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Cancer driver gene is a type of gene with abnormal alterations that initiate or promote
tumorigenesis. Driver genes can be used to reveal the fundamental pathological
mechanisms of tumorigenesis. These genes may have pathological changes at
different omics levels. Thus, identifying cancer driver genes involving two or more
omics levels is essential. In this study, a computational investigation was conducted on
lung cancer driver genes. Four omics levels, namely, epigenomics, genomics,
transcriptomics, and post-transcriptomics, were involved. From the driver genes at
each level, the Laplacian heat diffusion algorithm was executed on a protein–protein
interaction network for discovering latent driver genes at this level. A following screen
procedure was performed to extract essential driver genes, which contained three tests:
permutation, association, and function tests, which can exclude false-positive genes and
screen essential ones. Finally, the intersection operation was performed to obtain novel
driver genes involving two omic levels. The analyses on obtained genes indicated that they
were associated with fundamental pathological mechanisms of lung cancer at two
corresponding omics levels.

Keywords: lung cancer, driver gene, epigenomics, genomics, transcriptomics, posttranscriptomics, heat diffusion
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INTRODUCTION

Driver gene is a commonly used description in oncology to describe genes with abnormal alterations
that initiate or promote tumorigenesis (Pao and Girard, 2011; Tokheim et al., 2016). Identifying
driver genes can help us reveal the fundamental pathological mechanisms of tumorigenesis (Pao and
Girard, 2011). During tumorigenesis, genes may have pathological changes at different omics levels,
including but not restricted to genomics (as DNA sequence alterations), epigenomics (as methylation
status or other DNA modification status alterations), transcriptomics, and proteomics (Cancer
Genome Atlas Research Network, 2014; Huang et al., 2015; Li et al., 2018). Using current biological
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techniques is time consuming but can detect all pathological
alterations associated with tumorigenesis. However, not all
alterations are associated with driver genes. Genes that are
mutated or abnormally regulated during tumorigenesis but not
associated with the initiation or progression of tumors are
summarized as passenger genes (Pon and Marra, 2015). Most
of the genes altered during tumorigenesis are actually
passenger genes, which cannot help us understand or reveal
the pathological mechanisms of cancer. Therefore, the
identification of driver genes is one of the major research
directions in oncology.

Based on traditional experiments, only hot spot genes, which
have highmutation rate in sporadic cancer cases or have clear and
obvious family hereditary histories, can be screened as candidates
for cancer driver genes (Korenjak and Zavadil, 2019; Sears and
Mazzone, 2020). For such pre-identified genes, driver potential
needs to be validated using in vitro and in vivo experiments,
which are quite time consuming and expensive (Chu et al., 2018;
Sears and Mazzone, 2020), making it impossible and
unreasonable for whole-omics wide screening. Therefore, to
overcome the restrictions, scholars have introduced
computational methods for discovering and pre-selecting
candidate driver genes at whole omics level. Nowadays,
identifying cancer driver genes using computational methods
are not only effective but also reliable. At the beginning,
computational methods are applied only for data at one omics
level. With the development of algorithms and computational
workflows, the integration of two or more omics levels of data to
identify core cancer drivers has been realized (Turanli et al., 2018;
Olivier et al., 2019). In 2016, Chen et al. (Chen et al., 2016)
proposed shortest path-based method to identify novel lung
cancer driver genes involving two omics levels. Later, Yuan
and Lu employed another network algorithm, random walk
with restart (RWR), to conduct the same investigation (Yuan
and Lu, 2017). Several possible lung cancer driver genes involving
two omics levels were proposed. This study continued the above
two previous studies.

