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Background: Recent evidence demonstrates that pyroptosis-derived long non-coding
RNAs (lncRNAs) have profound impacts on the initiation, progression, and
microenvironment of tumors. However, the roles of pyroptosis-derived lncRNAs (PDLs)
in gastric cancer (GC) remain elusive.

Methods: We comprehensively analyzed the multi-omics data of 839 GC patients from
three independent cohorts. The previous gene set enrichment analysis embedding
algorithm was utilized to identify PDLs. A gene pair pipeline was developed to facilitate
clinical translation via qualitative relative expression orders. The LASSO algorithm was
used to construct and validate a pyroptosis-derived lncRNA pair prognostics signature
(PLPPS). The associations between PLPPS and multi-omics alteration, immune profile,
and pharmacological landscape were further investigated.

Results: A total of 350 PDLs and 61,075 PDL pairs in the training set were generated. Cox
regression revealed 15 PDL pairs associated with overall survival, which were utilized to
construct the PLPPS model via the LASSO algorithm. The high-risk group demonstrated
adverse prognosis relative to the low-risk group. Remarkably, genomic analysis suggested
that the lower tumor mutation burden and gene mutation frequency (e.g., TTN, MUC16,
and LRP1B) were found in the high-risk group patients. The copy number variants were not
significantly different between the two groups. Additionally, the high-risk group possessed
lower immune cell infiltration abundance and might be resistant to a few chemotherapeutic
drugs (including cisplatin, paclitaxel, and gemcitabine).

Conclusion: PDLs were closely implicated in the biological process and prognosis of GC,
and our PLPPS model could serve as a promising tool to advance prognostic
management and personalized treatment of GC patients.
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INTRODUCTION

Gastric cancer (GC) is a serious disease worldwide, ranking the fifth
in incidence and fourth in mortality globally (Smyth et al., 2020;
Sung et al., 2021). Recently, the treatment modalities for GC have
been gradually refined and optimized, but surgical resection is still
the main modality (Fuchs et al., 2017; Smyth et al., 2020; Sung et al.,
2021). Disappointingly, due to the highly heterogeneous and occult
course, most patients with GC are already in advanced stage when
diagnosed, with 769,000 deaths globally in 2020 and the 5-y survival
rate of only about 25% (Rugge et al., 2017; Eusebi et al., 2020; Yuan
et al., 2020; Sung et al., 2021). Traditionally, clinical decisions of GC
have been specified by the American Joint Committee on Cancer
(AJCC) tumor nodemetastasis (TNM) staging system (Edition et al.,
2017). However, sometimes the prognosis of GC patients with the
same TNM stages who receive the same treatment modalities is not
identical. The molecular heterogeneity between individuals might
drive the clinical diversity of GC patients (Akshatha et al., 2021).
Therefore, it is necessary to incorporate molecular characteristics
into the prognostic evaluation of patients.

Pyroptosis is recognized as a new type of programmed cell death,
which is inherently inflammatory and triggered by various
pathological stimuli (including infection, cancer, and
cardiovascular events) (Ayers et al., 2017). Pyroptosis is
characterized by gasdermin family-mediated cell swelling, lysis,
and the release of pro-inflammatory intracellular contents
including interleukin (IL)-18 and adenosine triphosphate (Kovacs
and Miao, 2017). Pyroptosis was initially an important pathway to
antagonize cell infection, and with the deepening of research, it was
found to play a linchpin role in influencing the tumor
microenvironment (TME) (Ye et al., 2021). Accumulating
evidence has indicated that pyroptosis impacts the prognosis of
patients in multiple cancers by promoting or inhibiting the
proliferation, invasion, and metastasis of tumors (Fang et al.,
2020; Al Mamun et al., 2021; Lin et al., 2021). For instance,
recent research revealed that pyroptosis promoted the
proliferation of esophageal squamous carcinoma cells through the
PKM2-caspase-8/3-GSDME pathway (Jiang et al., 2021). Tian et al.
(2020) reported that GSDME-mediated pyroptosis promoted the
progression of colorectal cancer by releasing HMGB1. Therefore,
pyroptosis has profound impacts on cancers.

