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Background: Breast cancer (BC) is the most vicious killer of women’s health and
is accompanied by increased incidence and mortality rates worldwide. Many
studies have demonstrated that caveolins (CAVs) were abnormally expressed in
a variety of tumors and implicated in tumorigenesis and cancer progression.
However, the role of CAVs in BC remains somewhat contentious.

Methods: We comprehensively explored the expression and prognostic value
of CAVs (CAV1-3) in BC utilizing public databases (ONCOMINE, TIMER,
UALCAN, and TCGA databases). Then we constructed a prognostic model
based on the expression profiles. Also, a prognostic nomogram was built to
predict the overall survival (OS). We further investigated the relationship
between this signature and immune cell infiltration and the mutational
landscape in BC. The R package “pRRophetic” was used to predict
chemotherapeutic response in BC patients. Finally, we employed loss-of-
function approaches to validate the role of CAVs in BC.

Results: We found that CAVs were significantly downregulated in various
cancer types, especially in BC. Low CAV expression was closely related to
the malignant clinicopathological characteristics and worse OS and relapse-
free survival (RFS) in BC. Then we constructed a prognostic model based on the
expression profiles of CAVs, which divided BC patients into two risk groups. The
Kaplan—Meier analysis showed that patients in the high-risk group tend to have
a poorer prognosis than those in the low-risk group. Multivariate analysis
indicated that the risk score and stage were both independent prognostic
factors for BC patients, suggesting a complementary value. The clinical profiles
and risk module were used to construct a nomogram that could accurately
predict the OS in BC. In addition, we found that patients in the low-risk group
tend to have a relatively high immune status and a lower mutation event
frequency compared to the high-risk group. Furthermore, this signature
could predict the response to chemotherapy and immunotherapy. Finally,
CAV depletion promoted the colony formation, migration, and invasion of
BC cells.

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fcell.2022.822187/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.822187/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.822187/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.822187/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.822187&domain=pdf&date_stamp=2022-09-06
mailto:maojundi@163.com
mailto:huxin2018@tmu.edu.cn
mailto:15827275583@163.com
https://doi.org/10.3389/fcell.2022.822187
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.822187

Tang et al.

10.3389/fcell.2022.822187

Conclusion: CAVs may serve as novel biomarkers and independent prognostic
factors for BC patients. Also, the constructed signature based on CAVs may
predict immunotherapeutic responses and provide a novel nomogram for
precise outcome prediction of BC.

KEYWORDS

breast cancer, caveolins, expression, prognosis, methylation, infiltrating immune, TMB

Introduction

Breast cancer (BC) is the most common type of carcinoma
and remains the first leading cause of cancer-related death in
women around the world (Downs-Holmes and Silverman, 2011;
Mascara and Constantinou, 2021). Although BC patients with
early-stage and decent conditions can be cured by radical
removal, chemotherapy, and targeting therapy, the prognosis
of patients with metastasis, recurrence, and drug resistance is
poor (Munagala et al., 2011; Wind and Holen, 2011). Therefore,
the treatment of patients with these high-risk factors remains a
great challenge for breast surgeons (Sledge et al, 2014).
Currently, available molecular targeted therapy for BC has
achieved some great success including estrogen receptor (ER)-
targeting agents (e.g., tamoxifen) and human epidermal growth
factor receptor 2 (HER2)-targeting therapeutics (e.g.,
trastuzumab) (Munagala et al., 2011; Liedtke and Kiesel, 2012;
Miller, 2014). Some evidence has shown that the discovery and
application of novel molecular biomarkers can provide
prognostic value (Davis et al, 2020; Macklin et al, 2020).
Therefore, the discovery and application of new diagnostic
and prognostic molecular markers of early-stage tumors may
provide new insights into the mechanisms of tumorigenesis and
novel therapeutic targets.

Caveolae are flask-shaped vesicular organelles that are
particularly abundant in the plasma membrane of cells
(Scherer et al.,, 1994). Caveolins (CAVs) and cavins are the
necessary structural proteins for the formation and fusion of
the vesicle, which have been demonstrated to implicate in the
transcytosis, potocytosis, and signal transduction of cancer cells
(Gould et al., 2010; Parton and del Pozo, 2013; Nwosu et al.,
2016). The caveolin protein family consists of three members in
mammals: caveolin-1 (CAV1), caveolin-2 (CAV2), and caveolin-
3 (CAV3) (Williams and Lisanti, 2004b). Previous studies
showed that genes CAV1 and CAV2 lie adjacent to one
another at chromosome region 7q31.1, and CAV3 locates on
chromosome 3p25.3 (Engelman et al., 1998a; Engelman et al,,
1998b; Aldred et al.,, 2003). The encoded protein, CAV1, and
CAV?2 can interact with each other and form a hetero-oligomeric
complex, which constitutes the skeleton of the vesicle. Also,
CAV3 has been confirmed to interact with CAV2 and
CAVI in an analogous fashion (Rybin et al, 2003; Pfleger
et al., 2012). Recently, many studies have demonstrated that
CAVs, especially CAV1, are abnormally expressed in a variety of

