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Successful pregnancy requires the maternal immune system to tolerate the semi-
allogeneic embryo. A good trophoblast function is also essential for successful embryo
implantation and subsequent placental development. Chemokines are initially described in
recruiting leukocytes. There are rich chemokines and chemokine receptor system at the
maternal–fetal interface. Numerous studies have reported that they not only regulate
trophoblast biological behaviors but also participate in the decidual immune response. At
the same time, the chemokine system builds an important communication network
between fetally derived trophoblast cells and maternally derived decidual cells.
However, abnormal functions of chemokines or chemokine receptors are involved in a
series of pregnancy complications. As growing evidence points to the roles of chemokines
in pregnancy, there is a great need to summarize the available data on this topic. This
review aimed to describe the recent research progress on the regulation and function of
the main chemokines in pregnancy at the maternal–fetal interface. In addition, we also
discussed the potential relationship between chemokines and pregnancy complications.
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1 INTRODUCTION

Pregnancy is a complex and highly coordinated physiological process. Successful pregnancy involves
the cooperation of multi-step crucial events at the maternal–fetal interface. First, at the early stages of
pregnancy, the proper invasion, proliferation, and differentiation function of trophoblast cells are
particularly important for achieving placental formation and embryonic development (Burrows
et al., 1996; Anin et al., 2004; Staun-Ram and Shalev, 2005). In addition, thematernal immune system
should also be modulated to tolerate the semi-allogeneic embryo (Finn, 1975; Trowsdale and Betz,
2006). However, the mechanisms responsible for maternal tolerance remain incompletely elucidated.
Chemokines are a superfamily of small-molecule cytokines, widely expressed in trophoblast cells,
decidual stromal cells (DSCs), and decidual immune cells (DICs) at the maternal–fetal interface.
Emerging evidence has identified chemokines and chemokine receptors as essential contributors in
pregnancy, participating in trophoblast invasion, decidualization, and immune cell recruitment
(Hannan and Salamonsen, 2007; Ramhorst et al., 2016; Ashley et al., 2021). Moreover, the
aforementioned functional abnormalities of chemokines have been reported in several pregnancy
complications, including preeclampsia (PE), recurrent spontaneous abortion (RSA), and preterm
birth (PTB) (Whitcomb et al., 2007; Kwak et al., 2014; Ali et al., 2021; Wang et al., 2021; Zheng et al.,
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2021). In this review, we summarized the crucial regulatory roles
of chemokines in pregnancy in detail and highlighted their
importance on specific cellular processes at the maternal–fetal
interface. We also investigated the main chemokines and
chemokine receptors related to pregnancy complications,
hoping to provide a better understanding of these diseases.

2 OVERVIEW OF CHEMOKINES AND
CHEMOKINE RECEPTORS

Chemokines are a group of small secretory proteins of
8–10 kDa, well known for their chemotactic abilities (Zlotnik
et al., 2006). Structurally, they are divided into the C chemokine
ligand (XCL1-2), the CC chemokine ligand (CCL1-28), the CXC
chemokine ligand (CXCL1-17), and the CX3C chemokine
ligand (CX3CL). More than 50 chemokines have been
identified since the late 1980s (Rollins, 1997; Zlotnik and
Yoshie, 2000; Yoshie et al., 2001). They are widely expressed
in humans (Sarkar et al., 2012), pigs (Hu et al., 2016), murine
(Sarkar et al., 2012), and sheep (Ashley et al., 2011). Certain
viruses also express molecules similar to chemokines (Penfold
et al., 1999; Pontejo and Murphy, 2017; Pontejo et al., 2018).
Correspondingly, there are about 20 chemokine receptors,
including the CC chemokine receptor (CCR), the CXC
chemokine receptor (CXCR), the C chemokine receptor
(XCR), and the CX3CR chemokine receptor (CX3CR)
(Zlotnik et al., 2006). In addition, there is a limited set of
atypical chemokine receptors (ACKR1-4), which act as
chemokine scavengers without eliciting chemotaxis (Stone
et al., 2017). Together, chemokines and chemokine receptors
constitute a rich chemokine system. It is generally accepted that
there is a redundancy characteristic in the chemokine system. In
other words, most chemokine receptors tend to bind to more
than one ligand, and at the same time, a single ligand can also
interact with different receptors. However, a recent study
questions this general and oversimplified point of view
(Ellwanger et al., 2020). Functionally, chemokines have been
widely reported to be involved in inflammation, tumor, or
metabolic diseases (Charo and Ransohoff, 2006; Nagarsheth
et al., 2017; Chen et al., 2018).