Long non-coding RNAs (lncRNAs), a type of non-coding RNA
molecules greater than 200 nucleotides in length, play important
roles in regulating the transcriptional, posttranscriptional, or
epigenetic level (Al Mamun et al., 2021). Emerging evidence has
indicated that the interactions between pyroptosis and lncRNAs are
significant in the development of multiple complex human diseases,
especially in cancers (He et al., 2020; Gao et al., 2021). Due to the
important role of lncRNAs in the process of tumor cell proliferation,
migration, and apoptosis, the diagnosis and prognosis of patients are
affected (Liu S. J. et al., 2021). The aberrant expression of lncRNAs
could regulate the biological behavior of pyroptosis-derived lncRNA
(PDLs) through miRNAs and downstream pathways, further
prolonging or shortening the overall survival (OS) of multiple

cancers (He et al., 2020). Scientists reported a new finding that
knockdown of rp1-85f18.6 significantly promotes the pyroptosis of
colorectal cancer cells by cleaving GSDMD (Ma et al., 2018). These
findings demonstrated that identifying and exploring PDLs could
promote the revelation of the complex mechanisms of cancer.
Nevertheless, the clinical significance of PDLs in GC remains
elusive and needs to be further explored.

Large-scale data open the gate to comprehensively explore
molecular alterations and systematically develop useful
biomarkers in cancers (Cai et al., 2020; Liu et al., 2021d; Liu
et al., 2021f). However, cross-platforms remain the non-negligible
obstacle in biomarker discovery. Thus, in this study, we proposed a
novel gene pair pipeline based on relative expression orders. Using
this pipeline, we successfully constructed and validated a pyroptosis-
derived lncRNA pair prognostics signature (PLPPS) model with
robust performance across multiple independent datasets. More
importantly, we also revealed the multi-omics alteration, immune
profile, and pharmacological landscape of PLPPS.

MATERIALS AND METHODS

Data Collection and Processing
The flowchart of this study is shown in Figure 1. Three cohorts were
enrolled from The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov/) and Gene Expression Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo/) datasets, including TCGA-STAD (n =
348), GSE62254 (n = 300), and GSE15458 (n = 191). For the
TCGA-STAD cohort, “level 3” transcriptome profile and clinical
data of patients were retrieved. All GEO datasets were annotated by
the Affymetrix® GPL570 platform, and raw transcriptome data were
processed by the robust multiarray averaging (RMA) algorithm
implemented in “affy” R package (Deandres-Galiana et al., 2016).
In three cohorts, primary tumor tissue samples without
chemoradiotherapy and cancer-adjacent normal tissues were
retained. The somatic mutation and copy number variation
(CNV) data were all downloaded from the TCGA portal and
cBioPortal, respectively. The baseline characteristics are
summarized in Supplementary Table S1.

Pyroptosis Gene List
The pyroptosis gene list (containing a total of 51 genes) was required
from the MSigDB (Liberzon et al., 2015) (version 7.4,
REACTOME_PYROPTOSIS) and prior research (Shao et al.,
2021; Ye et al., 2021). The gene list is illustrated in
Supplementary Table S2.

Identification of lncRNAs Associated With
Pyroptosis Genes
Using our previous integrated algorithm (Liu et al., 2021c; Liu et al.,
2021e), we aimed to identify the potential lncRNA regulators of
pyroptosis. The summary is given as follows: 1) total mRNAs were
ranked in descending order via their correlation with a specific
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lncRNA. 2) The order gene list was further entered into “fgsea” R
package to perform enrichment analysis and explore whether the
genes of pyroptosis signalingwere enriched in the top or bottomof the
ordered list. 3) The pyroptosis enrichment score (PES) was calculated
for total lncRNAs. LncRNAs with significant PES were determined as
pyroptosis-derived lncRNA by the permutation test framework. 4)
The lncRNAs with the absolute value of PES > 0.995 and the false
discovery rate (FDR) < 0.05 were determined as pyroptosis-derived
lncRNAs.

Definition of Stable and Reversal lncRNA
Pairs
The lncRNA expression matrix was converted to the corresponding
rank matrix (the greatest expression value was converted to the
maximum rank, and the smallest expression value was converted

to the minimum rank in each sample) (Figure 1A). Pairwise
comparisons of all pyroptosis-derived lncRNAs were performed to
determine stable pairs in normal samples and reversed pairs in tumor
samples. When two lncRNAs exhibited the same rank pattern (e.g.,
lncRNA-A < lncRNA-B) in 85% of normal samples, these two
lncRNAs were called stable pairs. Likewise, reversal pair was
defined as displaying the uniform rank pattern in 85% of tumor
samples and in the opposite direction to stable pairs (e.g., lncRNA-A<
lncRNA-B).