Frontiers in Cell and Developmental Biology

02

tumors and implicated in tumorigenesis and cancer progression
(Quest et al., 2008; El-Gendi et al., 2012; Lamaze and Torrino,
2015; Ketteler and Klein, 2018). However, the role of CAVs in
cancer remains unclear and controversial (Ayala et al., 2013;
Martinez-Outschoorn et al,, 2015). CAV1 is downregulated in
some cancer types, including lung cancer, colon cancer, ovarian
carcinomas, and sarcomas (Bender et al., 2000; Wiechen et al,,
2001; Quest et al,, 2008). J A Engelman first reported that the
expression of CAV1 was significantly suppressed in oncogene-
transformed (H-Ras and v-Abl) fibroblasts cells and the
overexpression of CAV1 could completely reverse the
transformed phenotype and inhibit contact-dependent growth
of fibroblasts cells (Koleske et al., 1995; Razandi et al., 2002). In
contrast, some studies suggested that CAV1 was overexpressed in
bladder, esophagus, lung, and prostate carcinomas (Yang et al.,
1998; Yang et al., 1999; Ho et al., 2002; Kato et al., 2002; Yoo et al.,
2003), and CAV1 upregulation could promote the proliferation,
invasion, and distant metastatic potential of cancer cells (Joshi
et al., 2008; Tanase et al., 2009; Martinez-Outschoorn et al.,
2015). Additionally, patients with metastasis showed higher
levels of CAV1 than those with non-metastasis in esophageal
squamous cell carcinoma and renal cell carcinoma (Tahir et al,,
2001; Kato et al.,, 2002). Therefore, the dual role of CAVs in
cancer occurrence and metastasis generated many controversies
regarding the exact function (tumor-suppressive or pro-
oncogenic). The present study aimed to explore the expression
pattern and prognostic value of CAVs. In addition, we integrated
a CAV-based prognostic signature to predict the prognosis and
immunotherapeutic response in BC.

Materials and methods

Identification of differential caveolin
expression, promoter methylation, and
genomic alterations in breast cancer

To explore the transcriptional expression of CAVs in various
types of cancers, we analyzed genome-wide expression data from
the Oncomine database (http://oncomine.org), which includes
more than 400 unique analyses. Also, the expression in 33 cancer
types of CAVs from TCGA data sets was analyzed for validation
in TIMER (https://cistrome.shinyapps.io/timer/). The mRNA and
promoter methylation levels of the CAVs in BC patients were
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downloaded from UALCAN  (http://ualcan.path.uab.edu/
analysis.html). Furthermore, we explored the relationship
between CAV expression and the clinicopathologic parameters
of BC patients. The Kaplan-Meier plotter (http://kmplot.com/
analysis/index.php?P=service&cancer=breast) was applied to
determine the association between the OS of patients with BC
and the expression profiles of CAV genes, RFS and post
progression survival (PPS). The copy number variation
(CNV), mutations, and prognosis value of CAVs in BC were
comprehensively evaluated according to the cBioPortal database
(https://cbioportal.org), which included 10,920 samples involving
20 studies.

Risk assessment model construction and
prognostic survival analysis

We constructed a set of scoring systems to evaluate the CAV-
relevant gene expression pattern of individual patients in BC.
Then a principal component analysis (PCA) was performed to
construct the CAV signature, which was termed as CAV score.
Both principal components 1 and 2 were selected to act as
signature scores. We defined the CAV score using a method
similar to GGI (Sotiriou et al., 2006; Zeng et al., 2019): CAV
score = X (PC1i + PC2i), which is the expression of CAV-related
genes.

Evaluation of tumor-infiltrating immune
cells between the high- and low-risk
groups

To investigate whether the prognostic model could predict
the immune response of BC patients, we analyze the associations
between risk score and the proportion of different immune cells
in the tumor microenvironment. The CIBERSORT algorithm
was utilized to quantify the fraction of the relative 28 immune
infiltration cell types in BC patients. Then we compared and
analyzed the differential abundances of immune cell infiltration
between the high- and low-risk groups via the Wilcoxon ranked-
sum test.

Prediction of chemotherapy and
immunotherapy drug response

Genomics of Drug Sensitivity in Cancer database (GDSC),
the largest integrated public pharmacogenomics database, can
predict the chemotherapeutic response of patients with cancer
and promote potential therapeutic applications of targeted
agents in cancer treatment. The R package “pRRophetic” was
used to predict the half-maximal inhibitory concentration
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(IC50) of chemotherapy drugs for the patients in high- and
low-risk groups from the TCGA database. As previously

mentioned, we further investigated the response to
immunotherapy using a urothelial carcinoma cohort
(IMvigor210 cohort), which included 348 advanced

bladder cancer patients treated with anti-PD-L1 antibody
atezolizumab. The gene expression and clinical information
data were extracted and analyzed with the R package. The
response mainly included four outcome indices: complete
response (CR), partial response (PR), progressive disease
(PD), and stable disease (SD). Among these, patients with
CR or PR were classified as responder groups and SD or PD
were classified as non-responder groups. Then the difference
between the responder and non-responder groups was
analyzed with the Wilcoxon test.

Gene set enrichment analysis

GeneMANIA could provide the genetic and protein
interactions, co-expression, pathways, co-localization, and
domain-protein similarity of the candidate genes. In this
study, we performed a comprehensive analysis to identify
the network between the interacting and co-expression
proteins, and pathways of the CAVs. Metascape was used
for comprehensive GO and KEGG function enrichment to
identify and visualize the networks and enriched pathways of
the CAVs.

