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Osteosarcoma (OS) is one of themost common types of solid sarcomawith a poor
prognosis. Solid tumors are often exposed to hypoxic conditions, while hypoxia is
regarded as a driving force in tumor recurrence, metastasis, progression, low
chemosensitivity and poor prognosis. Pytoptosis is a gasdermin-mediated
inflammatory cell death that plays an essential role in host defense against
tumorigenesis. However, few studies have reported relationships among
hypoxia, pyroptosis, tumor immune microenvironment, chemosensitivity, and
prognosis in OS. In this study, gene and clinical data from Therapeutically
Applicable Research to Generate Effective Treatments (TARGET) and Gene
Expression Omnibus (GEO) databases were merged to develop a hypoxia risk
model comprising four genes (PDK1, LOX,DCN, andHMOX1). The high hypoxia risk
group had a poor prognosis and immunosuppressive status. Meanwhile, the
infiltration of CD8+ T cells, activated memory CD4+ T cells, and related
chemokines and genes were associated with clinical survival outcomes or
chemosensitivity, the possible crucial driving forces of the OS hypoxia immune
microenvironment that affect the development of pyroptosis. We established a
pyroptosis risk model based on 14 pyroptosis-related genes to independently
predict not only the prognosis but also the chemotherapy sensitivities. By exploring
the various connections between the hypoxic immune microenvironment and
pyroptosis, this study indicates that hypoxia could influence tumor immune
microenvironment (TIM) remodeling and promote pyroptosis leading to poor
prognosis and low chemosensitivity.
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Introduction

Osteosarcoma (OS), currently the most common primary solid

bone malignancy, is derived from primitive mesenchymal cells and

usually occurs in children and young adults (Li et al., 2011; Smeland

et al., 2019). The incidence of OS is over 8 million/year at

15–19 years of age in Europe (Ritter and Bielack, 2010). OS is

severely malignant; a considerable number of patients with the

seemingly localized disease will develop metastases mostly in the

lungs (Goguet-Surmenian et al., 2013). Thus, a multidisciplinary

treatment approach is very important. To date, the 5-year survival of

OS has improved and is achieved by almost 70% of the patients via

the advancement of neoadjuvant and adjuvant chemotherapy

combined with surgical resection (Rosen, 1985; Lilienthal and

Herold, 2020). However, OS is a chemotherapy-resistant solid

tumor with many patients being insensitive to chemotherapy due

to the highly dynamic immune landscape in patients with OS ((Wu

et al., 2021a), (Wu et al., 2021b)). Thus, a deep understanding of the

tumor immune status in OS is crucial for improving prognosis and

selecting effective treatments.

Hypoxia plays an important role in solid tumor development

including OS. Specifically, hypoxia is a significant factor that affects

tumor cell proliferation and invasion (Guan et al., 2015; Chen et al.,

2020). The imbalance between oxygen consumption and supply

results in hypoxia, an inevitable phenomenon in the majority of

tumors (Zeng et al., 2011). Hypoxia is a relevant factor in

chemosensitivity, metastatic potential, malignant phenotype, and

poor survival (Song et al., 2006; Guan et al., 2015; Prudowsky and

Yustein, 2020). Several studies have also found that the complicated

relationship between hypoxia and the tumor microenvironment has

been shown to occur in various tumors such as hepatocellular

carcinoma, glioma, gastric cancer, acute myeloid leukemia, and

breast cancer (Gibadulinova et al., 2020; Lin et al., 2020; Liu

et al., 2020; Du et al., 2021; Zeng et al., 2021; Jiang et al., 2022).

Hypoxia can decrease immune cell (e.g., CD8+ T cells) proliferation

and promote disadvantageous expression of immune factors (e.g.,

HMGB1 and TLR4) (Yang et al., 2014; Liu et al., 2015; Wu et al.,

2018; Scharping et al., 2021).

Pyroptosis, a type of proinflammatory cell death, is executed by

the gasdermin family of pore-forming proteins (Zhou et al., 2020a).

Pyroptosis can lead to the continuous expansion of cells until the cell

membrane ruptures and is associated with the release of cell contents

and inflammatory response (Shi et al., 2015; Xia et al., 2019).