3 REGULATION AND FUNCTION OF
CHEMOKINES AT THE MATERNAL–FETAL
INTERFACE
In recent years, many studies have highlighted the importance of
chemokines in pregnancy. Compared to non-pregnant
endometrium, the decidual tissue shows increased chemokine
levels (Engert et al., 2007; Segerer et al., 2009). During labor, some
inflammatory chemokines are also upregulated in the uterus
myometrium (Huang et al., 2021). At the maternal–fetal
interface, the trophoblast cells, DSCs, and DICs establish rich
chemokines and chemokine receptor network (Du et al., 2014).
This chemokine network not only regulates specific recruitment
and activation of appropriate leucocytes but also coordinates

precisely orchestrated invasion of trophoblast through the
decidua and maternal vasculature (Jones et al., 2004; Red-
Horse et al., 2004; Hannan and Salamonsen, 2007; Fraccaroli
et al., 2009). In this section, we will provide a detailed overview of
the regulation and function of crucial chemokines at the
maternal–fetal interface, as shown in Figure 1.

3.1 CCL3/CCL5/CCR1
Trophoblasts, which form at the early stages of pregnancy,
subsequently differentiate along the villous or extravillous
trophoblast (EVT) pathway. In detail, at the tip of the
anchoring villi, the trophoblasts proliferate and differentiate
into EVTs while on the border layer of the floating villi, they
differentiate into syncytiotrophoblasts. The former participates
in endometrium decidualization and spiral artery remodeling,
while the latter is responsible for nutrition transport, waste
elimination, and placental endocrine functions. All of these
aforementioned processes are related to the trophoblast
biological function of invasion, migration, proliferation, and
apoptosis. Chemokines and chemokine receptors have shown
crucial regulatory roles in these aspects (Fujiwara et al., 2005a).
It has been found that trophoblasts can acquire chemokine
receptors CCR1 as they differentiate into invasive EVTs. Sato
et al. (2003) collected the human placental tissue at 9–10 weeks
of gestation for immunohistochemical detection. They found
that the EVTs highly expressed CCR1 while the
syncytiotrophoblasts and cytotrophoblasts hardly expressed
CCR1 (Sato et al., 2003). They further demonstrated that
CCR1 combined with its ligand CCL5 or CCL3 promoted the
migration of the EVTs, which were isolated from the explant
cultures in vitro (Sato et al., 2003). The primary EVTs can also
trap CCL5 from maternal platelets, thereby enhancing their
invasion abilities (Sato et al., 2005; Sato et al., 2010; Sato, 2020).
Consistently, in the first trimester of pregnancy, CCL3 also
showed a rapid increase during trophoblast differentiation
toward EVTs (Drake et al., 2001). In contrast, the expression
of CCR1 showed a significant decrease after EVTs migrated to
the decidua. Interestingly, Fujiwara et al. (2005b) found that the
EVTs also expressed dipeptidyl peptidase IV to metabolize
CCL5, therefore inhibiting the excessive cell invasion. This
regulation of trophoblast invasion and differentiation
function by the chemokine-CCR1 system is considered a key
molecular mechanism of maternal vascular remodeling during
human early pregnancy (Sato et al., 2012).