Cancer is one of the major threatening diseases for human
health in the 21st century. As introduced above, identifying
cancer biomarkers is one of the most effective way to explore
the pathological mechanisms of tumorigenesis. However,
revealing the potential biomarkers of all cancer subjects is
difficult due to the limitation of data availability. In this study,
we focused on one of the most common and deadly cancer
subtype, namely, lung cancer. According to the statistics
from GLOBOCAN estimates, in 2020, the general
cumulative rates (0–75 years old) for lung cancer have been
up to 3.78% in males and 1.77% in females, both of which are in
the top of all cancer subtypes (rank 1 in males and rank 2 in
females, following breast cancer) (Siegel et al., 2021). In 2021,
more than 235,000 of new lung cancer cases and more than
130,000 of deaths from lung cancer are predicted in the
United States alone (Siegel et al., 2021), confirming that
lung cancer is a growing threat to humans in the 21st century.

Here, we integrated four levels of lung cancer omics data
including epigenomics (methylation), genomics (gene
variations), transcriptomics (gene expression), and post-

transcriptomics regulation (microRNAs). Driver genes
identified at each individual omics level were regarded as
candidates for lung cancer drivers. Based on the candidates at
each level, the Laplacian heat diffusion (LHD) (Carlin et al., 2017)
algorithm was executed on a protein–protein interaction (PPI)
network to identify raw driver genes. These genes were further
filtered by a screen procedure, including permutation,
association, and function tests, to exclude false-positive genes
and select essential ones. Finally, intersection operation was
carried out to identify driver genes involving at least two
omics levels. Multiple genes were screened as potential multi-
omics lung cancer drivers, and several genes were validated by
recent publications via literature mining. The recognition of
effective novel driver genes associated with lung cancer
provided a novel approach for exploring the cancer
pathological mechanisms of lung cancer and identifying
clinical biomarkers.

MATERIALS AND METHODS

Datasets
The driver genes at four omics levels, namely, epigenomics,
genomics, transcriptomics, and post-transcriptomics
regulation, were retrieved from a previous study (Chen et al.,
2016). Genes were extracted from DNA methylation, somatic
mutation, gene expression, and microRNA expression data,
respectively, which were collected in TCGA (https://tcga-data.
nci.nih.gov/docs/publications/luad_2014/) (Cancer Genome
Atlas Research Network, 2014). The detailed data clean
procedures can be found in Ref. (Chen et al., 2016). Finally,
we obtained 153 driver genes at epigenomics level, 197 driver
genes at genomics level, 1,373 driver genes at transcriptomics
level, and 825 driver genes at post-transcriptomics level. Basing
on these genes, we aimed to identify driver genes involving two
levels.

Network Construction
In this study, we used a powerful network algorithm, LHD
algorithm (Carlin et al., 2017), to discover driver genes
involving two omics levels. Thus, a network is necessary. PPI
information is widely used to tackle protein- and gene-related
problems (Ng et al., 2010; Chen et al., 2018; Zhang et al., 2019;
Zhang and Chen, 2020; Liu et al., 2021; Pan et al., 2021a; Pan et al.,
2021b; Zhu et al., 2021). Here, the human PPI information
reported in STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins, http://www.string-db.org/, Version
10.0) (Szklarczyk et al., 2014) was adopted to construct a PPI
network. To this end, we downloaded the file “9606. protein.links.
v10. txt.gz”, containing 4,274,001 PPIs that involve 19,247 human
proteins. Each PPI consists of two proteins, encoded by Ensembl
IDs, and one confidence score with range between 1 and 999.
Such score indicates the strength of the PPI. In fact, such score is
obtained by considering several aspects of proteins, including
close neighborhood in (prokaryotic) genomes, gene fusion,
occurrence across species, gene coexpression, literature
description, etc. As elaborated in the website of STRING, PPIs
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in STRING are derived from genomic context predictions, high-
throughput lab experiments, (conserved) co-expression,
automated textmining, previous knowledge in databases. Thus,
they can widely measure the associations of proteins. This is the
great advantage compared with the PPIs reported in other public
databases. The constructed PPI network defined 19,247 proteins
as nodes, and two nodes were connected by an edge if and only if
they can constitute a PPI. Evidently, each edge in the network
represented a PPI. To further indicate the difference of PPIs, we
assigned each edge with a weight, which was defined as the
confidence score of the corresponding PPI. For easy description,
such PPI network was denoted by N.

