD2, PLEC, S100A11, PLAT, PPAP2B and LAMC2) were identified as the
most attributable ones to drug resistance.

Conclusion: HGS can accurately predict CRC prognosis. The expression of the drug
resistance-related genes is critical in CRC treatment decision-making.
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INTRODUCTION

Colorectal cancer (CRC) is the second leading cause of cancer-related death. In 2020, there were
approximately 1 million CRC-related deaths worldwide.1 Since the majority of CRC cases are
diagnosed at an advanced stage, CRC patients’ prognosis is often poor. Moreover, given CRC’s high
heterogeneity in molecular genetics and histopathology, the standard chemo/radio therapy may not
be effective across all individuals. Thus, prognosis prediction is of great importance in clinical
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practice to improve individual treatment. In the past decades,
tumor, node, and metastasis (TNM) staging system has been
widely used to predict treatment outcomes of cancers. However,
the accuracy of this system is non-satisfactory (Kuipers et al.,
2015). In recent years, advances in genomic research such as
next-generation sequencing have revolutionized cancer
treatment. Genomic data is currently being utilized for
cancer screening and accurate monitoring of drug responses
(Frampton et al., 2013; Tsimberidou et al., 2014; Meric-
Bernstam et al., 2015).

Metastasis and uncontrolled growth of solid tumors often
require new blood vessels. The newly-formed
microvasculature is highly abnormal in structure and
function, leading to a hypoxia tumor microenvironment
(TME) (Jain, 2005), known to promote cancer progression,
angiogenesis, and metastasis (Yotnda et al., 2010; Chang et al.,
2011; Shao et al., 2018). Besides, hypoxia is thought to mediate
chemo/radio resistance through multiple mechanisms
(Yoshiba et al., 2009; Xu et al., 2019; Yue et al., 2019; Lu
et al., 2020) and become a high-priority target in cancer
therapy. Several bioreductive prodrugs that are activated
enzymatically from hypoxia induction have been developed
(Brown, 1993; Wilson and Hay, 2011). However, given that
physiological hypoxia occurs in normal tissues, the off-target
effects of the prodrugs cannot be ignored (Wilson and Hay,
2011). Also, the variations in tumor hypoxia hinder optimal
application of bioreductive prodrugs (Hoogsteen et al., 2009).
Thus, tools for stratification of hypoxia situation of CRC
patients are crucial for effective cancer therapy.

In the present study, we confirmed that hypoxia was of
dominant prognostic significance for CRC. And we
established a hypoxia-related gene signature (HGS) and
validated the prognosis prediction model in three
independent cohorts. Finally, we explored the correlation
of hypoxia with stromal and immune cells, and identified
its role in drug resistance.

MATERIALS AND METHODS

Data Collection and Preprocessing
Expression profile of CRC tissues in GSE39582, GSE38832,
and GSE161158 datasets were downloaded from the GEO
database (Supplementary Table S1).2 TCGA-COAD
transcriptome cohort data and clinical data, containing 279
CRC samples, were downloaded from the UCSC Xena website
(Supplementary Table S1).3 GSE39582 dataset, consisting of
518 CRC samples, was used as the training cohort to construct
the prognosis prediction model and external validation was
performed in the other three independent cohorts, including
TCGA, GSE38832, and GSE161158. All raw data were
normalized and standardized by using the R software package.

Single Sample Gene Set Enrichment
Analysis
R package “GSVA” was used to perform single sample gene set
enrichment analysis (ssGSEA). The ssGSEA was applied to
explore the enrichment of tumor-related pathways and
immune cell infiltration in the GSE39582 database. Tumor-
related data sets were obtained from hallmark gene sets in the
MSigDB database (Supplementary Table S2).4 The characteristic
gene set containing 28 immune cell types was downloaded from a
recent publication (Charoentong et al., 2017).

Weighted Gene Co-Expression Networks
Analysis
The weighted gene co-expression networks analysis (WGCNA)
were constructed using the top 25% most differently expressed
genes in the GSE39582 dataset. Among all the soft threshold
values, we chose the β value with the highest mean connectivity (β
= 4). The minimum number of genes was set as 30 for the high
reliability of the results. For further quantification of hypoxia
related genes and modules, genes with p value of less than .001
were retained for subsequent analysis.