3.2 CXCL12/CXCR4/CXCR7
CXCL12, also known as stromal cell-derived factor 1, is initially
discovered in the bone marrow–derived stromal cells (Balabanian
et al., 2005). According to reports, CXCL12 is widely expressed in
cytotrophoblasts, syncytiotrophoblasts, and EVTs (Douglas et al.,
2001; Red-Horse et al., 2001; Wu et al., 2004). Its receptors
CXCR4 and CXCR7 are detected in DSCs (Zhou et al., 2008),
trophoblast cells (Wu et al., 2004), and decidual natural killer
(dNK) cells (Tao et al., 2015). Studies have shown that the
CXCL12/CXCR4/CXCR7 axis is the critical signaling
component of pregnancy through participating in multiple
processes at the maternal–fetal interface.
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3.2.1 Regulation and Function in Trophoblast Cells
and Decidual Stromal Cells
The CXCL12/CXCR4/CXCR7 axis shows multiple roles in
trophoblast cells during pregnancy. Wu et al. (2004) first
isolated human placental trophoblast cells at 5–10 weeks of
gestation, and they found that CXCL12/CXCR4 increased the
trophoblast viability in an autocrine manner in vitro. Tripathi
et al. (2014) reported that CXCL12/CXCR7 can promote JAR cell
survival in vitro. Lu et al. (2016) observed that with decreased
CXCR4 and CXCL12 levels, term human placental trophoblasts
isolated from PE patients showed a significant apoptosis
tendency, suggesting their roles in trophoblast apoptosis.
Specific knockdown of CXCR4 in mouse trophectoderm cells
of blastocysts significantly decreased the implantation rate of
embryos (Bao et al., 2016). Further analysis indicated that
CXCR4 is required upstream of trophectoderm cell apoptosis
and migration (Bao et al., 2016). CXCL12/CXCR4 also shows
regulation in trophoblast invasion. Both CXCR4 and
CXCR7 showed increased expression during the
cytotrophoblast differentiation toward the invasive phenotype
(Schanz et al., 2011a). In vitro experiments showed that
CXCR4 favored JEG-3 cell migration and invasion (Zhang
et al., 2018). Correspondingly, downregulated CXCL12 showed
direct suppression in HTR-8 cell invasion (Tamaru et al., 2015).
In these aforementioned methods, CXCL12/CXCR4/
CXCR7 widely regulates the trophoblast cell biological function.

The migratory and invasive capacities of human endometrial
stromal cells (ESCs) are increasingly recognized as important
features in the reproductive function (Weimar et al., 2013).

Decidualized ESCs even perform enhanced motility and
invasive capacity (Gellersen et al., 2010). By using an embryo
coculture model, Grewal et al. (2008) reported this motility of
decidualized ESCs. Interestingly, CXCL12 shows a functional role
in DSC invasion. Ren et al. (2012) found that primary
trophoblast-derived CXCL12 promoted the invasion of human
first-trimester DSCs in a paracrine manner (Ren et al., 2012).
Further investigation showed that this effect was mediated via
CXCR4 but not CXCR7 (Zheng et al., 2018). CXCR7may play the
role of decoy in trophoblast invasion. At the same time, the
invasiveness activity of trophoblast cells in coculture with DSCs
also increased significantly and could be inhibited by an anti-
CXCR4 neutralizing antibody (Zhou et al., 2008). These studies
altogether suggest that CXCL12/CXCR4/CXCR7 not only
participates in regulating trophoblast cells and the DSC
biological function but also constructs a cross-talk between
trophoblast cells and DSCs during pregnancy.

3.2.2 Regulation and Function in Decidual Immune
Cells
3.2.2.1 Natural Killer Cells
Up to 70% of DICs are NK cells (King et al., 1989; Verma et al.,
2000). In contrast to CD56dimCD16+ peripheral NK (pNK) cells,
dNK cells are mainly CD56brightCD16− cells (Jabrane-Ferrat,
2019). DNK cells have poor cytotoxic activity and are believed
to be critical in maintaining maternal–fetal tolerance and
placental vascular remodeling. CXCR4 is essential for the
composition of dNK cells. Hanna et al. (2003) found that
CXCR4 was preferentially expressed on CD16− dNK subsets.