Cell lines and transfection

MDA-MB-231 cell lines were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) with 10% FBS (HyClone,
United States) in a humidified atmosphere containing 5% CO,
and 95% O, at 37°C. The specific CAVs shRNA and the control
were purchased from Shanghai GenePharma (The sequences are
shown in Supplementary Table S1) and were transfected into
MDA-MB-231 cells with Lipo3000 kit according to the
manufacturer’s protocol.

Western blotting

Western blot (WB) analysis was performed as described
(30-50 pg)
separated by 4-12% sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS/PAGE) and transferred to PVDF
membranes. 5% non-fat milk was used for blocking purposes

previously. Equal amounts of protein were

for 1h. Then the membranes were incubated with the
corresponding primary antibody [CAV1 (1:1,000 dilution,
CST), CAV2 (1:1,000, Santa), CAV3 (1:1,000, Santa), GAPDH
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FIGURE 1
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(1:1,000, Santa), Vimentin (1:1,000, Santa), E-cadherin (1:1,000, overnight at 4°. The appropriate second antibody was added
Santa), N-cadherin (1:1,000, Santa), AKT/p-AKT (1: and incubated for 1 h at room temperature. Then the bands were
1,000 dilution, CST), ERK/p-ERK (1:1,000 dilution, CST)] detected using a enhanced ECL western blotting kit.
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Kaplan—Meier survival curve analysis (OS, RFS, PPS) for CAVs in BC (Kaplan—Meier plotter, https://kmplot.com/analysis/): (A) CAV1, (B) CAV2,

and (C) CAV3.

Wound healing and transwell assays

Cells were trypsinized and reseeded into 6-well dishes and
incubated for 24h. When cells reached more than 90%
convergence, the wound was performed with a pipette
tip. Then, cells were washed with PBS and replaced with a
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serum-free medium. Cells were photographed after 0 and 24 h

in x4 magnification, and the width of the wound was recorded.

06

Transwell assays were performed to determine the cell
migration and invasion ability. 1 x 10° cells were seeded in
the upper chamber with a serum-free medium (the upper
chamber was covered with Matrigel in the invasion assay),
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and a medium with 10% FBS was added into the lower chamber
(600 ul). After incubating for 24h, the cell on the outer membrane
was fixed and stained with 0.1% crystal violet solution. The
migrated and invalided cells crossed the polycarbonate
membrane and were counted under a light microscope.

Colony and sphere formation experiments

A clone formation assay was performed to estimate the
of total of
500-1,000 cells were cultured in a six-well plate for 7-14 days
and then fixed with 4% paraformaldehyde and stained with 0.5%
crystal violet for 15 min. The number of colonies was counted,

capacity cell proliferation in vitro. A

and the plate clone formation efficiency was calculated.

To investigate the effect of CAVs on the stemness of breast
cancer cells, we performed a sphere formation assay with CAV
knockdown cells. MDA-MB-231 cells (4,000-5,000 cells) were
cultured in non-adherent culture plates supplemented with EGF,
FGF, and B27 complement for 7-14 days, with media changes
every 3-4 days. The number of tumor spheres was counted, and
the morphology was observed under a light microscope.

Statistical analysis

GraphPad software version 8.0, R (4.0.0) software, and SPSS
23 software were used for the statistical analysis. Statistical
differences between different groups were calculated by
Student’s t-test. Kaplan—-Meier analysis was used to estimate
survival, and the difference was compared by log-rank test.
p < 0.05 was defined as statistically significant.

Results

Differential expression level of caveolins in
breast cancer

A meta-analysis was performed to detect the expression levels of
CAVs in various cancer types using the Oncomine database. We found
a total of 444, 433, and 396 unique analyses for CAV1, CAV2, and
CAV3, respectively. Among the significant analyses, 70% of the study
revealed that CAV1 and CAV2 were all significantly downregulated in
most tumor types, especially in BC, lung cancer, ovarian cancer,
prostate cancer, bladder cancer, and sarcoma cancer. Also, all nine
included significant studies which presented that CAV3 was expressed
low in tumor tissues when compared to non-tumor tissues (Figure 1A).
We further explored the expression levels of CAVs in another
independent data set (TIMER database) and validated that CAV1,
CAV2, and CAV3 were expressed low in most cancer, especially in BC
(Figures 1B-D). In addition, consistent results were also obtained in
the UALCAN database (http://ualcan.path.uab.edu/), which suggested

Frontiers in Cell and Developmental Biology

07

10.3389/fcell.2022.822187

that the protein levels of CAV's were significantly reduced in the breast
cancer tissues compared with the adjacent non-tumor tissues (Figures
1E-F). Overall, by analysis of these publicly available databases, we
found that CAVs were downregulated in BC tissues.