LHD-Based Method
Based on the PPI network N, an LHD-based method was
designed to discover driver genes involving two omics levels.
The method consisted of two stages. In the first stage, novel driver
genes at each of four omics levels were identified by applying the
LHD algorithm on the network N and performing a screen
procedure. In the second stage, the novel driver genes at each
level were refined to discover latent driver genes involving two
omics levels.

LHD Algorithm
The LHD algorithm is a network diffusion algorithm (Carlin
et al., 2017) that can deliver heat values on seed nodes to others in
the network. Given a network N, let A be its adjacent matrix and
D be the diagonal matrix, storing the degree of all vertices in the
network. The Laplacian matrix L was defined as D-A, i.e., L = D-
A. In addition, let S be the seed node set. The heat values on seed
nodes are stored in a vector, denoted by H(t0), and its length is
equal to the number of nodes in the network N. Evidently, each
component corresponds to one node, indicating the heat value of
the node. InH(t0), components corresponding to seed nodes are
set to 1/|S|, and others are set to zero. With the pass of time, heat
values on seed nodes are transmitted to other nodes in the
following manner:

H(t) � H(t0) × e−Lt, (1)

where t represents the time passed, and H(t) indicates the
distribution of heat values at time t. Generally, as the time
passes by, H(t) becomes stable. In reality, we tried several
values of t and compared two consecutive vectors. If they were
close enough, then the LHD algorithm was stopped. The final
heat value distribution vector was selected as the outcome of the
algorithm. Basing on this vector, we can extract the heat value of
each node in the network. Nodes with high heat values were
deemed to have strong associations with the seed nodes. By
setting a proper threshold, important nodes can be selected.

For driver genes at one omics level, their encoding proteins
were first obtained and fed into the LHD algorithm as seed nodes.
The LHD algorithm was then performed on the PPI network N.
According to the outcomes of the algorithm, nodes (proteins)
assigned high heat values were selected as the raw driver genes at
this level.

Screen Procedure
Some raw driver genes at each omics level can be obtained by
executing the LHD algorithm. However, false-positive genes were
inevitably included. A screen procedure was designed to control
these genes.

Permutation Test
Heat value is very important to determine the selection of nodes
(proteins). However, this value on some nodes (protein) was
highly related to the structure of network N. Some nodes
(proteins) more easily received high heat values, regardless of
which nodes were seed nodes. Thus, the significance of heat value
on each raw driver gene selected by the LHD algorithm should be
further measured. For raw driver genes at each level, a
permutation test was performed. In detail, we randomly
generated 500 gene sets, which contained the same number of
driver genes at this level. For each generated gene set, the LHD
algorithm was executed on N with genes in this set as seed nodes.
Finally, each raw driver gene was assigned a heat value. After all
the randomly produced sets were considered, each raw driver
gene was assigned 500 heat values. These values can be used to
measure the significance of actual heat value that was obtained by
driver genes at this level. A p-value was computed for each raw
driver gene g as follows:

p − value(g) � Heat>
500

, (2)

where Heat> denotes the number of randomly produced gene
sets, on which the heat value of g is larger than its actual heat
value. If a novel driver gene had a high p-value, then the heat
values on several randomly generated gene sets were higher than
its actual heat value, indicating that this heat value had no
statistical significance. As such, this gene was not special for
the driver genes at this level. Thus, we should select novel driver
genes with low p-values. Given that 0.05 is always used as the
cutoff to measure statistical significance, this study adopted it to
filter novel driver genes at each level.