FIGURE 1 | Regulation of main chemokines and chemokine receptors at the maternal–fetal interface. CXCL16 binding to CXCR6 promotes trophoblast invasion
and proliferation, as well as endometrium decidualization in an autocrine and paracrine manner, respectively. CXCL16 is also involved in recruiting γδT cells and
monocytes. Moreover, CXCL16/CXCR6 can induce M2 phenotype macrophages and decrease their IL-15 levels, which in turn induce the inactivation of NK cells.
Trophoblast-derived CXCL12 with CXCR4 not only promotes trophoblast cell migration, invasion, and apoptosis via an autocrine manner but also enhances DSC
invasion by upregulating the CXCR4 expression in a paracrine manner. Additionally, the trophoblast-derived CXCL12 also participates in NK cell recruitment and
enhances the adhesive abilities of dNK cells to DSCs. CCL2/CCR2 enhances DSC invasion, proliferation, and growth in an autocrine manner. Moreover, CCL2/
CCR2 also shows roles in M1/M2 phenotype polarization, monocyte recruitment, Treg recruitment, and Th1/Th2 immune response. CCL3/CCL5/CCR1 plays an
essential function in trophoblast invasion.
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Wu et al. (2005) also revealed that CD56brightCD16−dNK cells
highly transcribed CXCR4. Moreover, CXCL12/CXCR4 shows
crucial roles in regulating NK cell recruitment and differentiation
during pregnancy. According to a previous report, the CXCL12/
CXCR4 axis promoted the recruitment of CD25+ NK cells and the
accumulation of CD3− CD56brightCD25+ dNK cells at the
maternal–fetal interface (Tao et al., 2015). Subsequently, Piao
et al. (2015) found that it is the first-trimester human trophoblast-
derived CXCL12 that induced pNK cell recruitment and
differentiation toward dNK cells. A recent study also reported
that trophoblast-derived CXCL12 enhanced the adhesive abilities
of CD56brightCD82−CD29+ NK cells to DSCs via the CXCL12/
CD82/CD29 signaling pathway and thus contributed to
CD56bright NK cell enrichment in decidua (Lu et al., 2020a). In
particular, decidual CXCR4+CD56bright NK cells have been
identified as a novel NK subset, which plays vital immune-
modulatory roles in the Th1/Th2 response. It has long been
established that dynamic deviations in Th1 and Th2 profiles are
closely associated with pregnancy maintenance (Raghupathy,
2001). In the initial stages of pregnancy, there is a clear need
for an active Th1 inflammatory response to achieve embryo
implantation (Granot et al., 2012). Subsequently, a continuous
prevalence of anti-inflammatory Th2 bias helps the mother to
accommodate the semi-allogeneic embryo until a progressive
shift toward Th1 predominance for labor (Challis et al., 2009).
According to the report, CXCR4+CD56bright dNK cells can
promote the Th2 shift in an IL-4-dependent manner (Tao
et al., 2021). Diminished CXCR4+ dNK cells and their
impaired ability to induce Th2 differentiation were already
found in RSA patients and mouse models (Tao et al., 2021).
Moreover, the adoptive transfer of CXCR4+ dNK cells to NK-
deficient mice showed their great therapeutic potential in
recovering the Th2/Th1 bias and reducing embryo resorption
rates (Tao et al., 2021). Collectively, these studies suggest a crucial
role of CXCL12/CXCR4 in NK cell recruitment and the Th1/
Th2 response, providing the foundation for understanding the
regulation of NK cells in maternal–fetal immune tolerance.

3.2.2.2 T Cells
A previous study investigated the role of CXCL12 in T-cell
recruitment and differentiation. According to this report, the
percentage of embryo loss was markedly decreased in the
pregnant non-obese diabetic mice by exogenous regulatory T
(Treg) cell transfer along with a CXCL12 injection (Lin et al.,
2009). Subsequent in vitro cell migratory experiments showed
that T-cell migration cannot be detected when no CXCL12 was
added beforehand. In contrast, a considerable percentage of
T cells were attracted after CXCL12 addition (Lin et al., 2009).
These results indicate that CXCL12 may regulate the migration of
T cells into the pregnant uterus and differentiation toward Treg,
therefore establishing a beneficial environment for allogeneic
pregnant nonobese diabetic mice. The CXCL12/CXCR4 axis is
also involved in the Th1/Th2 balance at the maternal–fetal
interface in early human pregnancy. By the bioplex assay, Piao
et al. (2012) found that human recombinant CXCL12 alone
increased Th2-type IL-4 and IL-10 production while
decreasing the Th1-type TNF-α expression in primary DICs

isolated from the first-trimester decidua. Further anti-CXCR4
antibody re-treatment eliminated the effect of CXCL12 on
cytokine production in DICs, suggesting that the CXCL12/
CXCR4 axis is involved in the development of the Th2 bias at
the maternal–fetal interface (Piao et al., 2012).