Gene Set Enrichment Analysis
The function of the hypoxia-related genes was explored using
gene set enrichment analysis (GSEA). In the training cohort and
all validation cohorts, we separately created a chip expression
profile and a sample data file and then imported them into GSEA
software. p < .05 and FDR p < .25 were considered to be
significant.

Establishment and Validation of a
Colorectal Cancer Prognostic Predictive
Signature
The univariate Cox regression analysis was conducted to identify
recurrence free survival (RFS) and overall survival (OS) related
cancer hallmarks. To select hypoxia related genes associated with
prognosis, Lasso penalized Cox regression analysis was applied.
Finally, the LASSO Cox regression model was employed to
identify hypoxia highly correlated genes and construct the
prognostic HGS. For each patient, the coefficients of Logistic
Regression were used to calculate the HGS score. The formula is:
HGS score = ∑ (coefficient × mRNA expression).

Construction of Nomogram for Colorectal
Cancer Prognosis Prediction
Hypoxia score and relevant clinical parameters were used to
construct a nomogram, using the survival and the “rms” package
of R. The nomogram was constructed to estimate 1-, 3-, and 5-
year survival probabilities. The calibration curve and C index
were used to evaluate the performance of the model.

2http://www.ncbi.nlm.nih.gov/geo.
3http://xena.ucsc.edu/. 4http://www.gsea-msigdb.org/gsea/msigdb/index.jsp.
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Stromal and Immune Cells Infiltration
We used xCell to estimate the cellular composition of stromal
cells and immune cells in the tumor in the GSE39582 dataset.
Immune and stromal cell scores for each sample were calculated.
The CIBERSORTx online website was used to evaluate the
infiltration of 22 immune cells in each sample.5 The absolute
abundance of eight immune cell populations of tissue infiltrating
immune cells was calculated by R package “MCPcount.”

Drug Sensitivity Analysis
The GSCALite database is used for drug sensitivity analysis.6 The
relationship between the expression levels of 16 target genes and
drug sensitivity was calculated by Spearman correlation analysis.

Cell Viability and Gene Expression Assay
Human colorectal cancer cells (HCT116) and their
corresponding oxaliplatin-resistant cells (HCT116/L-OHP)
were incubated in RPMI1640 containing 10% fetal bovine
serum (FBS), supplemented with penicillin (100 units/ml) and
streptomycin (100 μg/ml) (Liu et al., 2022). For cell viability assay,
HCT116 and HCT116/L-OHP cells (6 × 103 cells per well) were
seeded in 96-well plates overnight. Then, the cells were exposed to
different concentrations of oxaliplatin for 48 h. The cell viability
was evaluated using CCK-8 reagent (MedChemExpress). For
gene expression assay, we extracted the total mRNA of
HCT116 and HCT116/L-OHP cells and reversely transcribed
them to cDNA. We performed Real-time quantitative PCR
(qPCR) using AceQ qPCR SYBR Green Master Mix (Vazyme).

ABI Stepone Real-Time PCR System (Applied Biosystems) was
used to measure the fluorescence. The primers were listed in
Supplementary Table S3.

Statistical Analysis
Data was analyzed using the R software. For forest plots, the
hazard ratio (HR) was generated by univariate Cox or
multivariate Cox proportional hazard regression. Kaplan-Meier
approach was used for the survival analysis. Differences between
groups were assessed using the Wilcoxon test. Statistically
significant differences were showed as follow: *p < .05; **p <
.01; ***p < .001; NS, not significant.

RESULTS

Hypoxia Identified as a Primary Risk Factor
Related to Colorectal Cancer Prognosis
TheRNA-sequencing data of 518CRC cancer samples obtained from
GSE39582 dataset was evaluated using ssGSEA. The association
between cancer hallmarks and CRC prognosis was evaluated using
Cox regression analysis. We found that hypoxia (HR: 72; 95% CI:
2.4–2,225; p = .01) and epithelial-mesenchymal transition (EMT)
(HR: 5.9; 95%CI: 1.7–20; p= .005) were strongly associatedwith poor
RFS (Figure 1A), whereas the expression of p53 pathway (HR: 209;
95%CI: 1.5–29,514; p = .03), hypoxia (HR: 61; 95%CI: 2.9–1,281; p =
.007), angiogenesis (HR: 5; 95% CI: 1.1–23; p = .04), and EMT (HR:
3.3; 95%CI: 1.1–10; p = .03) were significantly associated with shorter
OS (Supplementary Figure S1A). Overall, hypoxia was the most
significant risk factor associated with both poor RFS and OS. Then,
the CRC patients were divided into high and low hypoxia score
groups using the cutoff selected by X-title program. Compared with

FIGURE 1 | Identifying hypoxia associated with CRC recurrence free survival (RFS). (A) Forest plot of hazard ratio (HR) for 20 prognostic cancer hallmarks.
(B) Kaplan–Meier RFS curves for patients with high hypoxia and low hypoxia scores. (C) Comparison of hypoxia scores in recurrence and no recurrence
patients.