Increasing evidence indicates a close relationship between

pyroptosis and tumors. The occurrence of pyroptosis is often

accompanied by multiple signaling pathways and inflammatory

responses that may be associated with the regulation of tumor

immune and is involved in tumorigenesis, antitumor immune

function, and chemosensitivity (Man, 2018; Xia et al., 2019; Hou

et al., 2020; Tan et al., 2020; Wu et al., 2021c). Interestingly, several

studies suggest that hypoxia causes pyroptosis through multiple

potential pathways, which may due to the production of reactive

oxygen species (ROS) or the mediation of circ-Calm4/mir-124-3p/

Pdcd6 axis (Yu et al., 2019; Jiang et al., 2021). Hypoxia-inducible

factor 1-α (HIF-1A) is a major transcriptional regulator of cell and

developmental responses to hypoxia (Iyer et al., 1998). The activity

of HIF-1A is directly regulated by cellular oxygen levels (Semenza,

1999). Jorgensen et al. (2016) found mitochondria with collapsed

cristae in pyroptotic cells. Mitochondria are the main sites of ROS

production. They have a four-layer structure, and in the process of

oxidative phosphorylation (OXPHOS), ROS production mainly

occurs on the electron transport chain (ETC) inside the

mitochondrial membrane, which folds inward to form ridges,

known as cristae (Li et al., 2013). Therefore, collapsed cristae

may lead to reduced production of reactive oxygen species

(Madamanchi and Runge, 2007), leading to hypoxia of cells. In

fact, hypoxia can lead to pyroptosis (Jiao et al., 2018). TNF induced

apoptosis has been observed in cell lines of multiple cancer types

under normoxic conditions, while the same treatment induces

necrotic cell death under hypoxia. It was found that necrotic cell

death depended on Caspase-8 and GSDMC, suggesting that

increased GSDMC expression under hypoxia could transform

caspase-8-induced apoptosis into pyroptosis (Tsuchiya, 2021). A

recent study showed that nuclear PD-L1 was found to enhance the

expression of GSDMC under hypoxia conditions, while breast

cancer patients with increased GSDMC expression had a poor

prognosis, suggesting that GSDMC in the center of hypoxia

regions may promote tumor progression by inducing the chronic

tumor necrosis (Hou et al., 2020). Although pyroptosis has attracted

considerable attention because of its potential effect on the tumor

immune response, the relationship between hypoxia and pyroptosis

and the role of pyroptosis in OS is unclear.

In his study, we established and validated a hypoxia riskmodel

and a pyroptosis scoring model to predict prognosis, changes in

the tumor immune microenvironment, and treatment sensitivity.

Additionally, we categorized patients with OS into two cluster

types based on pyroptosis-related genes that could predict

prognosis and immune infiltration. These studies may help

assist clinicians in their decision-making and provide insight

into the relationships among hypoxia, tumor immune

microenvironment, pyroptosis, and OS progression.

Materials and methods

Acquisition of datasets

The RNA sequence and osteosarcoma patient characteristics

were collected from the TARGET database. RNA expression data

of normal human tissues were obtained from the GTEx. The
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“sva” R package (version 3.8) was used to correct biases after

TARGET and GTEx data sets had been pooled. The merged data

were used as the training dataset. The external validation GSE

cohorts were selected from GEO, named GSE21257 (hypoxia),

with detailed survival data. In the establishment of the pyroptosis

risk model, TARGET data was separated into two parts: 70% used

were for the training dataset, and 30% for the testing dataset. Perl

scripts were used to transform the names of microarray probes

into gene names.

Identification of differential genes and
functional analysis

Differentially expressed genes (DEGs) related to hypoxia and

pyroptosis in normal tissues and osteosarcoma were identified

via the “limma” package (version 3.48.3) with logFC >1 and p <
0.05 as the criteria. The protein-protein interaction (PPI)

network was constructed with the online-supported tool

STRING (version 11.5) (Szklarczyk et al., 2015). The

ClusterProfiler” package in R software was used to execute the

gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses. The heatmap was

generated using the “Pheatmap” package (version 1.0.12).

Construction and validation of the
hypoxia-risk model

To evaluate the expression of hypoxia, hypoxia-related genes

(HRG) were obtained from hallmark-hypoxia gene sets obtained

from the gene set enrichment analyses (GSEA). The statistically

significant DEGs related to hypoxia were tested using univariable

and multivariable Cox regression. The hypoxia risk score formula

is as follows:

Risk Score � ∑
N

i�1
(Coefficienti × Expressioni) (1)

The establishment of the pyroptosis-
related signature and survival analysis

Preliminary screening of the survival-related genes was
performed by univariate Cox regression analysis, and an
optimum pyroptosis-related signature with robust
distinguishing ability was established according to the
optimum λ value via LASSO Cox regression analysis. The
following formula was used to calculate the hypoxia risk
score for each patient:

Riskscore � ∑
N

i�1
(Coefficienti × Expressioni) (2)

Gene set enrichment analyses and survival
analysis

GSEA was utilized to examine the significant difference

between the high hypoxia risk and low hypoxia risk groups of

the expressed set of genes via GSEA software (version 4.1.0).

Enrichment of MSigDB Collection (c7. all.v7.4. symbols)

provided by the Molecular Signatures Database was regarded

as the reference gene set. Kaplan-Meier survival curves were

used for the survival analysis through the “survival” and

“survminer” packages in R. Identification of potential

prognostic factors was performed by Univariate Cox

analysis. The multivariate Cox analysis was used to further

determine independent prognostic factors. Time-dependent

receiver operating characteristic (ROC) curves were used to

determine the predictive efficiency of the model via the

survivalROC R package.