Gene Pair Pipeline
In order to screen suitable reversal pyroptosis gene pairs, we
performed the following steps accordingly (Figure 1B):

Step 1: The expression profile of lncRNA was converted to
the rank profile, and that will reduce batch effects during the
experiment and qualitative transcriptional characterization.

FIGURE 1 | Flowchart of analysis procedure.
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Step 2: The identification of lncRNA pairs with the same
direction of deregulation. For instance, lncRNA-A with lncRNA-
B, lncRNA-C, lncRNA-D, lncRNA-E, and lncRNA-F constituted
stable pair and reversal pair relationships in normal vs. tumor
samples, respectively. Compared with normal samples, the rank
of lncRNA-A in tumor samples was “up.”However, the direction
of deregulation of lncRNA-Dwas “down.” Then, the combination
of lncRNA-A with lncRNA-D will be abandoned.

Step 3: Subsequently, we calculated the coefficient of variation
(CV) of partner lncRNAs for each lncRNA-A through the rank
change of lncRNAs in tumor and normal tissues. Assuming that if
the order of lncRNA pair is approximately invariable in normal
and tumor samples, the stable and reversal relationship between
lncRNA-A and partner lncRNAs may be altered because of the
order change of lncRNA-A in the two groups, which facilitates
judging whether lncRNA-A exists different in individual tumor
samples. Based on the aforementioned reasons, we calculated the
CV of patten lncRNA for lncRNA-A and ranked it in descending
order. After that, the top three patten lncRNAs of the CV
(lncRNA-B, lncRNA-C, and lncRNA-E) were retained and
included in the following analysis (Peng et al., 2017).

Step 4:Ultimately, three lncRNA pairs (lncRNA-A > lncRNA-
B, lncRNA-A > lncRNA-C, and lncRNA-A > lncRNA-E) were
considered as qualified reversal pairs in every single tumor
sample. For instance, more than 60% of the tumor samples
had lncRNA-A > lncRNA-B, and lncRNA-A > lncRNA-B was
included in the final study (the green human shape in Figure 1B).

Step 5: Relative expression ordering. For each lncRNA pair
(e.g., lncRNA-A and lncRNA-B), we defined lncRNA-A >
lncRNA-B as number 1. In contrast, number 0 was used to
denote lncRNA-A < lncRNA-B. Passing this transformation
will reduce the experimental batch effect and improve the
robustness. Then, we obtained a matrix of samples based on
the relative expression order of lncRNA pairs for subsequent
research.

Signature Generation
First, the stable PDL pairs were identified according to the
following guideline: 1) p-value of univariate Cox regression less
than 0.05. 2) Hazard ratio (HR) values were in the consistent
direction (HR > 1 or <1) in three cohorts. Subsequently, based on
the rank value of the PLPPS, we used the LASSO regression
algorithm (Lockhart et al., 2014) to develop a PLPPS model to
predict the OS of GC patients. To achieve this purpose, the
calculation process was performed in “glmnet” R package and
the lambda value was chosen when the partial likelihood deviance
reached the minimum value by the 10-fold cross-validations
(Friedman et al., 2010). Finally, the lncRNA pairs with non-zero
coefficients were selected to establish the final prognosis model.
Patients were divided into high- and low-risk groups according to
the optimal cutoff point. The predictive ability of the PLPPS model
was validated in GSE62254 and GSE15458.

Copy Number Variation Analysis
Afterward, we performed a comprehensive analysis of copy
number deletion and amplification of two groups. The top 10
genes in the frequency of homozygously deleted (HOMDEL) and

high-level gene amplification (AMP) events were depicted based
on the CNV data from cBioPortal.