5https://cibersort.stanford.edu/.
6http://bioinfo.life.hust.edu.cn/web/GSCALite.
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low hypoxia score, high hypoxia score was associated with poor RFS
and OS (Figure 1B; Supplementary Figure S1B). Meanwhile,
hypoxia score in recurrence patients was significantly higher than

that in no recurrence patients (Figure 1C; Supplementary Figure
S1C). These results reveal that hypoxia is the primary risk factor
associated with CRC prognosis.

FIGURE 2 | Establishment and validation of HGS in the training cohort. (A) Clustering dendrogram of 518 samples from WGCNA. (B) Heatmap of the correlation
between the modules and cancer hallmarks. (C) Correlation between turquoise module and hypoxia. (D) LASSO coefficient profiles of the hypoxia-related prognostic
differential expressed genes. (E) 10-fold cross-validation for penalty parameter λ selection in the LASSOmodel. (F) LASSO coefficients of the 16 hypoxia-related genes.
(G) The distribution of HGS score, patients’ status and RFS time. (H) Kaplan–Meier RFS curves for patients in HGS-high and HGS-low groups. (I)GSEA of hypoxia
pathway in HGS-high and HGS-low groups. (J) Time-dependent ROC curves at 1, 3 and 5 years. (K) Correlation of HGS with clinicopathological characteristics.
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Construction of Hypoxia-Related Gene
Signature
WGCNA was conducted by comparing the co-expression patterns
between hypoxia scores and whole-transcriptome profiling data
(Figure 2A). The optimal soft threshold was set to four to
construct a scale free network (Supplementary Figure S2). A
total of 18 modules were identified (Supplementary Figure S3).
The turquoise module strongly associated with hypoxia was selected
for further analysis (Figures 2B,C). LASSO Cox regression analysis
was applied to select the most useful prognostic markers within the
module. Sixteen genes (MAGED2, ELN, DCBLD2, IGFL1, KLK6,
KLK10, PLAT, INHBB, LAMC2, PLEC, PPAP2B, S100A11,
MMACHC, DMRT2, RAB15 and GRHL2) were identified and
used to construct the optimal HGS (Figures 2D,E). Among
them, MMACHC, DMRT2, RAB15 and GRHL2 were associated
with better CRC prognosis, whereas the rest were associated with
poor prognosis (Figure 2F).

HGS score of each patient was calculated based on the expression
levels of the 16 genes. Taking the median HGS score as the cutoff, all
patients were divided into HGS-high or HGS-low groups. Survival
analysis showed that HGS-high was associated with CRC recurrence
(Figure 2G), whichwas consistent with Kaplan-Meier analysis results
(p < .0001) (Figure 2H). GSEA revealed that the expression of the
HGS-high group genes was associated with hypoxia induction (p <
.0001) (Figure 2I). The areas under the receiver operating
characteristic (ROC) for 1-, 3-, and 5-year RFS of the HGS were

0.729, 0.734, and 0.730, respectively (Figure 2J). Further analysis
revealed that high HGS score was related to advanced clinical stages
and worse pathological grades as well as KRAS gene mutations
(Figure 2K). The newly constructed prognostic model shows
good predictive performance.

Validation of Hypoxia-Related Gene
Signature
The prognostic value of HGS was validated using three
independent cohorts (TCGA, GSE38832 and GSE161158). We
found that the patients with worse prognosis exerted higher HGS
scores (Figure 3A; Supplementary Figures S4A, S5A, S6A). The
HGS-high group also displayed shorter RFS (p < .0001)
(Figure 3B; Supplementary Figures S5B, S6B). GSEA
revealed that genes in HGS-high group were enriched in
hallmarks of hypoxia (p = .009) (Figure 3C; Supplementary
Figure S5C). Multivariate Cox regression analysis revealed that
TNM stage and HGS score were independent risk factors for RFS
(Supplementary Figures S4B, S6C). Furthermore, higher HGS
score was associated with lymph node metastasis and advanced
TNM stage (Supplementary Figure S4C). The area under the
ROC curves for 1-, 3-, and 5-year RFS of HGS were 0.648, 0.689,
and 0.670, respectively (Figure 3D).

