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The spindle assembly checkpoint (SAC) is a critical monitoring device in mitosis for the
maintenance of genomic stability. Specifically, the SAC complex comprises several
factors, including Mad1, Mad2, and Bub1. Ataxia-telangiectasia mutated (ATM) kinase,
the crucial regulator in DNA damage response (DDR), also plays a critical role in mitosis by
regulating Mad1 dimerization and SAC. Here, we further demonstrated that ATM
negatively regulates the phosphorylation of Mad2, another critical component of the
SAC, which is also involved in DDR. Mechanistically, we found that phosphorylation of
Mad2 is aberrantly increased in ATM-deficient cells. Point-mutation analysis further
revealed that Serine 195 mainly mediated Mad2 phosphorylation upon ATM ablation.
Functionally, the phosphorylation of Mad2 causes decreased DNA damage repair capacity
and is related to the resistance to cancer cell radiotherapy. Altogether, this study unveils
the key regulatory role of Mad2 phosphorylation in checkpoint defects and DNA damage
repair in ATM-deficient cells.
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INTRODUCTION

Chromosome complementarity is naturally present in eukaryotic cells. During cell division, the gain
or loss of chromosomes leads to abnormal chromosome numbers, which is termed aneuploidy and
has been documented as one of the predispositions of tumorigenesis (Ganem et al., 2007; Storchova
and Kuffer, 2008; Torres et al., 2010; Tang et al., 2011). To avoid abnormal chromosomes occurring,
cells have evolved several checkpoints, including the DNA damage checkpoint (DDC), the DNA
replication checkpoint (DRC), and the spindle assembly checkpoint (SAC), to ensure the genomic
integrity of cells. SAC, also known as a mitotic checkpoint, plays a crucial role in ensuring the correct
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separation of chromosomes and the stability of genetic
information. The SAC prevents the anaphase-promoting
complex/cyclosome (APC/C) ubiquitin ligase from recognizing
and securing cyclin B, ensuring chromosomes are properly
attached to spindle microtubules (Bharadwaj and Yu, 2004;
Musacchio and Salmon, 2007; Santaguida and Musacchio,
2009). In the prometaphase of the cell cycle, kinetochore,
without microtubule attachments, recruits evolutionarily
conserved proteins such as Aurora-B, Bub1, Bub3, BubR1/
Mad3, Mad1, Mad2, Cad20, and MPS1, thus activating SAC to
prevent the cells from entering anaphase (Li and Nicklas, 1995;
Mora-Santos et al., 2016; Overlack et al., 2017; Raaijmakers et al.,
2018). Among them, Mad2, Cdc20, Mad3 (also named BubR1 in
some species), and Bub3 form the mitotic checkpoint complex
(MCC), which are mainly responsible for inhibiting APC/C,
leading to cell cycle arrest (Yu, 2006; Musacchio and Salmon,
2007; Chao et al., 2012). Accordingly, dysregulation of these
proteins, either upregulation or downregulation, results in the
breakdown of SAC and eventually genomic instability (Schuyler
et al., 2012).

The mitotic arrest deficiency 2 (Mad2) is a SAC protein with
two natural folding states, namely open conformer (O-Mad2)
and close conformer (C-Mad2) (Luo et al., 2004). The transition
of O-Mad2 to C-Mad2 is a key determinant for the assembly
of a core complex required for activation of SAC between
Mad2 and Mad1 (Yu, 2006; Yang et al., 2008). Besides, the
Mad2 transition plays an important role in the subsequent
inhibition of APC/C by binding to Cad20 (Luo et al., 2002)
and is suspected as a mediator determining the metaphase–
anaphase transition in mitosis (Varetti et al., 2011). In
eukaryotic cells, another intrinsic mechanism maintaining
genome stability is DNA damage response (DDR) (Kastan,
2008). As one of the key regulators in DDR, ataxia-
telangiectasia mutated (ATM) recognizes DNA damage sites
and phosphorylates histone H2AX, followed by recruiting the
RAD50/MRE11/NBS1 complex to the breakpoints, thus
initiating the DNA damage signaling cascade and repair
process (Guleria and Chandna, 2016). In addition, ATM has
also been reported to regulate diverse processes via
phosphorylating distinct substrates, including checkpoints
kinases 1,2 (CHK1,2) and p53 (Squatrito et al., 2010; Serrano
et al., 2013; Zhang et al., 2014).