Association Test
By the permutation test, some false positive genes produced by
the PPI network were excluded. To further select essential genes
among remaining genes, we designed an association test. Several
studies have reported that interacting proteins are more likely to
share common functions. If the strength of the interaction was
considered, then two proteins in a strong interaction were more
likely to share common functions than those in a weak
interaction. As mentioned in Network construction, the
confidence score in STRING can measure the strength of an
interaction and thus can be used to design the association test. For
formulation, the confidence score on the interaction of proteins
p1 and p2 was denoted by S(p1, p2). A measurement, namely
maximum association score (MAS), was calculated for each
driver gene g by

MAS(g) � max{S(g, g′)∣∣∣∣∣g′ is a driver gene} (3)
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Clearly, the gene with a high MAS was more important and
should be kept. We can set a high threshold of MAS to select
essential driver genes.

Function Test
To further extract essential driver genes at each level, we designed
a third test, namely, function test. This test was based on two
types of functional terms: 1) gene ontology and 2) KEGG
pathway. In general, driver genes at some level may be
annotated by some common functional terms. If the latent
one exhibited similar functional terms to some driver genes,
then it had a high probability to be a novel driver gene. We first
used enrichment theory (Subramanian et al., 2005) to measure
the relationship between one gene and all functional terms. In
detail, for one gene g and one functional term f, let G be the set
consisting of g and its interacting genes and F be the set
containing genes annotated by f. The enrichment score
between g and f was defined as the -log10 of the
hypergeometric test p value of G and F, which can be
computed by

Enrichment score(g, f) � −log10
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝∑n

k�m

(M
k
)(N −M

n − k
)

(N
n
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

where N stands for total number of human genes, M and n
represent the number of genes in F and G, respectively, m
denotes the number of common genes in F and G. The
obtained values were collected in a vector, denoted by
ES(g) for gene g. The linkage between two genes was
measured according to their vectors by using the following
equation:

Ψ(g1, g2) � ES(g1) · ES(g2)����ES(g1)���� · ����ES(g2)����, (5)

where g1 and g2 represent two genes, ES(g1) · ES(g2) denote
the dot product of two vectors, and ‖ES(g1)‖ indicates the
module of the vector. Evidently, higher values indicated
stronger linkage of two genes. For each latent driver gene
g, the maximum function score (MFS) was computed as
follows:

MFS(g) � max{Ψ(g, g′)∣∣∣∣∣g′ is a driver gene} (6)

Similar to MAS, genes with high MFS values were more likely
to be novel driver genes. By setting a proper threshold, essential
genes can be obtained.

Intersection Operation
Based on the LHD algorithm and a screen procedure, some
essential novel driver genes were obtained at each omics
level. By taking the intersection operation, we identified
some driver genes involving two levels. As four levels were
considered in this study, we finally obtained six driver gene
sets. Genes in each set were deemed to be driver genes
involving two omics levels.

RESULTS

In this study, an LHD-based method was proposed to identify
novel driver genes involving two omics levels. The entire
procedures are illustrated in Figure 1. The detailed results at
each procedure are presented in this section.

Latent Driver Genes at Each Level
In the first stage of LHD-based method, some latent driver genes
were identified for each omics level. For epigenomics level, 153
validated driver genes were fed into the LHD algorithm, which
was executed on the PPI network N. Each node was assigned a
heat value. We selected the nodes with heat value no less than
10–5 and obtained 13,101 nodes. The heat values of the selected
nodes are provided in Supplementary Table S1. A screen
procedure was then performed to filter essential candidates.
First, a permutation test was adopted to determine the
statistical significance of heat value on each selected node,
resulting in a p-value for each node (Supplementary Table
S1). A total of 311 nodes with p-value less than 0.05 were
selected. Second, an association test was executed to test the
importance of the 311 remaining nodes, assigning an MAS to
each node (Supplementary Table S1). The threshold of MAS
was set as 400, resulting in 228 nodes. Finally, function test was
used to evaluate each remaining node, which was assigned with
an MFS (Supplementary Table S1). The threshold of MFS was
set as 0.3. A total of 199 nodes were obtained, and their
corresponding genes were selected as the latent driver genes
at epigenomics level.