Single sample GSEA and CIBERSORT
analysis

To quantify the relative infiltration of various immune cell

types and immune-related pathways in the high hypoxia risk and

low hypoxia risk groups, ssGSEA analysis was performed.

The enrichment score determined by ssGSEA represents the

level of immune-related cell infiltration in each sample. The

CIBERSORT tool distinguished 22 types of immune cells via a

gene signature matrix including 547 genes, named LM22

((Newman et al., 2015)). To identify the characteristics of

immune status related to pyroptosis, the infiltration of various

immune cells in different groups was evaluated by CIBERSORT

(version 1.0649).

Analysis of drug sensitivity

The NCI-60 database was obtained from the CellMiner web

site (https://discover.nci.nih.gov/cellminer), which covered

9 cancer categories and 60 different cancer cell lines. Besides,

Pearson correlation analysis was used for exploring the relevance

between the independent prognostic PRGs and drug sensitivity.

Drugs used in this sensitivity analysis are those approved by the

FDA or those in clinical tests.

RNA interference

Two pairs of Small interfering RNA (siRNA) targeting

human CCL28/HMGB1/KLF2/TLR4/TNFSF18 were

synthesized by Invitrogen, named Gene-SiRNA1and Gene-

SiRNA2. The primer sequences are provided in

Supplementary Table S1. Osteosarcoma cells were seeded with
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a density of (Rosen, 1985; Ritter and Bielack, 2010; Li et al., 2011;

Goguet-Surmenian et al., 2013; Smeland et al., 2019) × 105 per

well in 12-well plates. According to the manufacturer’s

instruction, transfection of siRNAs was carried out using

Lipofectamine™ 3,000 transfection with the when cells

reached 80% confluence. Total RNA was extracted with

TRIzol reagent and reverse transcribed to cDNA. Based on

mRNA levels determined by RT-qPCR analysis. The most

effective siRNA was determined. This experiment was carried

out with 2 replicates.

Detections of cell apoptosis by flow
cytometry

Transfection was conducted as describe above and the

supernatant was collected after 48 h of incubation.

Subsequently, cells were digested by trypsin without EDTA

and harvested the single cell suspension. The cells were

resuspended with cold PBS and cell precipitates were collected

by centrifugation. After washing with binding buffer, cells were

stained with Annexin V−FITC and propidium iodide. Then,

apoptotic analysis was immediately performed by flow

cytometer.

Immunofluorescence

First, paraffin tumor sections were dewaxed in water. Then,

a microwave thermal process was used to repair the antigen.

The slides were washed thrice in phosphate buffer solution

(PBS) for 5 min each time, blocked with 10% goat serum, and

incubated in primary antibody at 4°C overnight, then added

secondary antibodies for incubated 50 min at room

temperature. The nuclei were stained by DAPI solution after

three times wash and incubated 10 min. Sections were then

observed and images were collected using a fluorescence

microscope (NIKON ECLIPSE C1). The paraffin tumor

sections were obtained from Wuhan Sevier Biotechnology

Co., Ltd.

Data analysis

R software (version x64 4.1.0) was used for the statistical

analysis. Correlations between variables were analyzed using

Pearson or Spearman coefficients. Comparisons between the

two groups were performed using the Wilcoxon test. The

Kruskal Wallis test was conducted to compare more than two

groups. The Kaplan-Meier analysis was carried out via “survival”

and “survminer” packages in R to compare the overall survival

between groups. All statistical p values were two-sided, and the

level of significance was set at p < 0.05.

Results

Hypoxia risk model to predict
osteosarcoma prognosis

The flow chart illustrates the entire study design

(Figure 1). Two hundred hypoxia-related genes (HRGs)

were downloaded from GSEA software. We evaluated the

number of adjacent nodes and identified the top 50 genes

with most interactions that might play a significant role in the

response to hypoxia (Figure 2A). A more detailed PPI analysis

was conducted to visualize the internal links among these

HRGs (Figure 2B).

Univariate Cox regression analysis was first performed

to screen out prognostic genes in the training set that was

merged with the TARGET and GTEx datasets (Figure 2C).

Then, four genes (PDK1, LOX, DCN, and HMOX1) were

selected to construct an optimal predictive model by

utilizing the multivariate Cox regression analysis

(Figure 2D). The formula for the hypoxia risk score

calculation is as follows:

Riskscore � 1.10 × PDK1 + 1.17 × LOX + (−1.53)DCN

+ (−0.90)HMOX1 (3)

A heatmap of the four genes expression was used to

visualize the different expression patterns. PDK1 and LOX

were upregulated in the high hypoxia risk score group in

both TARGET (training) (Figure 2E) and GEO (testing)

datasets (Figure 2F). Correlations among all four genes were

evaluated and were found not to be significant in both the

dataset and the testing GEO dataset (Figures 2G,H). To

determine the prognostic value of the four genes, overall

survival curves for patients with different levels of individual

gene expression in the training dataset were generated. The

results indicated that higher PDK1 expression was associated

with low survival probability (p = 0.002, Supplementary Figure

S1), while there was no difference between the high- and low-

expression groups for the other genes. The above results

suggested that these four HRGs could be used to build the

hypoxia risk model.