Despite intensive studies focusing on the importance of ATM
in response to DDR, growing evidence has suggested the ATM’s
new role in mitosis. In this regard, we previously have proven that
ATM kinase is activated inmitosis in the absence of DNA damage
by Aurora-B-mediated Serine 1403 phosphorylation and also
participated in SAC activation partially by regulation of Bub1
activity (Yang et al., 2011; Yang et al., 2012). In addition, it has
been reported that changes in Mad2 levels not only affected the
function of SAC, leading to increased chromosome loss and
mitotic arrest (Rossio et al., 2010; Barnhart et al., 2011), but
also promoted aneuploidy and induced tumorigenesis (Sotillo
et al., 2010; Schvartzman et al., 2011). Nevertheless, whether
ATM and Mad2 have a regulatory interrelationship during the
cell cycle remains elusive. Outstanding work has demonstrated
that in vitro artificially produced phosphorylated Mad2 leads to

its protein architectures, which in turn affects its activity in vivo
(Kim et al., 2010). However, the regulatory mechanisms that
modulate Mad2 remain unknown. In this study, we found that
humanMad2 is a phosphorylatable protein naturally occurring in
various cells, and its phosphorylation level is negatively regulated
by ATM.

MATERIALS AND METHODS

Cell Lines and Culture
HeLa, 293FT, MCF7, and Panc-1 cells (American Type Culture
Collection, Manassas, VA) were cultured in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum,
4 mM of L-glutamine, and 50 μg/ml of penicillin/streptomycin
(all from Gibco, Carlsbad, CA). The simian virus 40-transformed
human fibroblast cell lines GM9607 and GM0637 cells (National
Institute of General Medical Sciences Human Mutant Cell
Repository, Camden, NJ) were cultured in Roswell Park
Memorial Institute 1640 medium supplemented with 10% fetal
bovine serum and 50 μg/ml of penicillin/streptomycin. All cells
were maintained in 5% CO2 at 37°C.

Analysis of the Spindle-Assembly
Checkpoint by Flow Cytometry
Approximately 106 cells were trypsinized, washed, and
resuspended in 70% ethanol at −20°C. Subsequently, cells
were washed by phosphate-buffered saline with neither Ca2+

nor Mg2+ (D-PBS). After blocking in the D-PBS with 1%
bovine serum albumin for 30 min, cells were incubated with
Alexa Fluor® 488 Mouse monoclonal to Histone H3 (phospho
S10) (1:100, ab197502, Abcam) at room temperature in the
dark for recognition of mitotic cells. After 3 h, cells were
washed three times with D-PBS by centrifugation, stained
with 50-μg/ml propidium iodide (PI; C1052, Beyotime) for
30 min at 37 °C, and finally analyzed by FACSCanto II flow
cytometer (BD Biosciences, San Jose, CA, USA). The
percentage of mitotic cells was quantified by Flowjo
software (Tree Star).

Plasmids
The construction of Mad1-related plasmids was described in our
previous study (Yang et al., 2014). Mad2 and related mutant
plasmids were made using Gateway Technology. Briefly, the
Mad2 complementary DNA was subcloned into pDONR221,
pLVpuro-CMV-N-3Xflag (addgene#123223), and pDEST-
CMV-N-EGFP (addgene#122842) vectors. DR-GFP (DR-
U2OS), EJ5-GFP, and I-SceI plasmids were described in our
previous study (An et al., 2018). All constructs were confirmed by
DNA sequencing. The primers are shown in Table 1.