3.2.2.3 Dendritic Cells
Dendritic cells (DCs) are a heterogeneous population and have a
dual immune regulatory role. They not only initiate primary
immune response but also induce immunological tolerance
(Banchereau and Steinman, 1998). The immune-suppressive
phenotype and function of DCs are critical for pregnancy
(Blois et al., 2004; Bizargity and Bonney, 2009). However,
research on human decidual DCs is quite sparse since the
difficulty of small cell proportion and no single specific
marker for DCs. Limited research reported the function of
CXCL12/CXCR4 in DCs. Human monocyte-derived DCs can
express CXCR4, responsible for chemotaxis to CXCL12. A
subsequent study showed that CXCL12/CXCR4 can enhance
DC maturation and survival to initiate acquired immune
response in non-pregnant mice (Kabashima et al., 2007).
Remarkably, impaired homing of CXCR4+ DCs during early
gestation provoked a disorganized decidual vasculature with
impaired spiral artery remodeling later (Barrientos et al.,
2013). Conversely, the adoptive transfer of CXCR4+ DCs
rescued early pregnancy (Barrientos et al., 2013).

3.3 CXCL16/CXCR6
3.3.1 Regulation and Function in Trophoblast Cells
and Decidualization
Huang et al. (2006a) detected that CXCL16 and CXCR6 are
widely expressed in syncytiotrophoblasts, EVTs, and
cytotrophoblasts of placentas at 7–9 weeks of gestation by
immunohistochemistry. Moreover, they found that CXCR6/
CXCL16 stimulated the first-trimester human trophoblast
proliferation and invasion in an autocrine manner (Huang
et al., 2006a). Moreover, CXCL16 can also upregulate the
expression of antiapoptotic markers in trophoblast cells,
suggesting its potential for trophoblast apoptosis (Fan et al.,
2019). It has reported the role of CXCL16/CXCR6 in
decidualization. Compared to ESCs, the primary human DSCs
secreted and expressed higher CXCL16 and CXCR6 (Mei et al.,
2019). Meanwhile, the decidualized ESCs showed a significant
decidual response after being treated with exogenous
recombinant human CXCL16 or trophoblast-secreted
CXLC16 in vitro. These results indicated that the CXCL16/
CXCR6 axis contributed to the progression of ESC
decidualization (Mei et al., 2019).

3.3.2 Regulation and Function in Decidual Immune
Cells
3.3.2.1 Macrophages
Macrophages are heterogeneous and are generally divided into
two categories: classically activated macrophages (M1) and
alternatively activated macrophages (M2) (Mills et al., 2000).
Decidual macrophages perform a mixed immune status of
M1 and M2 phenotypes according to reports. Successful
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pregnancy depends on the spatial and temporal balance of
M1 and M2 polarization (Brown et al., 2014). This regulation
of macrophages is susceptible to changes in the maternal–fetal
microenvironment. It has been found that CXCL16/CXCR6 can
regulate macrophage polarization (Mantovani et al., 2004; Yao
et al., 2019). Wang et al. revealed that first-trimester human
trophoblast-derived CXCL16 induced the M2 phenotype of
macrophages in vitro. Moreover, the polarized
M2 macrophages can downregulate IL-15 levels, thereby
facilitating the inactivation of NK cells and contributing to the
immunotolerance at the maternal–fetal interface (Wang et al.,
2019). In addition, CXCL16 also exhibits its action in monocytes.
By using an enzyme-linked immunosorbent assay (ELISA),
Huang et al. (2008) first detected CXCL16 secretion in the
conditioned medium of primary cytotrophoblasts isolated
from villi at 7–9 weeks of gestation (Huang et al., 2008). Next,
by flow cytometry, they demonstrated that both exogenous and
cytotrophoblast-conditioned medium-derived CXCL16 can
direct the migration and recruitment of the monocyte subtype
in peripheral blood mononuclear cell or decidua leukocytes
(Huang et al., 2008). This chemotactic response of monocyte
subtypes to CXCL16 was largely parallel to their receptor
CXCR6 expression (Huang et al., 2008). These findings
suggest that the fetus-derived trophoblasts can attract
monocytes by CXCL16/CXCR6 in the first-trimester
pregnancy, forming a specialized immune milieu at the
maternofetal interface.