Prognostic value of caveolins in breast
cancer

To determine the prognostic value of CAVs in BC, we explored
the association between the expression of CAVs and tumor
pathological features. The results demonstrated that lower
expression of CAVI was significantly correlated with history
subtypes 2A), BRCAI1/2 mutation 2B),
TP53 mutation status (Figure 2C), and Nottingham prognostic
index (NPI) value (Figure 2D). Also, the expression of
CAV1 was significantly decreased in TNBC patients compared

(Figure (Figure

with non-TNBC patients (Figures 2E-G). CAV2 expression was
significantly associated with history subtypes and Scarff-Bloom-
Richardson (SBR) grade (Figures 2H,I). The expression of CAV3 in
TNBC and basal-like cell carcinoma patients was significantly lower
than that in the non-TNBC and non-basal-like cancer patients
(Figures 2J-L). In addition, lower expression of CAV3 was
significantly correlated with a BRCA1/2 mutation (Figure 2M)
and SBR value (Figure 2N). These results demonstrated that
CAV  expression was associated with adverse pathologic
outcomes in BC. Furthermore, the survival values of the CAVs
were generated by the Kaplan-Meier (KM) plotter, which suggested
that the survival time of patients in the low-expression CAV group
was significantly shorter than that in the high-expression group
(Figures 3A-C). Specifically, low expressions of CAV1, CAV2, and
CAV3 were closely related to poor overall survival (OS) and relapse-
free survival (RFS) (all p < 0.05). These results were validated by the
Breast Cancer Gene-Expression Miner v4.7 database (http://
begenex.centregauducheau.fr/BC-GEM/GEM-Accueil php?js=1)

(Supplementary Figures 1A-C). These results indicated that low
CAV expression predicts an unfavorable prognosis in BC patients.

Correlation between deoxyribonucleic
acid methylation of caveolins and
prognosis of patients with breast cancer

A growing body of research suggests that DNA methylation
at active gene elements can directly modulate gene expression
and involve in carcinogenesis and tumorigenesis. Methylation of
the gene promoter has been considered an important mechanism
regulating gene transcription. Therefore, we investigated whether
CAV methylation is related to the prognosis of BC and found that
the methylation levels in the CAV1 and CAV2 promoters were
markedly higher than those in the corresponding para-cancerous
tissues (Figures 4A-C). These results revealed that promoter
hypermethylation might induce downregulation of CAV1 and
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TABLE 1 Significant prognostic values of CpG in the CAV family members.

10.3389/fcell.2022.822187

Gene symbol CpG Name Hazard ratio CI p value  UCSC RefGene Group Relation to UCSC CpG Island
CAV1 g01265597 0.553 (0.371; 0.823)  0.0046 TSS1500 N_Shore
18329349 0.597 (0.394; 0.906)  0.019 5'UTR;1stExon Island
cg17469978 0.659 (0.442; 0.982)  0.038 TS$5200 Island
g04474049 0.579 (0.339; 0.988)  0.033 TSS1500 N_Shore
CAV2 cg12739419 0.5 (0.336; 0.743)  0.00051 Body S_Shore
g16260298 0.622 (0419 0.922)  0.017 Body Island
g04696780 1.562 (1.055; 2312)  0.027 TS$5200 N_Shore
cg16553024 0.549 (0.322; 0.936)  0.018 TSS1500 N_Shore
CAV3 cg16328896 0.546 (0.365; 0.817)  0.0027 TS$5200 Open_Sea
16448890 0.651 (0.438; 0.968)  0.032 Body Open_Sea

CAV2 expression. Furthermore, we also found that DNA
methylation levels of CAV1 and CAV2 were associated with
TP53 status and history types (Figures 4A,B). The prognostic
impact of DNA methylation of CAVs in BC was analyzed by
MethSurv. The results suggested that four CpG sites of CAV1
(cg01265597, cg18329,349, cg17469,978, and cg04474049), four
CpG sites of CAV2 (cgl12739419, cg16260298, cg04696780, and
cgl6553024), and two CpG sites of CAV3 (cgl16328896 and
cgl6448890) showed an association with poor prognosis
(Table 1). Then, the KM survival curve was performed and
suggested that all these critical CpG sites were associated with
OS of patients with BC (Figures 4D-L).

Expression of caveolins in breast cancer
cell lines and tissues

We next evaluated the expression of CAVs in BC cell lines
and tissues. According to the EMBL results, we found that
CAV1 and CAV2 were moderately expressed in most BC cell
lines. However, CAV3 was expressed in a portion of BC cells
(Figure 5A). In addition, we investigated the expression of
CAVs in BC tissues in the HPA database, and the results
confirmed that CAV1, CAV2, and CAV3 were expressed low
in BC tissues compared to that in normal tissues. Particularly,
the expressions of CAV1 and CAV2 were significantly
downregulated in BC tissues (Figure 5B). Then these results
were validated by WB analysis, which also demonstrated that
the expression of CAV1 and CAV2 was negatively correlated
with that of Vimentin (Figure 5C). In addition, we explored
the correlation between expression profiles of CAVs with
GEPIA2 As
Figure 5D, the expression of CAV1 precisely paralleled that

(http://gepia2.cancer-pku.cn/). shown in

of CAV2. Furthermore, we evaluated the co-localization of
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endogenous CAV1 with CAV2, which suggested that
CAV1 and CAV2 had an obvious distribution in the cell
cytoplasm, membrane, and nucleus, and co-localization of
CAV1 and CAV2 was found in the cell cytoplasm (Figure 5E).