Reagents and Antibodies
Nocodazole and Ku55933 were ordered from Selleckchem (Texas,
USA). Lambda Protein phosphatase (λPPase) was bought from
Sigma-Aldrich Corporation. The anti-ATM (1:1,000, ab201022,
Abcam), anti-phospho-ATM (1:1,000, ab81292, Abcam), anti-
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Mad2 (1:1,000, ab70385, Abcam), anti-Mad1 (1:1,000, ab201022,
Abcam), and anti-Cdc20 antibodies (1:1,000, ab183479, Abcam)
were bought from Abcam (Cambridge, MA). The anti-HA (1:
1,000, 3724T, Cell Signaling Technology), anti-Mad2 (1:1,000,

4636S, Cell Signaling Technology), and the HRP-conjugated
secondary antibodies were purchased from Cell Signaling
Technology (Danvers, MA). The anti-Flag antibody (1:1,000,
F3165, Sigma) was purchased from Sigma. The anti-Mad2
antibody (1:1,000, YT2618, Immunoway) was bought from
Immunoway. The anti-GFP (1:1,000, sc-9996, Santa Cruz),
anti-Mad2 (1:1,000, sc-47747, Santa Cruz), anti-p-Thr (1:1,000,
sc-5267, Santa Cruz), and anti-p-Ser antibodies (1:1,000, sc-
81514, Santa Cruz) were bought from Santa Cruz
Biotechnology. Goat anti-mouse lgG-H HRP (1:1,000,
M21004L, Abmart) and goat anti-mouse lgG-L HRP (1:1,000,
M21005S, Abmart) were purchased from Abmart.

Retroviral ATM and Control Short Hairpin
RNA Production
Vectors carrying the human ATM short hairpin RNA
(shRNA) with the target sequence of 5′-AAGCGCCTGATT
CGAGATCCT-3′ or nontargeting control with the sequence
of 5′-TTCTCCGAACGTGTCACGT-3′ were purchased from
Genechem (Shanghai, China). The recombinant viruses of
human ATM shRNA and control shRNA were transiently
transfected into 293T cells with GV115 viral vector
packaging system (Genechem) consisting of pHelper1.0,
pHelper2.0, and GV115. After 72 h, the supernatant filled
with target viruses was harvested for titer analysis and
subsequently transfected into HeLa cells. Polymerase chain
reaction and Western blot analysis confirmed the knockdown
level.

Small Interfering RNA Transfection
Cells were transfected with ATM-specific small interfering RNA
(siRNA) oligos (si-ATM: 5′-GCUAUUUACGGAGCUGAU
UTT-3′) (GenePharma, China) at 50 nmol/L final
concentration using INTERFERin (Polyplus-transfection,
France) as the transfection reagent. A scrambled siRNA (siScr:
5′-UUCUCCGAACGUGUCACGUTT-3′) (GenePharma,
China) was applied as a negative control. Cells were harvested
72 h, followed by gene expression analysis by Western blot
analysis.

Western Blotting
Cells were scraped in PBS, pelleted, and lysed in NETN buffer
(20-mM Tris-HCl, pH 8.0, 100-mM NaCl, 0.5% Nonidet P-40,
and 1-mM ethylenediaminetetraacetic acid) supplemented with
BitNuclease (Biotool) on ice for 15 min. Cell lysates were boiled
after the addition of Lamelli buffer. Proteins were separated by
sodium dodecyl sulfate–polyacrylamide gel electrophoresis gel
and then transferred to the nitrocellulose membrane. After
incubation with indicated primary and secondary antibodies,
blots were filmed and detected using the Pierce chemiluminescence
detection system.

Immunoprecipitation
Our previous study described immunoprecipitation (An et al.,
2020). Whole-cell lysates were incubated with Flag Agarose beads
or protein A/G plus agarose beads conjugated with indicated

TABLE 1 | List of primers used in this manuscript.

Primer’s name Sequences

Flag-Mad2-WT-F 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGC
GCTG
CAGCTCT-3′

Flag-Mad2-WT-R 5′-GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAGTC
ATTG
ACAGGAATTTTGTAGGCC-3′

GFP-Mad2-WT-F 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGC
GCTG
CAGCTCT-3′

GFP-Mad2-WT-R 5′-GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAGTC
ATTG
ACAGGAATTTTGTAGGCC-3′