Immunogenicity Characterization Analysis
In order to decipher the immunogenicity of the two groups,
tumor mutation burden (TMB) and immunophenoscore (IPS) of
patients were explored. Using the “tmb” function in “maftool” R
package, we calculated the difference of TMB between the two
group patients. After that, the IPS was used to assess the immune
state of each patient. IPS is an assessment protocol that quantifies
tumor immunogenicity through multiple immune markers
(Charoentong et al., 2017). This score has a positive
correlation with immunogenicity.

Delineate the Mutation Landscape
We compared molecular mutation differences between high- and
low-risk groups. The calculation of genes with the top 20
mutation frequencies and the depiction of mutation waterfall
plots were performed by “maftools” R package.

Gene Set Enrichment Analysis
The differential genes between the high- and low-risk groups
were identified by “limma” package and sequenced by the log2
(fold change) value. Subsequently, gene set enrichment analysis
(GSEA) was used to decipher the underlying biological
mechanisms of the GC sample using GO and KEGG terms
(Molecular Signatures Database, version:
c5.go.v7.4.symbols.gmt and c2.cp.kegg.v7.4.symbols.gmt).

Immune Landscape Description
Tumor infiltration by immune and stromal cells was evaluated by
the MCPcounter algorithm (Becht et al., 2016), implemented in
“MCPcounter” R package. Additionally, to analyze the response
to immune checkpoint blockade, the two groups’ samples were
scored by T-cell inflammatory signature (TIS). TIS was
constituted by 18 inflammatory genes associated with adaptive
immune resistance, antigen presentation, and chemokine
expression (Ayers et al., 2017).

Chemotherapy Drug Response
In order to assess the clinical significance of the PLPPS model, we
analyzed the response [evaluated by half maximal inhibitory
concentration (IC50)] to chemotherapy drugs between the
high- and low-risk groups. This process was implemented in
“pRRophetic” R package.

Statistical Analysis
All data processing, statistical analysis, and plotting were
conducted in R 4.0.3 software. Continuous variables and
categorical variables were compared between two groups using
the Wilcoxon rank-sum test and Fisher’s exact test, respectively.
The optimal cutoff point was used to classify patients into high-
and low-risk groups. The Kaplan–Meier method and the log-rank
test were utilized to estimate the different OS and relapse-free
survival (RFS) between two groups. The Benjamin–Hochberg
method was used to further calculate the FDR. For every analysis,
statistical significance was considered at p < 0.05.
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RESULTS

Identification of PDLs and Reversal lncRNA
Pairs
We identified PDLs through the integration lncRNA pipeline.
Based on the lncRNA and mRNA expression datasets, the
pipeline could systematically and accurately trace lncRNA
molecules which are potentially linked to pyroptosis genes.
Thus, a total of 350 PDLs were selected for the following
research. Subsequently, PDL expression profiles were
transformed to rank profiles in each GC sample. A total of
61,075 lncRNA pairs were obtained from 350 PDLs.
According to the pipeline in Figure 1B, we identified 5,046,
7,753, and 2,373 reversal lncRNA pairs from TCGA-STAD,
GSE62254, and GSE15458, respectively. The three lists of
lncRNA pairs had 430 overlaps. Afterward, to evaluate the

performance of reversal pairs between different platforms, the
common 430 lncRNA pairs between sequencing and microarray
datasets underwent all analyses.

Construction and Validation of the PLPPS
Model
Among the 430 lncRNA pairs, we identified 15 PDLs correlated
with OS by univariate Cox analysis in the three cohorts. Based on
the rank profile of these lncRNA pairs in TCGA-STAD, we fitted
a LASSO Cox regression model and identified 14 PDLs that were
highly predictive of OS (Figures 2A,B). The specific calculation
formula of risk score is given in Table 1. All patients were
assigned to the high- and low-risk groups according to the
optimal cutoff point. Compared with the low-risk group,
patients in the high-risk group had dismal OS in all cohorts

FIGURE 2 | Development and validation of the PPSMmodel in clinical samples. (A,B) Least absolute shrinkage and selection operator (LASSO) logistic regression
algorithm to screen of gene pairs associated with prognostic. (C–E) Kaplan–Meier curves of OS according to the high- and low-risk groups in TCGA (C), GSE62254 (D),
and GSE15458 (E) cohorts.
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(log-rank test, all p < 0.05; Figures 2C–E). In addition, PLPPS
remained an independent prognostic factor for GC patients after
controlling the available clinical characteristic in the three cohorts
(all p < 0.05; Figures 3A–C). Of note, patients in the high-risk
group also had significantly worse RFS (Supplementary Figure
S1). Multivariate Cox regression analysis displayed that PLPPS
was still an independent prognostic factor for RFS (p < 0.05;
Supplementary Figure S2).