Analysis of GO enrichment and KEGG
pathway enrichment

To further explore the signaling pathways for the HRGs,

KEGG pathway enrichment (Figures 3A,B) and GO

enrichment (Figures 3C,D) were conducted using TARGET

dataset. The results indicated that the HRGs were primarily

associated with mesenchyme development, extracellular

matrix or structure organization, external encapsulating

structure organization.
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Prognostic value of the hypoxia risk model
in OS

Hypoxia often correlates with cancer progression and

poor survival outcomes; thus, we further examined the

predictive ability of the hypoxia risk model. Based on the

median value of the hypoxia risk score, patients were assigned

to the high or low hypoxia risk group in the TARGET and

GEO datasets.

Patients in the training (Figure 4A) and testing datasets

(Figure 4B) were stratified into high and low groups

according to the median value of the HRS. The results

showed that the mortality of the high hypoxia risk group

was significantly higher than that of the low hypoxia risk

group in training dataset (Figures 4C,E) and testing

dataset (Figures 4D,F). Then, Kaplan-Meier analysis

was performed to further assess the predictive ability of

the hypoxia risk model in patients with OS. The results

showed that the overall survival was worse in the high

hypoxia risk group than in the low hypoxia risk group in

the TARGET dataset (Figure 4G, p = 0.009); this was

further confirmed in the GEO cohort (p = 0.035,

Figure 4H). Then, the ROC curves were obtained for the

TARGET and GEO cohorts to assess the predictive

accuracy of the hypoxia risk model for the 1-, 3- and 5-

year survival rates. In the TARGET dataset, the area under

the ROC curve (AUC) was 0.679 at 1-year, 0.765 at 3-year,

0.740 at 5-year, indicating the robustness and accuracy of

the hypoxia risk model (Figure 3I). This was confirmed in

the GEO dataset (Figure 4J). Therefore, the hypoxia risk

model is closely related to OS prognosis.

Immune infiltration of high- and low-
hypoxia risk OS patients

Previous studies indicated that the microenvironment in

hypoxic conditions may help tumors resist antitumor

immunity by reshaping TIM and enhancing immune

evasion. We performed a CIBERSORT analysis to identify

immune composition differences between the high- and low-

risk groups. The heatmap of immune composition in

patients from the training and testing datasets is shown in

Figures 5A,B. The results suggest a lower immune cell

infiltration in high hypoxia risk patients from the

TARGET dataset such as CD8+ T cells, activated memory

CD4+ T cells, and macrophage M2 cells, while

M0 macrophages showed higher infiltration in the high

hypoxia risk score group in the TARGET dataset (Figures

5C–F). Furthermore, the expression of Granzyme B (GZMB)

and Interferon Gamma (IFNG) negatively correlated with

hypoxia risk score in TARGET dataset (Supplementary

Figures S2A, B) and GEO dataset (Supplementary Figures

S2C, D). These results show that hypoxia may participate in

TIM rebuilding and could be a target for immune therapy.

High hypoxia risk correlates with the
immunosuppressive microenvironment

The cancer-immunity cycle has guided studies of immune

therapy and describes a series of stepwise events for an

antitumor immune response such as antigen release and

activation, immune cell migration, identification, and death

FIGURE 1
Flow chart of experimental design.
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of cancer cells (Chen and Mellman, 2013). To investigate the

relationship between hypoxia and the genes that positively

regulate these processes, we downloaded gene signatures

from Tracking Tumor Immunophenotype (http://biocc.

hrbmu.edu.cn/TIP/) (Xu et al., 2018). As shown in Figure 6,

most positively regulating genes of the cancer-immunity cycle

were downregulated in the patients with a high hypoxia risk

score, suggesting that hypoxia is associated with low activities of

these antitumor immune processes.

Based on the results of the hypoxic microenvironment, we

further explored the links between our model and immune-

related factors. As shown in Figure 6A, the high hypoxia risk

group had high expression of HMGB1 and TLR4 in the

TARGET dataset. In the GEO dataset, the HMGB1 and

KLF2 were highly expressed in the high hypoxia risk group,

the expression of TNFSF18 was lower in the high hypoxia risk

group than in the low hypoxia risk group (Figure 6B).