Flag-Mad2-
S195A-F

5′-CAAAGTAAATGCCATGGTGGCCTACAAAATTCC-3′

Flag-Mad2-
S195A-R

5′-AGGCCACCATGGCATTTTACTTTGTGGATTGTAG-3′

Flag-Mad2-
S195D-F

5′-CAAAGTAAATGCCATGGTGGCCTACAAAATTCC-3′

Flag-Mad2-
S195D-R

5′-AGGCCACCATGGCATTTACTTTGTGGATTGTAG-3′

GFP-Mad2-
S195A-F

5′-CAAAGTAAATGCCATGGTGGCCTACAAAATTCC-3′

GFP-Mad2-
S195A-R

5′-AGGCCACCATGGCATTTTACTTTGTGGATTGTAG-3′

GFP-Mad2-
S195D-F

5′-CAAAGTAAATGCCATGGTGGCCTACAAAATTCC-3′

GFP-Mad2-
S195D-R

5′-AGGCCACCATGGCATTTACTTTGTGGATTGTAG-3′

GFP-Mad2-
S120A-F

5′-CAGAGAAAAGGCACAGAAAGCTATCCAGGATGAAAT
C-3′

GFP-Mad2-
S120A-R

5′-TAGCTTTCTGTGCCTTTTCTCTGGGTGCACTGTC-3′

GFP-Mad2-
S170A-F

5′-ATGGGAAGAGGCCGGACCACAGTTTATTACCAA
TTC-3′

GFP-Mad2-
S170A-R

5′-ACTGTGGTCCGGCCTCTTCCCATTTTTCAGGTAC-3′

GFP-Mad2-
S178A-F

5′-TATTACCAATGCCGAGGAAGTCCGCCTTCGTTC-3′

GFP-Mad2-
S178A-R

5′-GGACTTCCTCGGCATTGGTAATAAACTGTGGTC-3′

GFP-Mad2-
S185A-F

5′-CCGCCTTCGTGCCTTTACTACTACAATCCACAA
AAG-3′

GFP-Mad2-
S185A-R

5′-TAGTAGTAAAAGGCACGAAGGCGGACTTCCTCAG-3′

HA-Mad1-WT-F 5′-ACTGGATCCACGATGTACCCATACGATGTTCCA
GATTAC
GCTATGGAAGACCTGGGGGAAAACACCA-3′

HA-Mad1-WT-R 5′-AGCTCTAGACTACGCCACGGTCTGGCGGCTGAA
GAG-3′

HA-Mad1-S214A-F 5′-GAACTCCAGGCCGCACAAGAAGCAAGAGCAGAC
CACG
AGCAGC-3′

HA-Mad1-S214A-R 5′-GCTGCTCGTGGTCTGCTCTTGCTTCTTGTGCGG
CCTG
GAGTTC-3′

HA-Mad1-S214E-F 5′-GAACTCCAGGCCGAGCAAGAAGCAAGAGCAGAC-3′
HA-Mad1-S214E-R 5′-GCTACTCGTGGTCTGCTCTTGCTTCTTGCTCGGCCT

GGAGTTC-3′
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antibodies overnight at 4°C, washed three times with NETN
buffer. To avoid the noise of light or heavy chains, the
immunoprecipitation assays, including goat anti-mouse
immunoglobulin G heavy chain and goat anti-mouse
immunoglobulin G light chain, were used as the secondary
antibodies.

Colony Formation Assay
HeLa cells transfected with empty vector, wild-type (WT), S195A,
or S195D mutant form of Mad2 (1,000 cells per well) were plated
to six-well plates, irradiated with the indicated doses of X-rays,
and then further cultured for 12 days. After incubation with
crystal violet for 60 min at room temperature, the colonies
were imaged under a stereomicroscope and counted with ImageJ.

DSB Reporter Assay
HeLa cells stably expressing the WT, S195A, or S195D mutant
form of Mad2 were electroporated with the I-SceI expression
construct (pCBASce) together with DR-GFP or EJ5-GFP reporter

plasmid at 150 V, 975 μF using NEPA21 Super Electroporator
(NEPA GENE). Cells were further recovered for 48 h after
electroporation followed by flow cytometric analysis on a BD
FACS CantoII Analyzer.

Statistics
Unless otherwise stated, data for the statistical analysis are
obtained from at least three independent experiments. The
unpaired Student’s t-test was used to evaluate statistical
significance. Values of p ≤ 0.05 were considered statistically
significant.