Risk assessment model construction and
prognostic survival analysis

As each of the CAVs had a good predictive value, we tried to
construct a multigene model to evaluate the prognosis of BC. The
results revealed that all patients included in the study could be
divided into low-risk groups and high-risk groups depending on the
risk score (Figure 6A), and patients in high-risk groups had a lower
survival probability and patients in low-risk groups had a higher
survival probability (Figure 6B). To validate the predictive value of
risk scores, the receiver operating characteristic (ROC) curve was
created and the areas under the curve (AUCs) for 1-, 3-, and 5-year
survival were 0.674, 0.567, and 0.536, respectively (Figure 6C).
Multivariate Cox regression analysis demonstrated that TNM
stage (HR = 2.67, 95% CI = 1.91-3.72, p < 0.001) and prognosis
models (HR = 2.67, 95% CI = 0.47-0.93, p < 0.05) were independent
predictors of prognosis for BC patients (Figure 6D). Moreover, a
nomogram was conducted using the TCGA data set based on the
independent factors (age, gender, stage, and risk score). The
calibration plots for the 3- and 5-year OS were predicted well in
the TCGA cohort (Figures 6E,F). To further verify the reliability of
the model, we downloaded another BRCA cohort as a validation
data set from the GEO database (GSE21653). Then survival analysis
was performed via Kaplan—-Meier survival analysis, with differences
between curves analyzed via a log-rank test. We found that the DFS
in the high-risk signature group was significantly shorter than that in
the low-risk signature group. ROC curve of 1-year, 3-year and 5-year
survival were plotted in Supplementary Figures 1D,E.
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FIGURE 5

Expression of CAVs in BC cell lines and tissues. (A) Transcription expression of CAVs in 30 types of BC cancer cells (EMBL-EBI database, https://
www.ebi.ac.uk/). (B) Immunohistochemistry showed the protein expression of CAVs in BC. (C) WB analysis of the expression of CAV1, CAV2, and
Vimentin in BC tissues. (D) Correlation analysis between CAV expressions in BC. (E) Double immunofluorescence staining displayed the co-
localization of CAV1 and CAV2
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Risk signature was associated with
immune cell infiltration and the
mutational landscape of breast cancer
patients

To evaluate the relationship between the risk score and
immune microenvironment, we performed CIBERSORT
analysis to quantify the proportions of diverse immune cell
subpopulations. We found that most immune cells are
significantly different between the high- and low-risk
groups. Moreover, patients in the low-risk group tend to
have a relatively high immune status compared to the high-
risk group (Figures 7A,B). Moreover, we found that the most
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noticeable correlations are the correlations between the risk
score and plasmacytoid dendritic cell, natural killer T-cell,
central memory CD4 T-cell, and CD56 bright natural killer
cell (Figure 7C). Thus, we believed that BC patients with
different phenotypes of the risk scores may directly lead to
different immune statuses and subsequently result in diverse
outcomes. We further explored the specific mutational
landscape between the high- and low-risk groups. The
waterfall plots were drawn and revealed that the mutation
event frequency was significantly higher in the high-risk group
than in the low-risk group. Also, the top 10 detected genetic
mutations were APC, PI3CA, TTN, CDH1, GATA3, MUKI16,
MAP3K1, MUK4, KMT2C, and PTEN mutations (Figure 8A).
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FIGURE 7
Correlations of CAVs with immune infiltration level in BC. (A,B) Identification of the relative infiltration of 28 types of immune cell
subpopulations in high- and low-risk signature subgroups. (C) Correlation between immune infiltration cells and the risk score.

Furthermore, the tumor mutation load was figured out, which
suggested that the tumor mutation load in the high-risk group
was significantly higher than those in the low-risk group (p <
0.05) (Figure 8B). Therefore, all these results suggested that
tumor mutation load might be another risk factor for BC
patients.
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Risk signature can predict the response to
chemotherapy and immunotherapy in
breast cancer

Recently, it has been demonstrated that tumor immunogenicity,
tumor mutation load, and immune infiltration in the tumor
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microenvironment had significant relationships with checkpoint
blockade therapy, especially the anti-PD-1/L1 therapy. Therefore,
we investigated whether this signature could predict the
responsiveness to the
treatment. We collated the clinical characteristics and outcomes
of the patients treated with the anti-PDL1 agent from an
immunotherapy cohort (Imvigor210). The results verified that
patients in the high-risk group might benefit more from the
immunotherapeutic treatment than those in the low-risk group
(Figure 9A). Also, the cumulative remission and partial remission
rates were significantly higher in the high-risk group than in the low-
risk group (Figure 9B). Additionally, we also estimated the

of the patient immunotherapeutic

responsiveness of chemotherapy drugs in the high- and low-risk
groups using the R package “pRRophetic”. The results suggested that
the IC50 values of gefitinib, gemcitabine, lapatinib, paclitaxel,
vorinostat, bicalutamide, cisplatin, and docetaxel in the low-risk
group were significantly higher compared with the control group
(Figures 10C-J). These results demonstrated that patients in the
high-risk group were relatively sensitive to these agents.