For the three other levels, the same procedures with common
thresholds for all measurements were performed. All
measurements on each node at the three levels are provided in
Supplementary Tables S2–S4. The numbers of remaining nodes
at each stage of LHD-based method are listed in Table 1. As a
result, 84, 174, and 39 latent driver genes were accessed at levels of
genomics, transcriptomics, and post-transcriptomics regulation,
respectively.

For latent driver genes at each omics level, we further
investigated their associations with validated genes
mentioned in Datasets. For each omics level, the PPIs
between latent and validated genes were extracted. For each
latent gene, we counted three values, which were defined as the
number of validated genes that can interact with the latent
gene with medium confidence (≥400), high confidence (≥700)
and highest confidence (≥900). These values of all latent genes
at four omics levels were indicated by four boxplots, as shown
in Figure 2. It can be observed that each latent gene can
interact with at least one validated gene with medium
confidence and several latent genes can interact with
validated genes with high or highest confidence. This fact
indicated that the relationships between latent and validated
genes were quite close, increasing the probabilities of latent
genes to be actual driver genes.

Driver Genes Involving Two Levels
According to LHD-based method, we conducted the intersection
operation of latent driver genes at two levels. Some driver genes
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involving two levels were obtained. The number of driver genes
involving two levels is listed in Table 2, and the detailed genes for
any two levels are also listed in Table 2. At least one driver gene
was accessed for any two levels. Discussion presents an extensive
discussion on some of the obtained genes.

Comparison With Previous Results
Two previous studies (Chen et al., 2016; Yuan and Lu, 2017)
reported some novel driver genes involving two omics levels. The
comparison of driver genes indicated that the driver genes

reported in the present study were completely different from
those in previous two studies. The previous two studies adopted
the shortest path-based and RWR-based methods, respectively, to
discover novel driver genes, which had quite different principles
and procedures; as such, the difference in the driver genes
reported between the present study and previous studies was
considered reasonable. On the other hand, each method has its
limitations, and some driver genes may be omitted. The driver
genes reported in this study can be essential supplements for the
previous studies.

FIGURE 1 | Entire procedures of LHD-based method for identification of multi-omics lung cancer driver genes. Based on driver genes at one omics level, the
Laplacian heat diffusion (LHD) algorithm is executed on a protein–protein interaction network reported in STRING to identify raw driver genes. These genes are filtered by
a screen procedure. The intersection operation is conducted to identify driver genes involving any two omics levels. Six groups are accessed, each of which contains
driver genes involving two omics levels.

TABLE 1 | Remaining latent driver genes at each stage of LHD-based method.

Level LHD-algorithm Permutation test Association test Function test

Epigenomics 13,101 311 228 199
Genomics 14,321 226 114 84
Transcriptomics 16,256 224 184 174
Post-transcriptomics 17,007 59 44 39
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DISCUSSION

Novel driver genes involving two of the four omics levels
(epigenomics, genomics, transcriptomics, post-transcriptomics
levels) were identified using LHD-based method. Six groups
of latent multi-omics driver genes for lung cancer were
screened. According to recent publications, several identified
multi-omics driver genes involving two of the four omics
levels can be confirmed to be associated with fundamental
lung cancer tumorigenesis-associated pathological mechanisms.
The detailed discussion on the genes identified in each group can
be seen below.