A nomogram for predicting individual RFS probability of CRC
patients was developed by combining HGS and

FIGURE 3 | Validation of HGS in TCGA. (A) Comparison of HGS scores in recurrence and no recurrence patients. (B) Kaplan–Meier RFS curves for patients in
HGS-high and HGS-low groups. (C)GSEA of hypoxia pathway in HGS-high and HGS-low groups. (D) Time-dependent ROC curves at 1, 3 and 5 years. (E) Nomogram
developed based on HGS and clinicopathological characteristics. (F) Time-dependent ROC curves at 1, 3 and 5 years.
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clinicopathological characteristics (sex, age, pathologic T,
pathologic N, pathologic M, and tumor location) of the
patients (Figure 3E). The areas under ROC for 1-, 3-, and 5-
year RFS of the nomogram were 0.737, 0.792, and 0.762,
respectively (Figure 3F). Compared with other models, the
nomogram showed the most powerful ability for RFS
prediction. The probabilities for 1-, 3-, and 5-year survival
showed excellent agreement between prediction by nomogram
and observed values (Supplementary Figure S7). Taken together,
the newly constructed nomogram can accurately predict CRC
prognosis.

Mechanism of Hypoxia in Tumor
Microenvironment
To clarify the potential role of hypoxia in TME, we carried out
correlation analysis between HGS and immune and stromal
cells. The results showed that both Immune score and Stromal
score were positively correlated with HGS score (Figure 4A).
A correlation matrix between HGS and stromal cells revealed

that pericytes, mv endothelial cells, ly endothelial cells,
fibroblasts, endothelial cells, chondrocytes, and adipocytes
were significantly more abundant in HGS-high group
(Figure 4B; Supplementary Figure S8), and they were
associated with worse RFS (Figure 4C). Moreover, EMT
was positively correlated with Stromal score (Figure 4D),
suggesting its potential role mediated by stromal cells in
tumor progression.

Interestingly, 13 immune cells were found to be associated
with hypoxia in CRC. Among them, B cells, pro B cells, CD4+

memory T cells, CD8+ naïve T cells, NKT cells, plasma cells,
Th1 cells, Th2 cells, and pDCs were significantly higher in
HGS-low group individuals, whereas M1 macrophages, M2
macrophages, DCs and cDCs were significantly higher in
HGS-high group individuals (Figure 4E; Supplementary
Figure S9). To evaluate the immune response between the
two groups, the expression of PD1, PDL1, PDL2, CTLA4,
TIM3, CD47, B7-H3, VISTA, VTCN1, CD70, and LAG3
immune checkpoint-related genes as well as OX40, CD40,
and CD86 immune active genes were analyzed. The Wilcoxon

FIGURE 4 | The correlation between HGS and immune cells, stromal cells infiltration. (A) Spearman correlation analysis between HGS score and immune cells,
stromal cells infiltration. (B) The correlation between HGS score and various stromal cells. (C) Forest plot of HR for various prognostic stromal cells. (D) The correlation
between hypoxia and cancer hallmarks. (E) The infiltration level of 14 immune cells. (F) The expression pattern of immune checkpoint-related and immune active genes.
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test revealed that all sets of genes were overexpressed in HGS-
high group (Figure 4F). Therefore, hypoxia may be an
efficient target to improve immunotherapy.

The Correlation Between Hypoxia-Related
Gene Signature and Drug Resistance
GSEA of gene sets related to chemo/radio response revealed that
cisplatin-resistance, doxorubicin-resistance, multidrug-
resistance, and radiation-resistance gene sets were over-
expressed in HGS-high group (Figure 5A). Moreover, a
substantial proportion of patients in HGS-high group
responded poorly to chemo/radio therapy (Figure 5B).
Survival analysis revealed that HGS-high group was strongly
associated with worse RFS after chemo/radio therapy
(Figure 5C). Spearman correlation of the 16 hypoxia genes
and 151 chemo drugs in the Genomics of Drug Sensitivity in
Cancer database revealed that the expression of DCBLD2, PLEC,

S100A11, PLAT, PPAP2B and LAMC2 was associated with
resistance to most chemotherapies (Figure 5D). Furthermore,
qPCR tests revealed that these six genes were overexpressed in
drug-resistant HCT116/L-OHP cells (Supplementary Figure
S10). These findings further conform that HGS is a useful tool
in predicting drug resistance and with potential clinical value.