RESULTS

ATM Deficiency Causes Severe SAC
Defects in the Absence of DNA Damage
ATM deficiency has been associated with chromosomal
instability, thus increasing the radiosensitivity (Shiloh, 2003).

FIGURE 1 | Elimination of ATM resulted in a severe defect in SAC in absence of DNA damage. (A) Immunoblotting analysis of ATM level in ATM shRNA and control
shRNA cells. (B) FACS analysis of ATM shRNA and control shRNA cells treated with nocodazole for 16 h followed by flow cytometric using anti-phospho-H3. (C)Mean
mitotic percentages of at least triplicate samples are shown. Error bars represent variations around averages. (D) Immunoblotting analysis of knockdown efficiency of
ATM in Panc-1 cells transfected with ATM-specific siRNA for 48 h, scrambled siRNA as a positive control. (E) FACS analysis of Panc-1 cells transfected with
scrambled siRNA or ATM-specific siRNA treated with or without nocodazole. (F) Mean mitotic percentages of at least triplicate samples are shown, and error bars
represent variations around averages. (G) Immunoblotting analysis of ATM activity in Hela cells treated with KU-55933 for 2 h. (H) FACS analysis of HeLa cells treated
with dimethyl sulfoxide or KU-55933 and nocodazole. (I)Mean mitotic percentages of at least triplicate samples described in (B). Error bars represent variations around
averages.
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To further investigate the effects of ATM for the SAC process in
the absence of DNA damage, we first infected HeLa cells with
lentivirus harboring control shRNA or ATM shRNA to generate
stable ATM knockdown cell lines (Figure 1A). Then, we treated
cells with nocodazole to arrect cells in the mitotic phase.
Interestingly, we reproducibly observed a significant decrease
in the percentage of mitotic cells in ATM-deficient cells as
compared with control WT cells, revealing a severely impaired
activation of SAC (Figures 1B,C). To confirm this discovery, we
repeated this assay in Panc-1 cell lines via siRNA-mediated
knockdown approach (Figure 1D) and HeLa cells via ATM
inhibitor. Consistently, we found that depletion of ATM
resulted in dramatically reduced mitotic cell population
(Figures 1E,F,H,I). Thus, these phenomena indicated that
ATMs play a crucial role in maintaining the activation of SAC.

ATM Deficiency Augments the
Phosphorylation of Mad2 by Mediating
Mad1 Serine 214 Phosphorylation
Mad2 is a mitotic factor downstream of the ATM during DDR,
and its downregulation often impairs the function of SAC,
causing shortened mitosis time (Kim et al., 2010; Yang et al.,
2014). We assessed whether depletion of ATM would impact the
function of Mad2. To this end, we first compared the expression
level of Mad2 in GM9607 cells, a naturally ATM-deficient cell line
(Yang et al., 2014), and GM0637. However, we did not observe
any change in the total Mad2 protein level (Figure 2B).
Interestingly, we found a clear Mad2 shift band that highly

resembled post-translational modification (PTM) (Figure 2B).
Authentically, this Mad2 shift band repeatedly appeared in ATM
knockdown HeLa cells (Figure 2A), and Mad2 shift bands are
inversely correlated with the ATM protein level, indicating that
ATM deficiency may induce Mad2 PTM. It is worth mentioning
that the emergence of the Mad2 shift band was not affected by
nocodazole treatment.

ATM is a kinase that functions by regulating the
phosphorylation of downstream proteins. Thus, we suspect
that the shift band might be a manifestation of mad2
phosphorylation. To confirm our hypothesis, we used lambda
protein phosphatase (λPPase) as a phosphorylation inhibitor on
the total proteins of GM9607 cells. In addition, we also included
GM0637, an ATM proficient cell line as a positive control, and
examined the phosphorylation status of ATM-S1981, which is a
well-known ATM protein serine site that can be
autophosphorylated. Surprisingly, we found that both ATM-
S1981 phosphorylation band and Mad2 shift band disappeared
with λPPase treatment (Figure 2C), demonstrating that the shift
band in Figures 2A,B (measured by antibody against Mad2) is
phosphorylated Mad2.