Immunofluorescence was determined in tumor and normal

FIGURE 2
Characterization of a hypoxia risk model to predict prognosis of OS. (A) The number of adjacent nodes per hypoxia-related gene; (B) PPI
network indicating the correlation of HRGs; (C,D) A hypoxia-risk model was evaluated by univariate and multivariate Cox regression; (E,F) Heatmap
displaying expressions of hypoxia-related DEGs and comparison between high and low hypoxia risk groups in TARGET (E) and GEO databases (F);
(G,H) Correlation analysis of hub gene in TARGET (G) and GEO databases (H).
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tissues to further verify the immune regulator expression. As

shown in Figures 6E–I, the expression of HMGB1 and TLR4

was significantly high in tumor tissue compared with that in

normal tissue, the expression of CCL28, KLF2 and TNFSF18 in

tumor were similar to normal tissues. In an attempt to

investigate the potential pathway related to hypoxia, we

conducted GSEA and found that the ubiquitin-mediated

proteolysis pathway was enriched in high hypoxia risk

patients in the TARGET dataset (Figure 6J).

The above results demonstrated that hypoxia might

participate in establishing a TIM with immunosuppression by

affecting immune regulators.

Knockdown of HMGB1 and
TLR4 promoted apoptosis of
osteosarcoma cells

To identify the effects of HMGB1, TLR4, CCL28, KLF2

and TNFSF18 knockdown on apoptosis of osteosarcoma cells,

the flow cytometry analysis was conducted. The result

indicated that CCL28, KLF2 and TNFSF18 did not

significantly affect cell apoptosis (Figures 7A,C,E,F), while

the knockdown of HMGB1 and TLR4 significantly increased

the proportion of apoptotic of osteosarcoma cells (Figures

7B,D,F).

FIGURE 3
GO and KEGG enrichment analysis in TARGET dataset. (A,C) The KEGG (A) and GO (C) analysis by bar graph; (B,D) Bubble chart shows
significantly enriched KEGG (B) pathway and GO (D).
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Identification of DEGs between healthy
and tumor tissues

According to previous evidence of the close relationship between

immune regulators and pyroptosis, for example, HMGB1 and

TLR4 may promote the development of pyroptosis (Wang et al.,

2019a; Wang et al., 2020a). To determine whether there was any

association between the hypoxic microenvironment and pyroptosis,

we identified 46 DEGs by comparing the levels of 52 pyroptosis-

related genes (PRGs) in the training dataset. The differential levels of

FIGURE 4
Predictive ability of the hypoxia risk model in OS. (A,C) Distribution of survival status and risk score in the high- and low-risk groups in TARGET
dataset; (B,D) Distribution of survival status and risk score in the high- and low-risk group in the GEO database; (E,F)Mortality rates of the high- and
low-risk group in TARGET (E) and GEO (F) databases; (G,H) The curves for predicting overall survival for patients in TARGET (G) and GEO (H)
databases; (I,J) ROC curves of TARGET (I) and GEO (J) cohorts.
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gene expression in tumor and normal tissues were analyzed

using a heatmap (Figure 8A). As shown in the heatmap, IL1A,

GSDMD, IL1B, PYCARD, GZMA, IRF2, CASP8, CASP5,

CHMP4C, TP53, NLRP7, TIRAP, GSDMA, AIM2, CHMP4B,

BAK1, BAX, CASP3, and CASP6 showed upregulated

expression patterns, while other genes were expressed at

low levels in patients with OS. The correlation network of

the DEGs is presented in Figure 8B. Moreover, we analyzed

the PPI network using the STRING online tool (Figure 8C).

Classification of OS patients based on the
DEGs

A consensus clustering analysis in the TARGET dataset

was conducted to further understand the link between PRG

and OS. According to the level of pyroptosis-related DEGs

expression, we determined that the intergroup correlations

were the lowest and the intragroup correlations were the

highest, while the clustering variable (k) value was 2,

suggesting that patients could be classified into two

separate clusters (Figure 9A). We then compared the

overall survival times of the two clusters. As shown in

Figure 9B, cluster 1 was associated with a higher survival

advantage than cluster 2. The analysis results for different k

values are shown in Supplementary Figure S3.

Establishment and validation of pyroptosis
signature

For preliminary screening of the PRGs, univariate Cox

regression analysis was used in the TARGET dataset

(Supplementary Figure S4). A group of 14 genes (HSD11B2,

KIF25, BST1, SNORA75, GBP1, CLDN11, ZNF692, ARMC4,

FPR1, PCDHB6, IHH, TPD52, RAMP1, and TAC4) was

classified using the optimal λ value (Lossos et al., 2004) by

performing the LASSO Cox regression analysis (Figures

10A,B). The coefficient values for each gene are presented in

Supplementary Table S2.