DISCUSSION

Hypoxia participates in the initiation, progression, metastasis,
and drug resistance of CRC (Li et al., 2017; Chen et al., 2020;
Qureshi-Baig et al., 2020; Yang et al., 2020). In the present study,
we found that hypoxia was the primary risk factor associated with
both poor OS and shorter RFS of CRC patients. A CRC prognosis
prediction model based on 16 hypoxia-related genes was
constructed and validated in three independent CRC cohorts.
Besides, an accurate CRC prognosis prediction nomogram

FIGURE 5 | The correlation between HGS and drug resistance. (A) GSEA of cisplatin-resistance, doxorubicin-resistance, multidrug-resistance, and resistance to
radiation therapy pathways in HGS-high and HGS-low groups. (B) Comparison of CRC chemotherapy treatment response between HGS-high and HGS-low groups.
(C) Kaplan–Meier RFS curves for patients in HGS-high and HGS-low groups. (D) Spearman correlation analysis between the 16 hypoxia genes and 151 chemo drugs.
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combining the expression profile of hypoxia-related genes and
clinicopathological characteristics of CRC patients was also
constructed.

Apart from tumor cells, TME comprises of stromal and
immune cells embedded in the extracellular matrices. While
adapting to hypoxia, stromal cells and immune cells play
critical roles in tumor progression. In this study, we found
that stromal cells were more abundant in TME of patients in
the HGS-high group, including mesenchymal stem cells (MSCs),
fibroblasts, endothelial cells, and adipocytes among others.
Experimental evidence revealed that hypoxia promoted
recruitment of MSCs to primary breast tumors as well as
tumor metastasis to lymph nodes and lungs (Chaturvedi et al.,
2013). Hypoxia-inducible factor 1α (HIF-1α)-induced
extracellular matrix remodeling by fibroblasts promoted the
invasion and metastasis of cancer cells (Gilkes et al., 2013).
Meanwhile, endothelial cells remained to be a non-
proliferating state under normal condition. However, they
became activated by hypoxia to initiate angiogenesis (Nagl
et al., 2020). Endothelial cells could also promote tumor
metastasis by directly allowing tumor cells into blood vessels
or through EMT process (Joseph et al., 2018; Sobierajska et al.,
2020). Besides, adipocytes promoted breast cancer progression by
secreting metabolic substrates, such as leptin, which stimulated
hypoxia at tumor sites (Chu et al., 2019).

Furthermore, our findings showed distinct lymphocytes
infiltration between HGS-high and HGS-low groups. Th1 and
Th2 cells, differentiation of naive progenitor cells, are commonly
studied subtypes of CD4+ T cells. Th1 cells activates CD8+ T cells
and NKT cells by expressing IFN-γ. Th2 cells exerts their anti-
tumor property by recruiting eosinophils through the expression
of IL-4 and IL-13 (Kim and Cantor, 2014). We found that
hypoxia decreased infiltration of Th1 cells and Th2 cells to
tumor sites. It was reported that hypoxia influenced the
subtype differentiation of CD4+ T cells. HIF-1α reportedly
decreased differentiation to Th1 cells and further suppressed
production of IFN-γ from these cells (Shehade et al., 2015).
Besides, CD4+ T lymphocytes particularly Th1 subtypes
participated in vessel normalization, suggesting their ability in
abrogating hypoxia (Tian et al., 2017). CD8+ T cells are the
primary adaptive immunocytes mediating tumor cytotoxicity. In
the present study, we found that hypoxia was closely related to
decreased CD8+ naïve T cells infiltration. As suggested by
previous studies, hypoxia decreased CD8+ T cells recruitment
to tumor site, and even caused T cells apoptosis by inducing the
production of reactive oxygen species (ROS) (Hildeman et al.,
1999; Lukashev et al., 2006; Hasmim et al., 2013). NKT cells are a
distinct lineage of T cells with both T cell receptors and NK cell
receptors, thus exerting wide ranges of immune effector
properties. Our results showed hypoxia could decrease the
infiltration of NKT cells, consistent with the reported finding
that HIF-2α inhibited activation of NKT cells after ischemia-
reperfusion injury (Zhang et al., 2016). Nevertheless, the role of
hypoxia on the function of NKT cells is not well understood.
Apart from the typical residence in the lymphoid tissues, B cells
have also been found in the TME. Together with T cells, B cells
could mediate immune responses (Nelson, 2010). We found

hypoxia suppressed infiltration of B cells in CRC micro-
environment. Consistent with our results, Lee et al. (2016)
reported that inhibition of HIF-1α increased the infiltration of
B-cells in pancreatic ductal adenocarcinoma tissues.