Mad1 and Mad2 are two key SAC proteins. Our previous
studies have proved that ATM-mediated Serine 214
phosphorylation of Mad1 promotes Mad1 homodimerization
and heterodimerization with Mad2, which contributes to the
activation of the SAC (Yang et al., 2014). To further investigate
whether this process has an effect on Mad2 phosphorylation, we
constructed three Mad1 plasmids, including HA-tagged WT,
S214A (the seine to alanine mutant), which cannot be

FIGURE 2 | Elimination of ATM increased phosphorylation of Mad2. (A) Immunoblotting analysis of control or ATM shRNA cells in absence or presence of
nocodazole. (B) Immunoblotting analysis in simian virus 40-transformed fibroblast cell lines GM9607 and GM0637. (C) Immunoblotting analysis of cells treated with
mock or nocodazole in presence or absence of λPPase. (D) Immunoblotting analysis of HeLa cells transfected with vector, WT, S214A, or S214D mutant form of Mad1
of in presence or absence of nocodazole.
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phosphorylated, and S214E (the seine to glutamic acid mutant),
which is a mimic phosphorylated Mad1 (Figure 2D). These
plasmids were transiently transferred into HeLa cells stably
expressing ATM shRNA or control shRNA. We found that
Mad2 phosphorylation was significantly higher in the ATM-
deficient HeLa cells expressing S214A than that in other cells,
indicating that Mad2 phosphorylation was negatively regulated
by ATM.

Mad2 Is Mainly Phosphorylated at Ser195
Upon ATM Depletion
Phosphorylation events mainly occur at serine or tyrosine
residues of proteins. Next, to identify the key residues
responsible for Mad2 phosphorylation upon ATM deletion, we
examined the total serine or tyrosine phosphorylation on Mad2
using individual pan phospho-Tyr or phospho-Ser antibodies.
Intriguingly, we observed dramatic upregulation of serine but not
tyrosine phosphorylation in ATM knockdown cells, indicating
that the Mad2 shift band in this study is mainly serine-
phosphorylated Mad2 (Figure 3A). Therefore, next, we
focused on several key serine residues in Mad2, including
S170, S178, S185, and S195, which have been documented to
be functioning in SAC complex formation (Kim et al., 2010)
(Figures 3B,C). To further narrow down the phosphorylated
site(s), we applied the point mutation strategy and generated
Aline mutant on those residues, respectively. 293FT cells were
transfected with plasmids encoding GFP-tagged Mad2WT,
Mad2S170A, Mad2S178A, Mad2S185A, or Mad2S195A. All the GFP-

tagged Mad proteins are transiently expressed. We performed
immunoprecipitation using GFP antibody followed by Western
blot using phospho-Ser antibodies. The results showed that
S195A mutation greatly attenuated Mad2 phosphorylation
(Figure 3D). Overall, these results demonstrated that Mad
S195 is mainly phosphorylated upon ATM depletion.

S195 Phosphorylation of Mad2 Regulates
the Spindle Checkpoint
We next evaluated whether S195 phosphorylation of Mad2 is
essential for the SAC process in ATM-deficient cells. To this
end, we utilized flow cytometry to analyze the mitotic cell
population in Hela cells ectopically expressing Mad2WT or
Mad2S195A. We found that S195A overexpression led to a much
less mitotic cell population than Mad2WT overexpression
(Figures 4A,B). On the contrary, in ATM-deficient cells,
overexpression of Mad2S195A induced increased mitotic
index than Mad2WT cells after nocodazole treatment
(Figures 4A,B). In addition to the S195A mutant, we also
generated a phosphomimic mutant S195D to characterize
assembly of CDC20-Mad1-Mad2 complex via co-
immunoprecipitation assay. As shown in Figure 4C,
Mad2WT or Mad2S195A can still form the complex with
CDC20-Mad1. However, Flag-Mad2S195D failed to bind to
Cdc20 but with increased binding ability to Mad1
(Figure 4C). Taken together, these data suggested that S195
phosphorylation of Mad2 plays a critical role in SAC after
ATM loss.