Shared Genes Between Epigenomics and
Post-transcriptomics Regulation
Two genes were identified to be lung cancer drivers at
epigenomics (methylation) and post-transcriptomics regulation
(microRNA) levels. The first gene is VIPR2 (ENSP00000262178).
Early in 2017, researchers from Sungkyunkwan University
confirmed that VIPR2 is associated with lung cancer at the
DNA methylation level (Um et al., 2017). As for the
microRNA level, no direct reports confirmed the correlation
between lung cancer and VIPR2. However, such gene has been
shown to be associated with pancreatic cancer tumorigenesis at
the microRNA level (Naderi et al., 2014), indicating the specific
role of the gene during tumorigenesis. Therefore, this gene could
have regulatory effects on lung cancer at the microRNA level. For
the next gene involving two omics levels, MIXL1
(ENSP00000355775), an epigenome analyses in 2019 on
circulating tumor cells associated with metastasis revealed that
circulating tumor cells in lung cancer has typical epigenomic
alterations inMIXL1 (Gkountela et al., 2019). As for its regulatory
effects at post-transcriptomics microRNA level, effective
microRNAs from famous microRNA family, let-7 family,
has shown to be associated with the dedifferentiation
transformation of lung cells during embryonic development
or malignant transformation (Navarro and Monzo, 2010). The
gene MIXL1 is regulated by microRNAs from let-7 family
during the initiation and proliferation of lung cancer stem cells
(Navarro and Monzo, 2010). Therefore, such gene is a
potential biomarker presenting abnormal microRNA level
regulation during lung tumorigenesis.

Shared Genes Between Epigenomics and
Genomics
Six genes were shown to be essential lung cancer drivers involving
methylation and genomics levels. The first gene HOXC12
(ENSP00000243103) has been reported to be triggered by its
pathological methylated and inactivated promoter during lung
tumorigenesis, validating its specific driver role at themethylation
level (Guerrero-Preston et al., 2014). At the genomics level,
researchers from Iran in 2019 reported that a SNP in gene
HOXC12 is associated with risk of multiple cancer subtypes,
implying the specific lung cancer driver potentials of this gene
(Hajjari and Rahnama, 2019). Genes such as WNT9B
(ENSP00000290015) (Xu et al., 2019), POU3F3

FIGURE 2 | Boxplot to show the associations between latent driver
genes and validated ones at each of four omic levels. (A) Epigenomics; (B)
Genomics; (C) Transcriptomics; (D) Post-transcriptomics. The Y-axis
represents the number of validated genes that can interact with latent
genes with different strength. The red (green, blue, respectively) box denotes
number of validated genes that can interact with latent genes with medium
(high, highest, respectively) confidence.

TABLE 2 | Driver genes involving two omics levelsa.

Level Epigenomics Genomics Transcriptomics Post-
transcriptomics

Epigenomics - 6 9 2
Genomics HOXC12, WNT9B, POU3F3, PAX7, NLGN4Y, TBR1 - 6 1
Transcriptomics HAND1, VIPR2, PTH2, BMP3, TBR2, WNT7B, BMP5,

CMTM1, CER1
KRT20, MMP16, MMP19, COL16A1,
ADAMTS3, TRPC3

- 1

Post-
transcriptomics

VIPR2, MIXL1 MMP24 VIPR2 -

aNumbers in the upper triangle part of this table represent the numbers of driver genes involving two omics levels.
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(ENSP00000355001) (Zeng et al., 2020), and PAX7
(ENSP00000364524) (Rácz et al., 2000) are lung cancer
biomarkers at different omics levels. As for their respective
contribution at epigenomics and genomics levels, WNT9B
(Lan et al., 2006; Farkas et al., 2014), POU3F3 (Li et al., 2014;
Kumar et al., 2016), and PAX7 (Starzyńska et al., 2020) have all
been shown to be associated with lung cancer at epigenomics and
genomics levels independently. For the two remaining genes,
NLGN4Y (ENSP00000342535) and TBR1 (ENSP00000374205),
in 2019, researchers from University of Southampton
summarized NLGN4Y as a multi-omics level driver for lung
cancer at least at epigenomics and transcriptomics levels
(Jeyananthan and Niranjan, 2019). As for the genomics level,
variants in NLGN4Y can regulate cell proliferation in multiple
pathogenesis, though not directly reported in lung cancer
(Nardello et al., 2021). The potential regulatory effects of such
gene on cell proliferation indicated that it may also be associated
with lung cancer at the genomic level. Similar experimental works
support the driver role of the TBR1 gene at genomics and
epigenomics levels (Ischenko et al., 2014; Serth et al., 2020).
Therefore, all predicted genes at epigenomic (methylation) and
genomics levels have been validated to be potential lung cancer
drivers.