DCs are classified into two major lineages, myeloid or
conventional DCs (cDCs), which are functioned in antigen
processing and presenting, and plasmacytoid DCs (pDCs),
which produce massive IFNs (Wu and Shortman, 2005). We
found that high hypoxia promoted infiltration of total DCs
and cDCs, whereas pDCs were found more in HGS-low group.
How hypoxia participates in activation of DCs is however not
well understood. HIF-1α reportedly promoted migration of
DCs via the chemokine receptor CCR7, and stimulated their
maturation by enhancing the expression of costimulatory
molecule CD86 (Kohler et al., 2012), consistent with the
elevation of costimulatory molecules in Figure 7B. Even so,
little is known about the relationship between hypoxia and the
lineages of DCs. Available evidence showed significantly
decreased circulating pDCs because of hypoxia while the
proinflammatory factors were overexpressed (Yilmaz et al.,
2016). Given that DCs play pivotal role in antigen
presentation, there would be crosstalk between DCs and
other immunocytes involving hypoxia. In a visceral
leishmaniasis infection model, excess secretion of HIF-1α
from DCs inhibited the production of IL-12, decreasing the
number of Th1 subtypes (Hammami et al., 2018).

Tumor-associated macrophages (TAMs) are the primary
tumor-infiltrating cell types. M1 and M2 are the major
functional subtypes of macrophages (Yunna et al., 2020). In
this study, we found that hypoxia significantly increased the
infiltration of both M1 and M2 macrophages. Th1 cytokines
induced HIF-1α overexpression in macrophages, leading to M1
macrophages polarization, whereas HIF-2α induced by Th2
cytokines promoted M2 response (Takeda et al., 2010). In
response to hypoxia, both M1 and M2 macrophages led to
immunosuppression. Specifically, macrophages increased the
secretion of NO via the HIF-1α signaling pathway, suppressing
the function of T cells (Doedens et al., 2010). HIF-2α
counteracted the effects of HIF-1α by reducing arginine
required for NO synthesis. However, reduced arginine impairs
the functioning of T cells in return (Rodriguez et al., 2007;
Doedens et al., 2010).

Our analyses further revealed that hypoxia increases the
expression of several immune checkpoints including PD1,
PDL1, PDL2, CTLA4, TIM3, CD47, B7-H3, VISTA, VTCN1,
CD70, and LAG3. In related studies, hypoxia significantly
increased the expression of PD-L1 on DCs, macrophages and
tumor cells, and induced the apoptosis of T cells (Noman et al.,
2014). Besides, HIF-1α induced expression of CD 47 on cancer
cells to avoid phagocytosis by microphages (Zhang et al., 2015).
These findings underline the therapeutic potential of targeting
hypoxia in CRC treatment.