Assessment of the PLPPS Model
In our research, we assessed this model from two perspectives:
discrimination and calibration. To achieve this purpose, ROC
curves and calibration plots were utilized to evaluate the PLPPS
model. As shown in Figures 3D–F, the AUCs for predicting OS at
1, 3, and 5 years were 0.792, 0.779, and 0.777 in TCGA-STAD;
0.788, 0.804, and 0.790 in GSE62254; and 0.772, 0.813, and 0.806
in GSE15458, respectively. To evaluate the accuracy of the
model’s prediction results, we calculated the concordance
index of the PLPPS model, which were 0.737 (95% confidence
interval (CI): 0.694–0.781), 0.722 (95%CI: 0.684–0.760), and
0.723 (95%CI: 0.676–0.769) in the three cohorts, respectively
(Supplementary Figure S3). In addition, calibration plots
displayed excellent calibration of the model that indicated the
predicted probability of OS at 1, 3, and 5 years was accurate
(Figures 3G–I).

Copy Number Variation Analysis
Subsequently, we performed a comprehensive analysis of CNV in
the two groups of patients. As presented in Figure 4A, we
calculated the top ten genes with deletion and amplification in
the two groups, respectively. We found that there was no
significant difference in copy number deletion between the
groups, and a high similarity was presented in the top ten
genes of deletion between the two groups of patients, such as
WWOX, CCSER1, PDE4D, and PTPRD. Notably, compared with
low-risk group patients, patients in the high-risk group had
scarcer AMP, such as PGAP3, MIEN1, GRB7, and ERBB2. The
significant difference in AMP could be a potential factor for
dismal prognosis in high-risk group patients.

Immunogenicity Characterization
Tumors with higher TMB are more likely to express
recognizable neoantigens that enhance the immune
response. Similarly, IPS is a scoring scheme to assess the
immunogenicity of tumor samples. Based on the earlier
reasons, we further assessed the difference in TMB and IPS
scores between the high- and low-risk groups. Notably,
compared with the low-risk group, patients in the high-risk
group showed inferior TMB and IPS scores (Figures 4B,C).

Landscape of Gene Mutations in STAD
The waterfall plot delineated the top 20 high-frequency genes in
the high- and low-risk groups (Figure 4D). Subsequently, we
compared the frequency difference of the top 20 genes in the two
groups. Overall, patients in the high-risk group displayed lower
mutation frequency, especially in MUC16, ARID1A, FAT4,
DNAH5, etc. (Figure 4E).

Gene Set Enrichment Analysis
GSEA revealed significant GO biological processes (Figures
5A,B) and KEGG pathways (Figures 5C,D) between the two
risk groups. For biological processes, the high-risk group
mainly focused on supporting and development of cellular
structures, such as “chondrocyte differentiation,” “collagen
fibril organization,” and “extracellular matrix organization”
(Figure 5A); the low-risk group mainly acted on the
generation and transmission of energy, such as “ATP
synthesis coupled electron transport” and “mitochondrial
respiratory chain complex assembly” (Figure 5B). For
KEGG pathways, the high-risk group mainly focused on the
intercellular adhesion, such as “cell adhesion molecules” and
“focal adhesion” (Figure 5C); the low-risk group mainly acted
on the inflammatory and immune infiltration-related
functions, such as “B-cell activation” and “interleukin-6
production” (Figure 5D). Together, compared with the
low–high group, high-risk group patients were not
satisfactory in the enrichment of immune.

Immune Infiltration Analysis and Prediction
of Chemotherapy Response
To further explore the infiltration abundance of immune cells
between the high- and low-risk groups, the MCPcounter
algorithm was utilized. We found higher overall infiltration in
the low-risk group than in the high-risk group (Figure 6A);
especially, the high-risk group possessed inferior levels of
macrophage monocytes, myeloid dendritic cells, endothelial
cells, and cancer-associated fibroblasts compared with the low-
risk group (Figure 6B). Ultimately, we have chosen the cisplatin
(CDDP, platinum chemotherapy drug), paclitaxel (PTX, taxus
chemotherapy drug), gemcitabine (GEM, pyrimidines drug), and
doxorubicin (ADM, anthracycline chemotherapy drug) to
compare the responses of patients in the two subtypes to
chemotherapy drugs. Remarkably, compared with the high-
risk group, IC50 of the four drugs was lower in the low-risk
group (Figures 6C–F).