FIGURE 3 |Mad2 is mainly phosphorylated at Ser195 in ATM-loss cells. (A) Immunoprecipitation assay of detecting abundance of Mad2 phosphorylation in control
or ATM shRNA cells. (B) Some phosphorylated sites in Mad2. (C) Structures of Mad2 S120, S170, S178, S185, and S195 are shown as ball-and-stick. (D)
Immunoprecipitation assay of HeLa cells transfected with GFP-tagged WT, S170A, S178A, S185A, or S195A mutants of Mad2. Exogenous proteins were
immunoprecipitated with anti-GFP antibody followed by immunoblotting using indicated antibodies. Statistic analyses were done by t-test, and p values are
presented.
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pMad2S195 Impairs DNA Repair Capacity
and Confers Cancer Cell Sensitivity to
Radiotherapy
The cell cycle phase determines a cell’s relative radiosensitivity.
Cells in the G (2)-M phase are more radiosensitive compared with
those in other phases (Pawlik and Keyomarsi, 2004). Mad2
phosphorylation decreased the proportion of cells in the M
phase. To systemically evaluate the effect of phosphorylation
of Mad2 on DNA repair and cancer cell sensitivity to
radiotherapy, we first utilized a well-established DNA double-
strand break (DSB) repair reporter assay to assess the ability of
each mutant in promoting DNA repair (Figures 5A,C). We
found that Mad2 phosphorylation (S195D) significantly
inhibited DNA damage repair via both homologous
recombination (HR) and nonhomologous end-joining (Figures
5B,D). In contrast, S195A mutant greatly stimulated the DSB
repair process. Consistent with this observation, further colony

formation assay revealed that expression of S195A mutant led to
more colony numbers than the expression of WT and S195D,
indicating that cells with Mad2-S195D increase cancer cell
sensitivity to radiotherapy (Figures 5E,F).

DISCUSSION

Mad2 possesses typical bimodal protein with two natural folded
structures, O-Mad2 and C-Mad2. Compared with the O-Mad2
architecture, the C-Mad2 architecture is more stable and has a
stronger affinity with Cdc20, which inhibits the activation of
APC/C. Therefore, C-Mad2 has been considered to be an
activated form of Mad2. A few years ago, a splendid work
showed that the activity of Mad2 can be regulated by
exogenous Serine 195 phosphorylation in its C-terminal region
(Kim et al., 2010). Although the phospho-mimicking Mad2S195D

mutant is easier to bind to high-affinity ligands such as Mad1 and

FIGURE 4 | Phosphorylation of Mad2 Serine 195 regulated Spindle Checkpoint. (A) FACS analysis of HeLa cells transfected with vector, WT, S195A, or S195D
mutant form of Mad2 and treated with nocodazole followed by flow cytometric anti-phospho-H3 staining. (B)Mean mitotic percentages (at least triplicate samples) and
error bars represent variations around averages. (C) Co-immunoprecipitation assay of Mad2 complex in 293FT cells transfected with GFP-tagged S195A or S195D
mutants of Mad2.
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MBP1, it inhibits the spontaneous formation of C-Mad2 while
failing to bind to the Cdc20, a relatively low-affinity ligand. In
addition, the existence of Mad2S195D significantly caused severe
damages to SAC complexes (Kim et al., 2010). Thus, the
underlying mechanism of Mad2S195D, inhibiting Mad2
function and destroying the SAC, is to differentially alter its
ability of binding to Mad1 or Cdc20 by adjusting its protein
structure. However, this study did not specifically investigate the
existence of endogenous phosphorylation of Mad2 and is
according to certain pathways.

ATM is a canonical DNA damage checkpoint protein. We
recently found that ATM is also essential for maintaining genome
stability in mitosis (Yang et al., 2012; Yang et al., 2014). In
addition, our previous research has proved that ATM plays a
critical role in SAC by phosphorylating Bub1 on Ser314, thus
activating the SAC (Yang et al., 2011). Mad2 is another member
of the kinetochore protein complex aside from Bub1. More
interestingly, we also found that ATM affects Mad1 and Mad2
complex formation by phosphorylating Mad1 on Serine 214
(Yang et al., 2014). Therefore, we hypothesized that Mad2
may be the direct substrate of ATM kinase, as it always
modulates the same pathway by phosphorylating a serious
protein. In this study, although there are no phosphate-specific

antibodies against Mad2 S195, we found that endogenous Mad2
phosphorylated forms highly regulated by ATM protein level are
readily detected by conventional antibodies.