Other molecular pathways also involve in hypoxia related poor
prognosis and drug resistance. We found that hypoxia showed
positive correlation with angiogenesis, EMT and p53 pathway,
and showed negative correlation with E2F targets, oxidative
phosphorylation, DNA repair and G2/M checkpoint.
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Uncontrolled proliferating tumors need much blood supply and
develop hypoxic microenvironment. Hypoxia stimulates
angiogenesis, resulting in the formation of immature,
abnormal, and leaky neovessels. However, these neovessels
are often insufficient to meet the elevated nutrients and
oxygen demand of more cancer cells, which in turn aggravate
hypoxia. As a result, the highly hypoxic and disordered vascular
microenvironment promotes cancer cells’ invasion and distant
metastasis (Carmeliet and Jain, 2011). EMT is essential for
cancer cell mobility and metastasis. Hypoxia influences the
invasive behavior of cancer cells through EMT, which is
characterized by the downregulation of epithelial-associated
genes and upregulation of mesenchymal-like genes (Hsu
et al., 2000; Kim et al., 2002; Manotham et al., 2004).
Meanwhile, hypoxia activates the expression of Snail and
Slug to promote EMT (Muz et al., 2015). Interestingly, these
two genes were reported to promote resistance to radiation and
chemotherapy in ovarian cancer (Marie-Egyptienne et al.,
2013). Tumor-associated mutant p53 proteins promote
tumor progression through multiple mechanisms
(Donehower et al., 2019; Levine, 2019; Zhang et al., 2020).
Hypoxia was reported to increase mutant p53 protein levels
in cancer cells (Mantovani et al., 2019; Zhang et al., 2020). In
return, mutant p53 promoted angiogenesis, helping the
adaption of cancer cells to hypoxia (Zhang et al., 2021). E2F
family involves in numerous pathways, like cell cycle regulation,
DNA damage repair and apoptosis (Pediconi et al., 2003). It was
reported that hypoxia repressed BRCA1 expression by
compromising the function of E2F1, resulting in tumor
progression (Bindra et al., 2005). Oxidative phosphorylation
requires constant O2 for ATP generation. Under hypoxic
conditions, oxidative phosphorylation slows down and
glycolysis increases to reduce O2 consumption. It was
reported that HIF-1 reprogram glucose metabolism and
promote mitochondrial autophagy to switch cancer cells from
oxidative to glycolytic metabolism (Semenza, 2013). Hypoxia
affects DNA repair through multiple mechanisms, including
suppressing homology-directed repair, base excision and repair
mismatch repair (Kaplan and Glazer, 2020). It is a key
microenvironmental factor contributable to genetic instability
(Reynolds et al., 1996). The genetic instability could lead to the
activation of oncogenes or inactivation of suppressor genes,
resulting in the growth and metastasis of cancer cells (Bristow
and Hill, 2008). Cell cycle checkpoints are activated upon the
generation of DNA damage. The reoxygenation after acute
hypoxia generates DNA damage, thus eliciting G2
checkpoint. Chronic hypoxia (hours to days) may not
activate checkpoints and thus lead to genetic instability
(Bristow and Hill, 2008). As a result, the increased genetic
instability enhances the proliferation of cancer cells.

Hypoxia has been shown to promote acquired resistance to
conventional chemo/radio therapy (Lu et al., 2020). In the
present study, we found a strong association between hypoxia
and the development of chemotherapy resistance. We then
developed a model of top six genes most associated with drug
resistance. Specifically, DCBLD2, a biomarker with largest risk
to develop chemoresistance, was reported to promote CRC

progression, and mediate drug resistance to 5-FU, a first-line
drug for CRC (He et al., 2020; Xie et al., 2021). PLEC, a
cytoskeletal gene, contributed to the invasiveness of
neuroblastoma and resistance to cisplatin (Piskareva et al.,
2015). S100A11, a member of calcium-binding proteins,
promoted resistance of multiple cancers to 5-FU and
cisplatin (Anania et al., 2013; Cui et al., 2021). Moreover,
PLAT participated in proliferation, invasion and migration of
non-small cell lung cancer as well as well as gefitinib resistance
(Yamashita et al., 2015; Yan et al., 2020). PPAP2B, a lipid
phosphate phosphohydrolase, promoted invasion of breast
cancer (Westcott et al., 2015). LAMC2 is a component of
epithelial basement membrane shown to promote
chemoresistance in several cancers (Moon et al., 2015;
Liang et al., 2018; Okada et al., 2021).

The decision of postoperative chemotherapy for CRC
patients has been based on clinicopathologic characteristics
for several decades. Molecular biomarkers have great
advantages in predicting disease outcome and thus may
guide postoperative chemotherapy. Several commercial
platforms, such as CRCassigner and ColoGuidePro, have
been utilized in clinic for predicting patients’ prognosis
and response to chemotherapy. Based on multiple and
large cohorts, HGS shows its superiority in broad
application and quantitative evaluation against the
commercial platforms (Sveen et al., 2012; Borelli et al.,
2021). Nevertheless, follow-up clinical trials need to be
carried out to further verify the effectiveness of HGS.

CONCLUSION

In summary, a novel gene signature based on 16 hypoxia-
related genes was constructed, which could efficiently predict
CRC prognosis. Besides, we found a strong association
between hypoxia and stromal cells and immune status in
the TME, which might be the underling mechanisms of
hypoxia to determine CRC prognosis. Finally, we identified
a list of six genes, which were highly correlated to drug
resistance. HGS could be a useful tool in predicting CRC
prognosis, as well as guiding personalized chemotherapy.
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