Enrichment analysis of caveolins in breast
cancer patients

To further identify the biological function, the protein—protein
interactions (PPIs), and co-expressed genes of the signature genes,
we constructed a network using GeneMANIA Database and
Metascape. A PPI network was established, and the network of
enriched terms was labeled with different colors (Figure 10A). We
performed GO and KEGG pathway analysis of network genes using
the Metascape. As shown in Figure 10B, these genes were
particularly enriched in GO:0,005,925 focal adhesion, the GO:
0,030,029 actin filament-based process, GO:0,030,335 positive
regulation of cell migration, GO:0,006,897 endocytosis, GO:
0,031,252 cell leading edge, GO:0,070,848 response to growth
factor, GO:0,050,839 cell adhesion molecule binding, GO:
0,034,446 substrate adhesion-dependent cell spreading; GO:
0,042,060 GO0:0,034,330  cell

wound  healing; junction
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organization; hsa04510 Focal adhesion, hsa04810 regulation of
the actin cytoskeleton, the hsa04012 ErbB signaling pathway,
hsa04520 Adherens junction, hsa04144 endocytosis, the
hsa04010 MAPK signaling pathway, ko04961 endocrine and
other factor-regulated
hsa05120 epithelial cell signaling in Helicobacter pylori infection.
Therefore, these genes mainly participated in cell adhesion,
migration, endocytosis, and the ErbB signaling pathway.

calcium reabsorption, and

Caveolin downregulation promoted
colony and tumor sphere formation of
breast cancer cells in vitro

To explore the effect of CAV's on the BC cells, we constructed
short hairpin RNA (shRNA) pools specifically targeting CAV1,
CAV2, and CAV3 in MDA-MB-231 cells. The efficiency of CAV
silencing was confirmed by WB (Figure 10C). Colony formation
and sphere formation assays were used to investigate the
tumorigenesis potential of the transfected cells. The results
revealed that CAV depletion dramatically increased the clone
formation and sphere formation capability (Figures 10D,E).
Therefore, CAVs may have a significant effect on the growth
and stemness maintenance of BC cells.

Caveolin downregulation enhanced
migration and invasion of breast cancer
cells

It has been demonstrated that alterations in morphology
from the epithelial to mesenchymal phenotype are the most
prevalent features of epithelial mesenchymal transition (EMT).
In this study, CAV knockdown induced morphological changes
from the cobble stone-like appearance to the elongated, spindle-
like mesenchymal shape (Figure 11A). Then, we detected the cell
migration and invasion ability in BC cells through wound healing
and Transwell assay. According to the wound healing assay, we
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found that CAV1, CAV2, and CAV3 knockdown could
significantly increase the migration of MDA-MB-231 cells
(Figure 11B). Similar results were also observed in the
Transwell assay migration experiments. In addition, the
Transwell assay also revealed that CAV silencing could
enhance the invasive capability of BC cells (Figure 11C).
Moreover, real-time live-cell migration observation was
performed using the High-Throughput Connotation of
Imaging System, and the results suggested that CAV depletion
could increase the cumulative displacement of BC cells, and the
CAV knockdown cells moved significantly faster on average than
the control cells (Figures 12A,B).
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CAV1 and CAV2 participate in the process
of epidermal growth factor receptor
endocytosis

It has been demonstrated that epidermal growth factor
receptor (EGFR) signaling involves multiple biological
possession of carcinoma, including cell proliferation,
migration, and survival (An et al, 2018). EGFR
endocytosis and trafficking are critical physiological
processes that can modulate EGFR and the downstream
signaling pathway through multiple mechanisms (An
et al,, 2018). In this study, the GO and KEGG function
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analysis revealed CAVs and the interacting genes/proteins
in the
EGEFR.
immunofluorescence to investigate whether CAV1 and
CAV2 regulate  EGF-mediated endocytosis
trafficking. As shown in Figures 13A,B, the results of the
immunofluorescence assay demonstrated that CAV1 and

were involved receptor endocytosis process,

particularly Therefore, we performed

could
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CAV2 mainly coexisted with EGFR in the cytoplasmic
membrane at the rest state; when supplemented with EGF,
CAV1, and CAV2, they could co-localize with EGFR in the
cytoplasm in a time-dependent manner. After 30 min
incubation, the co-localization gradually decreased.
Therefore, we speculated that CAV1 and CAV2 might be
involved in EGF-mediated endocytosis trafficking of EGFR.
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Caveolins regulate EMT and MAPK signal
pathways

We detected the expression of the typical signs of EMT,
N-cadherin, Vimentin, and MMP9 in CAV knockdown MDA-
MB-231 cells. WB analysis suggested that CAV silencing
significantly  increased the expression of Vimentin,
N-cadherin, MMP9, Twist, and Snail/Slug (Figures 14A,B).
We further selected MAPK and ErbB pathways of the
enrichment analysis of CAVs for validation. WB analyses
showed that CAV knockdown could upregulate the expression
of EGFR and subsequently increase the expression of the
phosphorylation of ERK, AKT, and PI3K. These results
demonstrated that CAVs could modulate EMT via MAPK
and EGFR signal pathways in BC (Figure 14C).