Mad1 is one of the evolutionarily conserved core proteins for
SAC, which utilizes its Mad2 interaction motif (MIN) located at
the middle region to form a complex with Mad2. During
mitosis, the components of the SAC complexes are recruited
to unattached kinetochores, and then, the molecular
conformation of Mad2 dwelling in the complex changes from
a dormant O-Mad2 to a functional C-Mad2, which is one of the
key signal amplifying mechanisms for the activation of the SAC.
In our previous study, we reported that the heterodimerization
consisting of Mad1 and Mad2 was highly regulated by the S214
phosphorylation (S214p) site directly mediated by ATM, and
the maintenance of Mad1-S214p is of great significance for
preserving SAC function (Yang et al., 2014). In this study, our
data indicated that the phosphorylation of Mad2 was observably
promoted by S214A in the absence of ATM, whereas the
plasmid of S214E and WT significantly inhibited Mad2
phosphorylation, which should occur in ATM-deficient cells.
However, despite the presence of S214A, Mad2 no longer
exhibited significant levels of phosphorylation in the presence
of ATM (Figure 2D). Therefore, based on this phenotype, there

FIGURE 5 | Mad2 phosphorylation impaired DSB repair. (A,B) Homology-directed repair assay in control shRNA or ATM shRNA cells subjected to vector, WT,
S195A, or S195D transfection. (C,D) Nonhomologous end-joining assay in control shRNA or ATM shRNA cells subjected to vector, WT, S195A, or S195D transfection.
(E) Colony formation assay of control shRNA or ATM shRNA cells transfected with empty vector only, WT, S195A, or S195D with or without interventional radiology
treatment. Mean ± SD, Student’s t-test, n = 3, *p < 0.05. (F) CCK-8 assay analysis of cell proliferation abilities in control shRNA or ATM shRNA cells subjected to
vector, WT, S195A, or S195D transfection.
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may be some different pathways regulating Mad2
phosphorylation. In cells with deficient ATM, the amount of
non-phosphorylated Mad2 may be directly determined by the
level of S214p in Mad1, indicating that Mad1 with S214p is
indispensable for ensuring Mad2 activity. When ATM is
proficient in cells, ATM may inhibit Mad2 phosphorylation
by urging the amount of S214p in Mad1 (Figure 6). Besides, it is
also possible that ATM might directly act on Mad2 or regulate
some involved kinases through the non-Mad1 pathway to
maintain the non-phosphorylation of Mad2 (Kastan and Lim,
2000; Chen et al., 2021; Jiang et al., 2022).

Mad2 also plays a critical role in the cellular response to DNA
damage (Dotiwala et al., 2010). The Mad2 expression was
negatively related to the expression of γH2AX. The N-terminal
domain of the Mad2 protein is important in the response to DNA
damage (Fung et al., 2008). The overexpression of Mad2
promotes chemosensitivity to anticancer drugs in some tumor
cells (Fung et al., 2008; Nascimento et al., 2016). However, other
studies reported that Mad2 depletion causes mitotic checkpoint
defects to promote mitotic exit, conferring cancer cells sensitive to
anticancer drugs (Nascimento et al., 2014; Nascimento et al.,
2016). In this study, we found that the Mad2 C-terminal region
also exerts a role in DNA damage repair (Figure 5). Mad2
phosphorylation decreases M phase cells but decreases DNA
repair capacity. Thus, Mad2 phosphorylation causes tumor
cells to be sensitive to radiotherapy.

In general, our data demonstrate that, in addition to in vitro,
Mad2 is a protein with a phosphorylated form also in vivo, and its
phosphorylation level is regulated by ATM.We also consider that
the phosphorylation of Mad2 may play a prominent role in DNA

repair pathways. In future studies, we will pursue the kinase
involved in Mad2 phosphorylation.
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