TABLE 1 | List of gene pairs and corresponding coefficient.

Signature Gene A Gene B Coefficient

Pair 1 LINC00607 C5orf17 0.2793
Pair 2 TUSC8 PITRM1-AS1 0.2525
Pair 3 TRPM2-AS RP11-579D7.4 0.2088
Pair 4 AC074286.1 AC058791.1 0.1802
Pair 5 MMP25-AS1 RP11-876N24.5 0.1766
Pair 6 LINC01094 RP4-680D5.8 0.1616
Pair 7 AC013275.2 RP11-567C2.1 0.1548
Pair 8 MLLT4-AS1 RP11-21L23.2 0.0930
Pair 9 LINC00607 RP11-109E24.1 0.0700
Pair 10 C10orf91 TRPM2-AS −0.0999
Pair 11 LINC01588 RP11-73K9.2 −0.1337
Pair 12 RP3-522D1.1 LINC01094 −0.1959
Pair 13 RP11-61A14.1 RP11-416I2.1 −0.2067
Pair 14 CTD-2377D24.6 LINC01169 −0.3038
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FIGURE 3 | Evaluation of the PPSM model effectiveness in three cohorts. (A–C)Multivariate COX regression analysis of the risk score in the three cohorts: TCGA
(A), GSE62254 (B), and GSE15458 (C). (D–F) ROC analysis for the three cohorts: TCGA (D), GSE62254 (E), and GSE15458 (F). (G–I) Calibration plots were used to
compare the actual probabilities and the predicted probabilities of OS in the three cohorts: TCGA (G), GSE62254 (H), and GSE15458 (I).
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DISCUSSION

Numerous reports indicated that pyroptosis exerts a dual role in
tumor progression and treatment (He et al., 2020; Loveless et al.,
2021). The double-edged sword roles were manifested in the
phenomenon that pyroptosis promotes the evolution of normal
cells into tumor cells by releasing inflammatory factors and
further lead to programmed cell death of tumor cells through
the infectious pathway to inhibit tumor progression (Kovacs and
Miao, 2017; Ruan et al., 2020; Al Mamun et al., 2021). However,
most research studies related to pyroptosis in tumors have
focused on the encoded protein level, while non-coding RNAs
that play an important role in apoptosis vs. cycle regulation
processes have been neglected (Song et al., 2021; Ye et al.,
2021; Zhao et al., 2021). Likewise, PDLs in GC also awaits
further investigation. In order to eliminate the errors caused

by sequencing platforms and different sample cohorts and to
further improve the rigor of our research, we applied a new
algorithm (Qi et al., 2016; Peng et al., 2017; Chen et al., 2018; Zhao
et al., 2021) based on the gene expression ranks to reveal for the
first time the impact of PDLs on patient prognosis in GC and
delineate the different immune and mutational landscapes of the
high- and low-risk groups.

Prognostic prediction is crucial for further interventions. In
our study, we first identified 14 PDLs and elucidated their
prognostic value in three independent GC cohorts. The
prognostic pyroptosis signature can successfully categorize
patients into subtypes with different survival outcomes.
Subsequently, we found that genomic differences in patients
with subgroups were abundant. As is well known, the TMB is
associated with tumor immunity, and low TMB is a poor
prognostic factor in GC (Roh et al., 2017; Ma et al., 2021).

FIGURE 4 |Multi-omics alteration of the PLPPS model (A–C). The differences in CNV (A), TMB (B), and IPS (C) between the two groups. (D). Waterfall plot of 20
frequently segments in the two subtypes (E). Comparison of mutation frequency of top 20 segments.
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This is consistent with the results of the correlation analysis in our
study, where patients in the high-risk group had lower TMB.
Additionally, patients in the high-risk group had a higher
frequency of TP53 mutation, which is perhaps the reason for
the shorter OS and RFS of patients in the high-risk group (Wang
et al., 2021).