Discussion

Multiple studies have confirmed that the abnormal
expression or function of caveolae due to somatic mutation or
epigenetic regulation in CAVs was involved in numerous types of
human diseases, including cardiovascular disease, muscular
dystrophies, primary osteoporosis, pathogen infection, and
tumors (Williams and Lisanti, 2004a; Lamaze and Torrino,
2015). Also, it suggested that CAVs could be involved in
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of BC, such tumor

invasion,

multiple biological processes as

proliferation, migration, metastasis, and
chemotherapy resistance (Ketteler and Klein, 2018). However,
the relationship between CAVs and tumorigenesis remains
contentious, especially for CAVI1. Recently, some studies
believe that CAV1 and CAV2 were expressed low as tumor
suppressors in primary BC and cell lines (Bouras et al., 2004). Lee
SW reported that the mRNA and protein levels of CAV1 were
downregulated or even absent in the BC cell lines, including
MCF7, ZR75, T47D, BT20, and MDA-MB231, compared to that
of the normal mammary epithelial cells (MCF10A) (Williams
and Lisanti, 2004a). CAV1 overexpression could suppress colony
formation, matrix invasion, migration, and metastasis (Nwosu
et al, 2016). However, increasing evidence suggested that
CAV1 was upregulated in BC and positively correlated with
aggressive clinical behaviors (Li et al., 2001; Tahir et al.,, 2001;
Savage et al., 2007). Gert G reported that CAV1 and CAV2 were
highly expressed in inflammatory breast cancer (IBC), and the
CAV1 and CAV2 promoter sites were hypomethylated in
SUM149 cells (Van den Eynden et al., 2006). Exogenous
expression of CAV1 could significantly promote colony
formation soft agar and inhibit apoptosis in the
Hs578T cells (Wu et al,, 2007). CAV1 enhanced anchorage-

independent survival by upregulating the expression of IGFR and

in

phosphorylated AKT and suppressed the cyclin-dependent
kinase inhibitor p21WAF1/Cipl (Ravid et al,, 2005; Van den
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Eynden et al., 2006; Patani et al., 2012). Therefore, the clinical
relevance of CAV1 in BC remains debated with either the tumor
suppressor or tumor oncogene. Moreover, there are only a few
studies on the function of CAV2 and CAV3 in BC. Therefore,
compositive and comprehensive analyses of the function of

CAVs in BC are highly warranted.
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In the present study, the results indicated that CAV1-3 were
all significantly downregulated in most tumor types, especially in
BC, lung cancer, ovarian cancer, prostate cancer, and sarcoma
cancer. In addition, low expressions of CAV1, CAV2, and
CAV3 were closely related to poor OS, RFS, and PPS.

the HPA database, CAV1, CAV2, and
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CAV3 were expressed low in BC tissues than in the normal
tissues, which were validated by WB analysis. The expressions of
CAV1 and CAV2 were negatively correlated with the expression
of Vimentin. These results indicated that low CAV expression
predicts an unfavorable prognosis in BC patients. Furthermore,
we found that patients with CAV mutations exhibited
significantly poorer prognoses compared with those without
mutations, although the alteration frequencies of CAVs were
not high. The previous genomic study has revealed that
CAV1 gene mutation occurred in up to ~16% of breast
invasive carcinoma patients (Lee et al., 2002). Christy Moore
reported that consistent with the effect of knockout of Cavl,
CAV1 gene mutation was molecularly similar to drive metabolic
deficiencies, pulmonary hypertension, and reduced spontaneous
exercise in mice (Rathinasabapathy et al., 2020). Another report
suggested that Cav-1 (P132L) mutation could significantly
promote anchorage-independent growth and form tumors in
immunodeficient mice (Cerezo et al., 2009). Hyangkyu Lee found
that CAV1 mutation was sufficient to result in hyperplasia of
mammary epithelial cells, which suggested that Cav-1-null mice
may be a well-described animal model to study premalignant
mammary disease (Williams and Lisanti, 2005).

Moreover, we found that the methylation levels in the
CAV1 and CAV2 promoters were markedly higher, which
were significantly associated with TP53 status and history
types. We also found that four CpG sites for CAV1, four CpG
sites for CAV2, and two CpG sites for CAV3 were associated with
poor prognosis. Cui revealed that hypermethylation of the
CAV1 the
inactivation of CAV1 expression (Cui et al., 2001). Similarly,
Yan Y Sanders found that CAV1 absence in lung fibroblasts may
be regulated by epigenetic mechanisms including histone
H3
(Sanders et al, 2017). Leonidas Alevizos reported that
of CAV1
associated with nodal metastasis and disease progression in
BC (Alevizos et al., 2014). X Rao suggested that lower
CAV1 expression and C CGI shore hypermethylation may

promoter was negatively correlated with

modifications, in particular lysine 4 trimethylation

hypermethylation-mediated  inactivation was

represent novel prognostic factors for ERa-negative, basal-like
BC (Rao et al, 2013). Therefore, hypermethylation may be
responsible for the downexpression of CAV1 and represent a
new prognostic marker in BC.

Additionally, a comprehensive survival analysis of the CAV's
was performed and a prognostic predicting model was conducted
by establishing a nomogram and stratified joint-effects survival
analysis. The results confirmed that all patients in the study could
be divided into low-risk groups and high-risk groups, and
patients in high-risk groups had a lower survival probability
than the patients in low-risk groups. The ROC curve was created,
and the AUC:s for 1-, 3-, and 5-year survival were 0.674, 0.567,
and 0.536, respectively. Multivariate Cox regression analysis
demonstrated that this prognosis model was an independent
prognosis predictor for BC patients. Moreover, a nomogram was
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conducted to predict the 3- and 5-year OS. Therefore, the
prognostic model has good predictive power and specificity.
Furthermore, this prognostic model could predict different
immune statuses and tumor mutation loads, which suggested
that patients in the low-risk group tend to have a relatively higher
immune status and a lower tumor mutation load compared to the
high-risk group.