FIGURE 5
The immune landscape of two hypoxia score subtypes. (A,B)Distribution of immune infiltration in patients of high- and low-hypoxia risk groups
from TARGET (A) and GEO (B) databases; (C–F) Comparison of various immune cells between high- and low-hypoxia risk groups from training
dataset, visualized by Box plots.
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To evaluate further the prognostic value of the pyroptosis risk

model, we assigned patients into low and high pyroptosis risk

score groups in the training and testing cohorts, applying the cut-

off median value from training (Figure 10C) and testing

(Figure 10E) datasets. The results of the principal component

analysis showed that patients with different pyroptosis risk scores

were divided into two groups in both the training and testing

datasets (Supplementary Figure S5).

To compare survival outcomes between the two pyroptosis

risk groups, we performed overall survival and survival status

analyses in the training cohort. The low pyroptosis risk score

group was associated with better survival status (Figure 10D)

and higher overall survival time (Figure 10G) than the high

pyroptosis risk group; this was validated further by the testing

dataset (Figures 10F,H). The ROC curve shows that AUCs

were 0.814 at 1-year, 0.828 at 3-year, 0.860 at 5-year points,

FIGURE 6
TIM of the high hypoxia risk group exhibited immunosuppressive characteristics. (A,B) Heatmap showing the positively regulated genes of the
Cancer-Immunity Cycle in two subtypes in the training (A) and testing (B) databases. (C,D) Expression of immune-related signature in the training and
testing dataset. (E–I) Expression of immune-related regulators were verified by immunofluorescence in tumor and normal tissues. (J) GSEA in
TARGET cohort. ***p < 0.001.
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FIGURE 7
Flow cytometric analysis of cell apoptosis. (A–E) Flow cytometric analysis for osteosarcoma cells following CCL28, HMGB1, KLF2, TLR4 and
TNFSF18 knockout (F) Quantified results of the flow cytometric analysis. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 8
Identification of DEGs between healthy and tumor tissues. (A)Heatmap of the PRGs expressed in normal and tumor tissues; (B) The network of
the PRGs showing interactions among the genes; (C) PPI network of the PRGs.
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suggesting that the risk model has a high predictive value in

the training dataset (Figure 10I). This was further confirmed

by analyzing the testing cohort (Figure 10J).

Functional analyses of the pyroptosis risk
model

To determine the functional enrichment and pathways in

groups classified by the pyroptosis risk score, we used R software

to identify 172 DEGs conforming to the criteria of

FDR<0.05 and |log2FC |≥ 1.

Using these DEGs, we performed the GO (Figures 11A,B)

and KEGG (Figures 11C,D) pathway analysis on the training

dataset and determined that the DEGs were mainly associated

with the extracellular matrix or structure organization,

ossification, BMP, TGF-beta signaling pathway and protein

digestion and absorption.

Correlations of the immune activity and
pyroptosis risk signature

To further investigate the potential correlation between the

different pyroptosis-related risk and immune activities, we

evaluated the level of 13 immune-related pathway activities

and the enrichment of various immune cells between the two

risk-score groups in the training dataset by ssGSEA (Figure 12A).

The results suggested a lower infiltration of immune cells (e.g.,

IDCs cells, Th1 cells, Th2 cells) in the high pyroptosis risk score

group. Moreover, we find lower infiltration of CD8+ T cells,

Th1 cells and Th2 cells in the high pyroptosis risk score group in

the testing dataset (Figure 12B). The high pyroptosis risk score

group showed lower activities in some immune pathways such as

antigen-presenting cell (APC) co-inhibition and T cell co-

stimulation (Figure 12C). These results indicate that a higher

pyroptosis score may be linked to a low antitumor immune

response; this was also validated by performing the above

examination with the testing dataset (Figure 12D).

Pyroptosis risk signature predicts
chemotherapy sensitivity

Nowadays, with the increase in survival rate due to various

chemotherapy combinations, multimodal treatment is

considered the most effective strategy. Therefore, we explored

whether the expression of the 14 genes pyroptosis risk signature

was related to the sensitivity of common chemotherapies in the

training dataset. As shown in Figure 13, the expression of FPR1,

BTS1 and GBP1 exhibited a positive correlation with

chemotherapy strategies, and the expression of HSD11B2,

TPD52 and RAMP1 exhibited a negative correlation with

chemotherapy strategies. The results indicated that pyroptosis

might be a potential target for chemotherapy in patients with OS.