3.3.2.2 T Cells
CXCL16/CXCR6 can recruit and migrate T cells toward decidua,
participating in the immune regulation of pregnancy. Using
multiple-color flow cytometry, Huang et al. (2008)
demonstrated that the CXCL16 sole receptor CXCR6 is
preferentially expressed on decidual γδT cells (Huang et al.,
2008). Furthermore, they confirmed that fetal trophoblast-
produced CXCL16 directed the migration and recruitment of
peripheral and decidual T lymphocytes into decidua at 7–9 weeks
of gestation, thereby leading to a specialized immune milieu
formation at the maternal–fetal interface (Huang et al., 2008).
Fan et al. (2019) reported that by reducing the secretion of the
cytotoxic factor granzyme B of decidual γδ T cells, the CXCL16/
CXCR6 axis may contribute to maintaining normal pregnancy.

3.4 CCL2/CCR2
Previous research has showed that the primary trophoblasts did
not express CCR2, while the primary isolated humanDSCs highly
transcribed CCR2 (Wu et al., 2004). He et al. (2007) found the co-
expressions of CCR2 and CCL2 in human first-trimester DSCs
and the decidual tissue. They detected high levels of
CCL2 secretion in the supernatant of primary DSCs with an
ELISA (He et al., 2007). Subsequently, Meng et al. (2013) reported
that elevated CCL2/CCR2 promoted primary human DSC
proliferation and growth. Hu et al. (2014) found that
upregulated CCL2/CCR2 enhanced primary human DSC
invasion. These two studies together emphasized the function
of CCL2/CCR2 on DSC invasion, proliferation, and growth. In
addition, CCL2/CCR2 also shows key functions in DICs. Wei

et al. (2021) found that CCL2/CCR2 determined the polarization
phenotype of decidual macrophages in a monocyte-DSC
coculture system in a paracrine manner during early
pregnancy. They detected changes both in decidual
macrophages’ percentage and the M1 and M2 marker
expressions after treatment with the CCR2 inhibitor by the
flow cytometry assay in vivo (Wei et al., 2021). Another report
exhibited that the first trimester decidual cell-derived
CCL2 promoted monocyte migration and thus mediated
excessive macrophage infiltration of the decidua (Huang et al.,
2006b). CCL2 also shows an indirect role in the T-cell response.
Huang et al. (2020)reported that human chorionic gonadotropin
promoted the recruitment of regulatory T cells in the
endometrium through increasing CCL2 levels in human ESCs.
Yu et al. (2021) revealed that Toll-like receptors induced Th1/
Th2 responses by affecting the CCL2 secretion of DSCs at the
maternal–fetal interface.

4 CHEMOKINES AND PREGNANCY
COMPLICATIONS

The abnormal expression of chemokines and chemokine
receptors can interrupt the trophoblast function, uterus
angiogenesis, and maternal–fetal immune tolerance, thereby
participating in pregnancy complications (Hannan and
Salamonsen, 2007). In this part, we will focus on the
relationship between chemokines and pregnancy-associated
diseases, including PE, RSA, and PTB.