Recently, the cancer-immunity axis has become the
intellectual ~ framework  for  cancer  research  and
immunotherapy has become one of the most promising
approaches for cancer treatment. Studies have demonstrated
that tumor mutation load and immune infiltration in the
tumor microenvironment can be used as an indicator to
predict the immune response after immunotherapy (Goodman
etal., 2017; Budczies et al., 2018; Chan et al., 2019b). The present
study suggested that patients in the high-risk group might benefit
more from the immunotherapeutic treatment than those in the
low-risk group, which was consistent with other studies. Aaron
M. Goodman reported that higher TMB predicted favorable
outcomes for PD-1/PD-L1 blockade across many cancer types
(Goodman et al., 2017). Chan suggested that high disease-specific
TMB could select the patients benefiting from ICB therapy in
lung, bladder, and head and neck cancers (Chan et al., 2019a).
Immune checkpoint targets have revolutionized cancer therapy
and become the focus of investigation for the treatment of
multiple cancer types (Lipson et al, 2015). The CTLA-4
antagonists’ tremelimumab and ipilimumab have been used in
small breast cancer trials, with evidence of downregulating Tregs
tumor infiltration in breast cancer (Emens et al, 2017). In
addition, extensive clinical data show that there are currently
many immunotherapies used to treat patients with metastatic
TNBC that target the PD-1/PD-L1
avelumab, pembrolizumab, atezolizumab, and pembrolizumab
(Emens, 2012). The utility of PD-1/PD-L1 blockade for TNBC in
the adjuvant and neoadjuvant settings is under intensive
I-SPY that
administration of pembrolizumab plus paclitaxel may result in
an estimated pCR rate of 46% in HER-2 patients and 60% in
TNBC patients (Nanda et al., 2020). A successful Phase 3 trial
revealed that the addition of pembrolizumab to paclitaxel results

in a superior CPR rate estimated at >99% for all HER-2 patient

signaling, including

investigation. trial  suggested neoadjuvant

subgroups (Schmid et al., 2020). Therefore, immune checkpoint
blockade has gradually become a new method for tumor therapy
(Emens, 2018). Moreover, our module could predict the
responsiveness of chemotherapy drugs, including gefitinib,
gemcitabine, lapatinib, paclitaxel, vorinostat, bicalutamide,
cisplatin, and docetaxel. Therefore, our prediction module
may provide clinical guidance for drug combination therapy
and medication instruction in BC.

To investigate the underlying mechanism of CAVs in BC, we
performed GO annotation and KEGG pathway analysis and
found that these genes were particularly enriched in cell
adhesion, migration, cell junction organization, endocytosis,
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the ErbB signaling pathway, and the MAPK signaling pathway.
Previous studies have reported that some mechanisms of CAVs
in several cancers were mainly attributed to the regulation of
EMT-related signaling pathways. Hongxiu Yu reported that
CAV1 could promote the EMT process via the Wnt/p-catenin
pathway in hepatocellular carcinoma (Yu et al.,, 2014). Kundong
Zhang reported that knockdown of CAV1 suppressed the
expression of E-cadherin and enhanced cell migration ability
in gastric cancer (Zhang et al., 2016). CAV1 deletion cells
displayed enhanced EMT and premetastatic properties in
head and neck carcinoma (Jung et al, 2015). To further
validate the function of CAVs, we performed in vivo
experiments, and the results suggested that CAV knockdown
could promote cell growth, migration, invasion, and stemness
maintenance in BC cells, which is consistent with findings from
previous research (Shan-Wei et al,, 2012; Wang et al., 2020; Ren
et al, 2021; Wu et al, 2021). Furthermore, we found that
CAV1 and CAV2 might be involved in EGF-mediated
endocytosis trafficking. Overall, CAVs and the related
pathways may act as biomarkers or therapeutic targets for
clinical treatment.

Nevertheless, there were several limitations in the present
study. In the first place, we investigated the prognosis value of
CAVs mainly depending on the retrospective public data set of
different cohorts, which might cause selection bias and be
somewhat heterogeneous in data processing and patient
population. Second, the prognostic signature of CAVs was
identified from TCGA, and the sample size is relatively
small, which may cause some bias. Therefore, the expression
profiles and the prognosis value of CAVs require further
validation by means of clinical research. Third, for the data
of the immunotherapy cohorts of BRCA that are not available,
we used urothelial carcinoma to investigate the relationship
between immunotherapy response and our risk signature.
Similar to our study, previous studies also used this UC
cohort to investigate whether their risk signature could
predict patients’ response to immune checkpoint blockade
therapy in different cancer types. Therefore, future studies
should take these factors into account to validate the current
findings.

Conclusion

The present study revealed the specific patterns of CAV
expression and assessed the prognostic value in BC via integrated
bioinformatics analysis. We found that low expression of CAVs
was notably correlated with an aggressive phenotype and poorer
prognosis for BC patients. Then we constructed a prognostic
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model based on the expression profiles of CAVs, which divided
BC patients into two risk groups. Patients in the high-risk group
tended to have a poorer prognosis and a higher mutation event
frequency compared to the low-risk group, suggesting that risk
score was an independent risk factor for BC patients.
Furthermore, this signature could effectively predict the
response to chemotherapy and immunotherapy. Finally, loss
of function studies strongly confirmed that CAVs exert the
tumor suppressor role in BC cells.
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