Discussion

Osteosarcoma is a highly aggressive and malignant bone

tumor with a poor prognosis that occurs primarily in children

and adolescents (Jo and Fletcher, 2014). Over the past half-

century, new profound insight and effective strategies have been

urgently sought to resolve the clinical limitations because the

treatment efficacy of OS has plateaued (Ballatori and Hinds,

2016). Despite the growth of multimodal treatment regimens and

FIGURE 9
Subtypes of OS according to DEGs. (A) Based on the consensus clustering matrix, OS patients were divided into two clusters (k = 2). (B) Kaplan-
Meier analysis of the two clusters.
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diagnosis of OS in previous decades, the survival rate remains

low; this could be attributed mainly to the limitations of

diagnosis, early metastasis, and low chemosensitivity (Niu

et al., 2019). Previous evidence indicates that the alteration of

TIM and the development of pyroptosis might play a major role

in tumor pathogenesis. However, most studies have focused only

on individual correlations between hypoxia, TIM, pyroptosis,

and OS, and the characteristics of the internal connections

among all these factors have not been systematically

evaluated; understanding of these interactions might shed new

light on treatment methods.

Hypoxia frequently exists in TIM and has been considered a

critical mediator of tumor aggressiveness, metastasis, drug

sensitivity, and poor prognosis. In addition, hypoxia has been

reported to be directly linked to effects on immunosuppressive

cells and molecules (Kumar and Gabrilovich, 2014). Several

studies also suggested a close linkage between hypoxia and

pyroptosis. Meanwhile, as the awareness of pyroptosis

increases, the role of pyroptosis in TIM, antitumor response,

and tumor progression has received increasing attention. Based

on this experience, we established a hypoxia-risk model linked

with a pyroptosis-related risk model to predict prognosis, TIM,

and chemoresistance, and to reveal the relationship among

hypoxia, TIM, and OS.

We initially created a hypoxia-risk model consisting of four

HRGs and established a pyroptosis-risk model with 14 PRGs. It

has been demonstrated that pyruvate dehydrogenase kinase 1

(PDK1) and lysyl oxidase (LOX) were associated with

chemoresistance, tumor metastasis, and poor survival

(Umezaki et al., 2019; Siu et al., 2020). Our results show high

hypoxia risk with high levels of expression of PDK1 and LOX,

validating the suggestion that high hypoxia is linked with high

PDK1 and LOX, as previously reported (Majmundar et al., 2010;

Ji et al., 2013). In contrast, decorin (DCN) plays a role in

impeding tumorigenesis (Sainio and Järveläinen, 2019). Heme

oxygenase-1(HOMX1) is considered to be the main protein in

FIGURE 10
Construction and validation of pyroptosis risk signature. (A,B) LASSO regression and cross-validation of genes; (C,E) OS patients assigned in
subtypes by themedian value of the pyroptosis risk score in training (C) and testing cohorts (E); (D,F)Distribution of survival status in the high and low
pyroptosis risk group from training cohort; (G,H)Overall survival curves for patients with high and low pyroptosis risk scores in training (G) and testing
cohorts (H); (I,J) ROC curves of the pyroptosis risk signature indicating the predictive ability in training (I) and testing cohorts (J).
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diseases that may be driven by oxidative and inflammatory

attacks (Waza et al., 2018). After several survival analyses, this

hypoxia risk model showed robust accuracy in predicting tumor

prognosis.

In addition to contributing to OS aggression andmalignancy,

hypoxia promotes tumor escape and immune resistance by

reducing the infiltration of immune cells and establishing an

immunosuppressive microenvironment that may protect tumors

from antitumor immune attacks. Previous studies indicate that

T cells, and especially CD8+ T cells perform an essential role in

the antitumor immune response, for example, CD8+ T cells

induce ferroptosis and pyroptosis resulting in the inhabitation

of tumor growth and enhancement of antitumor immunity (Lang

et al., 2019; Tang et al., 2020; Zhang et al., 2020); enrichment of

CD4+ T cells is associated with good prognosis (Liu et al., 2021).

However, CD8+ T cells can become rapidly dysfunctional due to

hypoxia via mitochondrial stress induced by continuous

stimulation (Scharping et al., 2021). We also founded that

GZMB and IFNG are negatively correlated with hypoxia risk

score. As a T cell activation marker, the expression of GZMB is

important for tumor immunity (Russell and Ley, 2002).

Moreover, patients with osteosarcoma and a high expression

of GZMB have a long overall survival time (Yoshida et al., 2019).

The expression of Neuronal pentraxin (NPTX2) is negatively

correlated with the expression of GZMB and IFNG, Knockdown

of NPTX2 in osteosarcoma cells inhibited tumor growth and

increased tumor cell apoptosis (Yang et al., 2021). Besides, some

of the immune-related factors associated with tumor invasion

and metastasis such as HMGB1 and Toll-like receptor 4 (TLR4)

play a considerable role in rebuilding TIM and promoting the

development of pyroptosis that could also be upregulated by

hypoxia (Liu et al., 2015; Wu et al., 2018; Tan et al., 2020; Zha

et al., 2020; Yuan et al., 2021). For example, HMGB1 promotes

lung metastasis in triple-negative breast cancer by inducing

FIGURE 11
Functional analysis of training cohort (from TARGET dataset). (A,C) Barplot graph for GO (A) and KEGG (C) pathways; (B,D) Bubble graph for GO
(B) and KEGG (D) enrichment.
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CD62Ldim neutrophil polarization (Wang et al., 2020b). The