To further reveal the intrinsic biological mechanisms
underlying the differences in prognostic among patients
with subtypes, we performed GSEA for patients in the high-
and low-risk groups. We found that inflammation and
immune response-related pathways were particularly scarce
in high-risk patients. Interestingly, as reported by Rao et al.
(2021), “immune desert” tumors indicate adverse clinical
outcomes. In addition, numerous studies indicate that high
immune cell infiltration in GC patients was associated with a
better long-term prognosis (Liu et al., 2020; Akshatha et al.,
2021; Li et al., 2021). Notably, our investigation further

suggested that differences between the abundance of
immune cell infiltrates and the expression levels of immune
checkpoints among the two groups. On comparing these levels
in the high- and low-risk groups, we found that the levels of
macrophage monocytes, myeloid dendritic cells, T cells, and
CD8+ T cells were deserted in the high-risk group. On the
other hand, we found that IPS scores representing immune
checkpoints were similarly inferior in the high-risk patients.
Our findings were consistent with the previous studies (Liu
et al., 2020; Li et al., 2021; Rao et al., 2021), which indicate that
PLPPS could guide the prognosis of GC patients. Different
from the previous study focusing on the prognosis of GC, we
further predicted sensitivity to chemotherapeutic agents in
high- and low-risk group patients. The first-line chemotherapy
drugs for GC such as cisplatin, paclitaxel, and gemcitabine
(Joshi and Badgwell, 2021) showed higher sensitivity in the
low-risk group. This further demonstrates that PLPPS has the

FIGURE 5 | GSEA and prediction of chemotherapy response. (A–D). The top five GO terms (A,B) and KEGG pathways (C,D) in the two subtypes.
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potential to significantly contribute to identifying high-risk
patients in the clinics.

Following the development of high-throughput genetic
sequencing technology, we are faced with a large amount of
biological data. With the combination of multi-omics with
advanced algorithms, researchers can explore the molecular

characteristics of GC patients in detail. This has led to the
emergence of abundant prognostic and predictive gene
expression signatures (Liu et al., 2021b; Wang et al., 2021;
Zhang et al., 2021; Zhao et al., 2021). Nevertheless, these
signatures are difficult to implement clinically due to the
difficulty in unifying sequencing platforms and samples. To

FIGURE 6 | Immune infiltration analysis and prediction of chemotherapy response in the two groups. (A) Heatmap for immune analysis among the two subtypes.
(B) Boxplots of nine immune cell enrichment levels (C–F). Sensitivity of cisplatin (C), paclitaxel (D), gemcitabine (E), and doxorubicin (F) in the two subtypes.
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address these issues, we used the gene pair algorithm (Qi et al.,
2016; Peng et al., 2017). As the gene pair was calculated based on
the gene expression ranking of tumor samples, they could be
personalized for various platform data without normalization.
This indicates that our signature built from 14 PDLs more
clinically applicable.

Our work is the first to comprehensively evaluate the
prognostic characteristics of GC patients by PDLs. Our
research has the following advantages: 1) we identified PDLS
by a novel algorithm: lncRNA pipeline. 2) The gene expression
order was used, instead of gene expression quantity, which
eliminates the influence of different platforms and cohorts on
the prognostic model and improves its applicability. 3) The
PLPPS model was validated in multiple independent cohorts,
ROC curves, concordance index, and calibration plots all
displaying that the model has high accuracy. 4) This study
comprehensively depicted the immune and mutational
landscape of patients in two GC subgroups and predicted their
differential sensitivity to multiple chemotherapeutic agents that
demonstrate the accuracy and clinical applicability of the model
from multiple aspects. Although further biological validation is
necessary, we believe that comprehensive analysis based on the
multicenter and the larger sample can compensate for the
shortcoming.

CONCLUSION

In conclusion, we proposed a gene pair pipeline that could ignore
the platform batch. Based on this pipeline, the PLPPS consisting
of 14 PDL gene pairs was constructed and validated across
multiple independent cohorts. This signature was verified to
serve as a promising and reliable prognostic tool in GC. In

addition, the multi-omics alteration, immune profile, and
pharmacological landscape of PLPPS were further revealed,
which could provide new insights for individualized treatment
and management of GC patients.
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