Shared Genes Between Epigenomics and
Transcriptomics
Nine genes have been shown to be associated with lung cancer
and are potential lung cancer drivers at epigenomics and
transcriptomics levels. Among the nine genes, VIPR2
(ENSP00000262178) has already been discussed above and
shown to be regulated at epigenomics and post-
transcriptomics level. According to the same supporting paper
mentioned above, this gene can be regulated at the
transcriptomics level (Um et al., 2017). Other genes, such as
TBR2 (ENSP00000295743) and WNT7B (ENSP00000341032),
which are the homologues of TBR1 and WNT9B, respectively,
are also reasonable to be speculated as candidate regulators at
epigenomics and transcriptomics levels. Considering the
limitation of the manuscript’s length, we selected three
candidates for detailed discussion: HAND1, BMP3, and
CMTM1. According to recent publications, HAND1 is a
typical DNA methylation biomarker of small-cell lung cancers
(Kalari et al., 2013). At the transcriptomics level, HAND1 has
been identified as a biomarker in a newly reported single-cell
study (Yin et al., 2019). Apart from HAND1, BMP3 together with
BMP5 has been considered potential multi-omics level lung
cancer biomarkers according to recent publications. In 2015,
researchers from Huazhong University of Science and
Technology conducted transcriptomics level analyses on
human lung squamous cell carcinoma, confirming the driver
role of BMP3 and BMP5 at the transcriptomics levels (Deng et al.,
2015). At the epigenomics level (methylation), an earlier study on
colorectal cancer confirmed that the methylation alteration on
BMP3 or BMP5 may trigger the malignant transformation of
normal cells (Loh et al., 2008). Therefore, the two genes could be
potential lung cancer biomarkers at multi-omics levels. The

CMTM1 gene has also been reported by two independent
studies to be associated with lung cancer at transcriptomics
(Hou et al., 2020) and methylation (Shao et al., 2007) levels,
respectively. Other genes, such as PTH2 (Kim et al., 1998), TBR2
(Kaowinn et al., 2017),WNT7B (Kirikoshi and Katoh, 2002), and
CER1 (Semenova et al., 2016), either have similar effects shared
with their homologues or have been independently reported to be
associated with lung cancer at different omics levels.

Shared Genes Between Genomics and
Post-transcriptomics Regulation
Only one gene has been predicted to regulate lung cancer-
associated pathological effects at genomics and post-
transcriptomics levels. According to recent publications,
MMP24 (ENSP00000246186) is associated with lung cancer at
different omics levels (Fontenele et al., 2015; Wang et al., 2019;
Wang et al., 2020). At genomics and post-transcriptomics levels,
variants on MMP24 have been shown to be associated with lung
cancer via a GWAS study in 2015 (Fontenele et al., 2015). In 2019,
researchers from Tumor Hospital of Wuwei confirmed that
microRNA-133a regulates MMP24 and further contributes to
the tumorigenesis of lung cancer (Wang et al., 2019).

Shared Genes Between Transcriptomics
and Post-transcriptomics Regulation
For genes that have been identified to be potential lung cancer
drivers at transcriptomics and post-transcriptomics levels, only
one gene, namely, VIPR2 (ENSP00000262178), was identified as
multi-omics level regulator. As discussed above, this gene has
shown to be effective at epigenomics, transcriptomics, and post-
transcriptomics. Therefore, this gene could be a multi-omics
regulator.