4.1 Preeclampsia
PE is defined as hypertension after 20 weeks of gestation and
proteinuria with maternal multisystem dysfunction or fetal
growth restriction (Chappell et al., 2021). PE is a major cause
of maternal and perinatal mortality and morbidity, affecting
approximately 5% of pregnancies (Bibbins-Domingo et al.,
2017). However, the pathological mechanism of PE remains
unclear. A prevailing view holds that PE is related to
inadequate trophoblast invasion and placental malperfusion
with releasing of soluble factors into the circulation, which
causes maternal vascular endothelial injury and further leads
to hypertension and multi-organ dysfunction (Chappell et al.,
2021). CXC chemokines have unique abilities in angiogenesis and
trophoblast function and are believed to play a potential role in
the pathogenesis of PE. Decreased placental CXCL3 damaged the
invasion and angiogenesis of trophoblast, thus leading to shallow
implantation, which may be the main cause of severe PE (Gui
et al., 2014; Wang et al., 2018). Reports are conflicting about the
role of CXC12/CXCR4/CXCR7 in PE. Previous research has
reported higher CXCL12 levels in the placenta of PE patients
compared to the normal control group (Schanz et al., 2011b;
Hwang et al., 2012). However, recent research has showed that
CXCL12 and its receptors CXCR4 and CXCR7 levels were
downregulated in the placenta of severe PE patients (Lu et al.,
2016). Further studies have found that CXCL12 was able to
decrease term trophoblast cells’ apoptosis rate (Lu et al., 2016;
Lu et al., 2020b). Therefore, downregulation of CXC12/CXCR4/
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CXCR7 may disturb trophoblast apoptosis, participating in the
occurrence of severe PE. Remarkably, CXCL12 levels were
elevated in the mid-trimester amniotic fluid of pregnant
women with PE, while the mechanism remains unknown
(Tseng et al., 2009). In summary, these findings suggest that
the CXCL12/CXCR7/CXCR4 axis may be a crucial molecular clue
of PE that is worth to be further studied. Interestingly, the
chemokines also show their effects on DICs in PE (Valencia -
Ortega et al., 2020). Excess CXCL10 and CXCL11 in decidua
blunted pNK cell recruitment, contributing to the genesis of
shallow placentation in PE (Lockwood et al., 2013). The
increased CCL2 in first-trimester decidual cells showed
association with the accumulation of decidual macrophages in
the preeclamptic decidua (Lockwood et al., 2006).

4.2 Recurrent Spontaneous Abortion
RSA is defined as two or more times consecutive miscarriages
before 20 weeks of gestation and impacts approximately 5% of
childbearing-age women (Pereza et al., 2017; Practice Committee
of the American Society for Reproductive Medicine, 2020). A
recent transcriptomic analysis proposed chemokines as a
common pathogenic mechanism in pregnancy loss (Wang
et al., 2021). Abnormal secretion of CXCL5 was reported as an
early indicator of miscarriage risk (Whitcomb et al., 2007). Recent
research also showed that CXCL5 levels were downregulated in
villous tissue of RSA patients than those of the controls (Zhang
et al., 2021). Upregulation of CXCL5 can lead to poor trophoblast
invasion and thus may be correlated with RSA (Zhang et al.,
2021). CCR7 levels showed a decrease in the villous of RSA
women (Luan et al., 2020). Knockdown of CCR7 caused an
obvious reduction of migration and invasion in JAR and JEG-
3 cells (Luan et al., 2020). These studies suggest that the
chemokine system-induced trophoblast invasion dysfunction
may be a potential pathological mechanism of RSA. CXCL12/
CXCR4 also showed important roles in pregnancy loss. Das et al.
found significantly reduced CXCR4 levels in chorionic villi of
women with a number of previous miscarriages (Zangmo et al.,
2021). This may induce insufficient trophoblast invasion,
defective decidualization, or an imbalance of maternal–fetal
immune tolerance and thus act on miscarriages (Ren et al.,
2012; Piao et al., 2015; Ao et al., 2020). Women who exhibited
recurrent implantation failure also performed lower levels of
CXCR4 in the endometrium compared with fertile women
(Tapia et al., 2008). Interestingly, CXCL12 from bone marrow-
derived cells or the stem cells can improve the thin endometrium
in a mouse model (Yi et al., 2019). Intrauterine
CXCL12 administration in C57BL/6 mice also promoted
embryo implantation rates and induced endometrial
angiogenesis in vitro (Koo et al., 2021). These studies
suggested that CXC12/CXCR4 may act on the endometria and
angiogenesis, mediating its role in pregnancy loss (Wang et al.,
2015). Some studies have also reported decreased
CXCL16 protein levels in the villus of RSA patients compared
with normal pregnant women (Fan et al., 2019; Mei et al., 2019).
However, the fact whether the abnormal expression of CXCL16 at
the maternal–fetal interface is the cause of miscarriage remains
unclear. Kuroda et al. (2021) reported the relationship between