prognostic role of TLR4 in Osteosarcoma remain

controversial. As we know, TLR4 recognizes cathepsin K to

activate the M2 polarization of tumor-associated macrophages

(TAMs) through an mTOR-dependent pathway, resulting in

tumor metastasis (Li et al., 2019). It has been reported that

the activation of TLR4 prevents progression of osteosarcoma,

while some other evidence demonstrated the TLR4 related

pathway could promote the invasion and migration of

Osteosarcoma (Wang et al., 2019b; Zhou et al., 2020b; Yahiro

et al., 2020). Thus, the role of TLR4 in Osteosarcoma need further

more investigations. Consistent with the above evidence, our

study suggests that CD8+ T cells and CD4+ T memory-activated

cells were decreased in patients with high hypoxia risk, indicating

an immunosuppressive status. In our study, the expression of

HMGB1 is higher in normal tissues than that in osteosarcoma

from TARGET dataset. However, the immunofluorescence study

showed high expression of HMGB1 in osteosarcoma. It has been

reported that the expression of HMGB1 mRNA is higher in

moderately and poorly differentiated gastrointestinal

adenocarcinoma tissues compared to adjacent pre-cancerous

and well-differentiated tissues (Xiang et al., 1997). It reminds

that the expression ofHMGB1may be associated with the level of

differentiation. Besides, there was also high degree of

heterogeneity within individual tumors or between tumors

(Hasegawa et al., 1991; Klangjorhor et al., 2020). These

discordances may have resulted in the difference. These

results show that our hypoxia risk model distinguishes

immune status and immune cell subtypes in different patients

and may be helpful in the selection of appropriate treatments. On

the other hand, the above evidence indicates that hypoxia is a

predominant driver of TIM remodeling, not only downregulating

subset of infiltrating immune cells (e.g., CD8+ T cells and CD4+ T

memory activated cells) but further regulating the immune

response-related chemokines and their receptors and thus

upregulating pyroptosis. Above all, hypoxia may initiate a

series of chain reactions that lead to the suppressive immune

status.

As a novel form of programmed cell death, pyroptosis has

received increasing attention because of its dual regulation of the

tumor immune response. In this study, we developed a pyroptosis

risk score model based on DEGs related to pyroptosis that predicts

prognosis, chemoresistance, and subtype of immune cells. ssGSEA

revealed that the low pyroptosis risk score group had a low

FIGURE 12
Correlation between immune activities and risk score in training and testing datasets. (A/B)Difference of infiltrating immune cell subpopulations
and levels between the two pyroptosis risk groups in the training dataset (A) and testing cohorts (B). (C/D) The relationship between pyroptosis risk
score and 13 immune-related pathway activities in the training dataset (C) and testing cohorts (D).
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proportion of CD8+ T cells, Th1 cells, Th2 cells, and low activity in

some immune pathways, indicating that pyroptosis also contributes

to a suppressive microenvironment. Moreover, T helper cells and

CD8+ T cells are regarded as crucial immune cells in antitumor

immune response, and their large infiltration into tumor tissues is

often linked with better prognosis (Fridman et al., 2012). The

application of chemotherapy has improved the survival outcomes

of patients with OS. Therefore, we evaluated the ability of the

pyroptosis risk score to predict the sensitivity of conventional

chemotherapies (Strauss et al., 2021). As previously reported,

high pyroptosis scores were associated with lower

chemosensitivity. After a series of analyses, we found that the

low pyroptosis risk score was often associated with better clinical

outcomes such as survival, chemosensitivity, and immune status,

while the pyroptosis signature showed good predictive ability in

these aspects. The above results demonstrate that hypoxia can also

contribute to poor prognosis and low chemosensitivity by

promoting pyroptosis.

In summary, this study has revealed the relationship between

hypoxia, pyroptosis, and OS. Hypoxia is closely connected to the

development of OS because the HRGs are differentially expressed in

healthy and OS tissues, and could promote an immunosuppressive

microenvironment by modulating the infiltration of immune cells

and immune-related factors. In addition, our HRG and PRG

signatures can predict the prognosis and immune landscape

status in OS patients, thereby providing novel insights into OS

tumorigenesis and a foundation for novel OS detection and

treatment strategies.

Conclusion

In conclusion, we have established and validated a

prognostic model based on HRGs in patients with OS that

can also evaluate the characteristics of the tumor immune

landscape. Moreover, another pyroptosis risk-score model

that includes 14 PRGs provides independent prognostic and

chemosensitivity capabilities. Through the complicated

connections between hypoxia and pyroptosis, this study has

demonstrated that hypoxia could alter poor prognosis and

chemoresistance by affecting TIM remodeling and the

occurrence of pyroptosis.
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