Shared Genes Between Genomics and
Transcriptomics
Six genes have been identified to regulate lung tumorigenesis via
genomics and transcriptomics levels. The first gene KRT20
(ENSP00000167588) has been shown to define the invasive
characteristics of cancer cells at the transcriptomics level in
multiple cancer subtypes (Eckstein et al., 2018), including lung
cancer (Mollaoglu et al., 2018; Maly et al., 2019). As for the
genomics level, variants in KRT20 are associated with lung cancer
(Huang et al., 2015). Genes MMP16 (ENSP00000286614) and
MMP19 (ENSP00000313437) belong to the matrix
metalloproteinase family that is associated with multiple
cancer subtypes, including lung cancer (Rudolph-Owen et al.,
1998). As for their effects on genomics and transcriptomics levels,
in the same publication, a summary of the effects of matrix
metalloproteinases at multi-omics have been presented and
demonstrated. TRPC3 (ENSP00000368966), as another novel
driver gene associated with lung cancer at genomics and
transcriptomics levels, has been validated to be potential
genomic and transcriptomic driver for lung cancer. In 2016, a
researcher from Guangzhou Medical University validated the

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 10 | Article 8252727

Yuan et al. Identification of Cancer Driver Genes

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


effects of TRPC3 variants on lung cancer risk (Zhang et al., 2016).
In 2021, such gene has been reported to be associated with
malignant transformation at the transcriptomics level (Lin
et al., 2021). The two remaining genes are COL16A1
(ENSP00000362776) and ADAMTS3 (ENSP00000286657). In
2016, COL16A1 has been shown to be associated with lung
tumorigenesis via specific mutant patterns validated by in vitro
A549 cell lines (Wang et al., 2016). As for the transcriptomics
level, researchers from Medical University of South Carolina
validated that at least in oral squamous cell carcinoma, the
alteration of the gene expression of COL16A1 may promote
tumor growth via interacting with the RNA-binding protein
CELF1 (House et al., 2015). As for the last predicted gene
ADAMTS3, according to recent publications, this gene has
been confirmed to participate in lung tumorigenesis at
genomics and transcriptomics levels (Vanni et al., 2016;
Hannen et al., 2019).

Overall, several identified multi-omics lung cancer drivers
were validated to be associated with fundamental pathological
mechanisms. Therefore, LHD-based method was effective and
accurate to identify lung cancer-associated tumor drivers and
may help reveal the potential mechanisms of lung tumorigenesis.

Clinical Applications on New Driver Genes
Based on recent publications, some identified multi-omics lung
cancer drivers have been already applied for clinical use on the
diagnosis or treatment against lung cancer. According to recent
publications,WNT9B, as the multi-omics biomarker for lung cancer
at both epigenomics and genomics levels has been shown to act as an
effective drug target (Stewart et al., 2014). The application of such
drug can significantly improve the survival probability for lung
cancer (Stewart et al., 2014). The next widely reported gene is
MMP19, as a new driver gene at both genomics and
transcriptomics levels. It has been widely reported to be
associated with tumorigenesis, including gastric cancer (Shen
et al., 2020), glioma (Luo et al., 2018) and lung cancer (Yu et al.,
2014). As for its clinical application for lung cancer diagnosis and
treatment, MMP19 has been reported to promote the metastasis of
lung cancer and is associated with increased mortality of lung cancer
as an active biomarker (Yu et al., 2014). TRPC3, as a driver gene at
both genomics and transcriptomics levels have also been recognized
as a promising clinical biomarker for lung cancer (Lastraioli et al.,
2015), indicating the clinical significance of such multi-omics
biomarker.

CONCLUSION

This study investigated lung cancer driver genes involving two
omics levels. An LHD-based method was proposed to identify
multi-omics lung cancer driver genes. Several genes, such as
HOXC12, HAND1, VIPR2, KRT20, MMP24, and VIPR2, were
discovered, and their special roles at different omics levels of lung
cancer were confirmed. These findings may help improve the
research progress on lung cancer.
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