the increasing number of pregnancy losses and the elevated ratio
of Th1/Th2 in blood samples. Moreover, the ratio of Th1 and
Th2-related chemokine receptors seems to have a crucial
association with RSA. By flow cytometry, Kheshtchin et al.
(2010) analyzed the expression of Th1-related (CCR5 and
CXCR3) and Th2-related (CCR3 and CCR4) chemokine
receptors on peripheral CD4+ or CD8+ T cells from RSA and
control group women before 20 weeks of gestation. They reported
a higher ratio of Th1/Th2 chemokine receptors in RSA women,
indicating the Th1 dominant immune responses in the
circulation of RSA women (Kheshtchin et al., 2010).
Compared with fertile women, chemokine CCL5 performed
decreased serum levels in patients with RSA while increased
after immunization with paternal leukocytes. CCL5 can inhibit
the mixed lymphocyte reaction in a dose-dependent manner
in vitro (Ramhorst et al., 2004). These studies emphasized that
the chemokines may exert immunological effects and thus take
part in RSA. However, these aforementioned studies are only
based on peripheral blood data, and further studies on the
maternal–fetal interface are necessary.

4.3 Preterm Birth
PTB is defined as giving birth to babies before 37 weeks of
gestation and is the leading cause of perinatal morbidity and
mortality in developed countries (Goldenberg et al., 2008).
Multiple factors attribute to the occurrence of PTB, such as
inflammation, stress, and hormonal disorders (Romero et al.,
2006; Goldenberg et al., 2008). Aberrant levels of chemokines
have been reported in women with PTB. By ELISA, Laudanski
et al. (2014) detected unusually high CCL16 levels in the blood
serum samples of women with PTB. Subsequently, another study
showed that lower CCL16 in umbilical cord blood was associated
with spontaneous PTB, with 94.7% prediction sensitivity and
46.9% specificity (Kaukola et al., 2011). This indicates that
CCL16 may be one of the potential pathological factors of
PTB. Studies of chemokines in the amniotic fluid of women
with PTB provide additional clues. For example, increased
CXCL10 in the amniotic fluid showed the risk of spontaneous
PTB after 32 weeks of gestation (Gervasi et al., 2012). Other
studies also reported that CXCL12 (Tseng et al., 2009), CXCL8
(Hamilton et al., 2013), CCL5 (Hamilton et al., 2013), CCL20
(Hamill et al., 2008; Hua et al., 2012), CXCL5 (Hua et al., 2012),
and CCL7 (Jacobsson et al., 2005) in the amniotic fluid were
associated with microbial invasion and amniotic cavity
inflammation. Studies from animals showed that broad-
spectrum chemokine inhibitors can inhibit infection-mediated
PTB (Shynlova et al., 2014; Coleman et al., 2020). These reports
suggest that the chemokines may be involved in PTB through the
inflammatory response. However, Esplin et al. (2005) found that
CCL2 was increased in the amniotic fluid of PTB women with or
without intra-amniotic infection. Interestingly, a prospective
immunohistochemical analysis of 203 chorionic villus sampling
specimens showed that the scores of syndecan-1, a regulator of
chemokine function, are correlated with PTB (Schmedt et al.,
2012). Recently, a transcriptomic analysis has also reported that
the chemokine pathway may present a common pathogenic
mechanism in spontaneous PTB (Wang et al., 2021). Taken
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together, these studies implied that chemokines play important
roles in the pathological mechanism of PTB.

5 CONCLUSION

Successful pregnancy requires participation and cooperation of
multiple crucial events, including good trophoblast function,
decidualization, and balanced maternal–fetal immune tolerance.
In this review, the available evidence shows that chemokines and
chemokine receptors have wide regulatory effects in these events
surrounding the trophoblast cells, DSCs, and DICs. Abnormalities
of chemokines are related to trophoblast dysfunction, impaired
angiogenesis, and disturbances in the maternal–fetal immune
tolerance, which therefore may lead to pregnancy complications.
Reviewing the regulation and function of chemokines in pregnancy
may provide some potential targets for the clinical treatment of
abnormal pregnancies in the future.
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