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Rnf220 is reported to regulate the patterning of the ventral spinal neural tube in mice. The
brainstem has divergent connections with peripheral and central targets and contains
unique internal neuronal groups, but the role of Rnf220 in the early development of the
hindbrain has not been explored. In this study, Nestin-Cre-mediated conditional knockout
(Rnf220Nestin CKO) mice were used to examine if Rnf220 is involved in the early
morphogenesis of the hindbrain. Rnf220 showed restricted expression in the ventral
half of ventricular zone (VZ) of the hindbrain at embryonic day (E) 10.5, and as development
progressed, Rnf220-expressing cells were also present in the mantle zone outside the VZ
at E12.5. In Rnf220Nestin CKO embryos, alterations of progenitor domains in the ventral VZ
were observed at E10.5. There were significant reductions of the p1 and p2 domains
shown by expression of Dbx1, Olig2, and Nkx6.1, accompanied by a ventral expansion of
the Dbx1+ p0 domain and a dorsal expansion of the Nkx2.2+ p3 domain. Different from the
case in the spinal cord, the Olig2+ pMN (progenitors of somatic motor neuron) domain
shifted and expanded dorsally. Notably, the total range of the ventral VZ and the extent of
the dorsal tube were unchanged. In addition, the post-mitotic cells derived from their
corresponding progenitor domain, including oligodendrocyte precursor cells (OPCs) and
serotonergic neurons (5-HTNs), were also changed in the same trend as the progenitor
domains do in the CKO embryos at E12.5. In summary, our data suggest similar functions
of Rnf220 in the hindbrain dorsoventral (DV) patterning as in the spinal cord with different
effects on the pMN domain. Our work also reveals novel roles of Rnf220 in the
development of 5-HTNs and OPCs.
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INTRODUCTION

Ubiquitination is an important post-translational modification in eukaryotic cells, involved in a
variety of cellular processes, including signal transduction and transcriptional regulation (Pickart,
2001; Pickart and Eddins, 2004; Mukhopadhyay and Riezman, 2007). The entire course of
ubiquitination is catalyzed by the ubiquitin-activating enzyme, the ubiquitin-conjugating enzyme
and the ubiquitin ligase (E3), successively (Morreale and Walden, 2016). There are about 600 E3
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ubiquitin ligases in human, and Rnf220 is a newly discovered one
of them (Deshaies and Joazeiro, 2009).

As a member of the RING finger protein family, Rnf220 is
highly conserved among different species. Rnf220 was first
identified as an E3 ubiquitin ligase in 2010, which interacts
with and promotes ubiquitination and proteasomal
degradation of Sin3B (Kong et al., 2010). Our previous studies
find that Rnf220 works as a novel modulator of sonic hedgehog
(Shh)/Gli signaling gradient and is a key regulator of the
patterning of the ventral spinal neural tube in mice (Ma et al.,
2019; Ma et al., 2020). Furthermore, the development of
noradrenergic neurons in locus coeruleus of the pons requires
Rnf220/Zc4h2-mediated monoubiquitylation of transcription
factors Phox2a and Phox2b (Song et al., 2020). However, the
expression pattern of Rnf220 in the hindbrain and its potential
function in the early development of the hindbrain remain
unclear.

The procedure of embryonic cells forming different tissues
and organs and comprising orderly spatial structures is termed
pattern formation. The DV pattern formation of the hindbrain is
similar to that of the spinal cord. Along the DV axis, the
progenitors in the hindbrain are divided into dp1-dp6, p0, p1,
p2, pMN, and p3 domains. The post-mitotic cells generated from
the dorsal neural tube are dl1-dl6, and those from the ventral
neural tube are distributed into V0, V1, V2, sMNs (somatic motor
neurons), and V3 domains in the mantle zone from dorsal to
ventral (Lebel et al., 2007; Le Dréau and Martí, 2012; Carcagno
et al., 2014).

Unlike the spinal neural tube, the neurons generated from the
p3 domain of the hindbrain are the visceral motor neurons
(vMNs) and 5-HTNs instead of glutamatergic neurons
(Carcagno et al., 2014), and this made us interested in the
development of 5-HTNs in the absence of Rnf220. During
embryonic development, 5-HTNs are generated from E10.5,
and vMNs are generated before E10.5 (Ding et al., 2003;
Pattyn et al., 2003). In addition, lineage-tracing experiments
show that the progenitors from the Olig2+ pMN domain also
give rise to OPCs and then generate oligodendrocytes at later
embryonic stages (Masahira et al., 2006). Mature
oligodendrocytes express myelin basic protein (Mbp) and
proteolipid protein 1 (Plp1) and are critical for the
myelination of axons and involved in neurodegenerative
diseases in brain (Boggs, 2006; Simons and Nave, 2015; Berry
et al., 2020).

The Shh signal is required for the ventral neural tube
patterning along the entire neural tube, but different
phenotypes are reported in the mouse hindbrain compared
with the spinal cord when Shh signaling was interfered as
shown by the fact that the Olig2+ domain is expanded
ventrally in the spinal cord but disappeared in the
hindbrain of Gli2−/− mice (Lebel et al., 2007). In this study,
we examine the expression of Rnf220 in the ventral neural
tube of the hindbrain and explore the territory of different
progenitor domains by the examination of the domain-
specific gene expression in Rnf220Nestin CKO mice. Overall,
there is an expansion of the dorsal and ventral domains at the
expense of the middle domains in the ventral neural tube with

an unchanged range (territory) of the ventral tube. Our work
also establishs clear roles of Rnf220 in the development of 5-
HTNs and OPCs in the hindbrain.

MATERIALS AND METHODS

Animals, Staging, and Genotyping
All mice were maintained and handled according to guidelines
approved by the Animal Committee of Tongji University School
of Medicine, Shanghai, China. All mice were maintained on a
C57BL/6 background. Analysis was performed only after lines
were crossed to C57BL/6 for at least three generations.

The stage of mouse embryos was determined by taking the
morning when the copulation plug was seen as E0.5. All
genotypes described were confirmed by PCR. Rnf220 alleles
were genotyped using genome DNA prepared from tail tips.
PCR primers were used as described in a previous report (Ma
et al., 2019). PCR amplified DNA was analyzed on 1.5% TAE
agarose gel.

In situ Hybridization Assays
Embryos were fixed in 4% paraformaldehyde (PFA) in
phosphate-buffered saline (PBS, pH 7.4) for 24 h and
cryoprotected with 30% sucrose in PBS. Then, 20-μm-thick
transverse sections were cut on a cryostat (Leica), and in situ
hybridization was performed as described previously (Song et al.,
2011). Briefly, RNA probes for detecting Pax3, Axin2, Msx1,
Phox2b, serotonin transporter (Sert), tryptophan 5-hydroxylase 2
(Tph2), vesicular monoamine transporter 2 (Vmat2), monoamine
oxidase A (MaoA), Sex determining region Y-box 10 (Sox10),
Mbp and Plp1 were generated according to the description on the
website of Allen Brain Atlas (http://portal.brain-map.org/).
Probes against Rnf220, Shh, Pax6, Dbx1, Dbx2, Hb9, Chx10,
En1, and Evx1 were used as described previously (Ma et al.,
2019). All probes were cloned into pGEM-T vector (Promega)
and transcribed by T7 or SP6 in vitro transcription kit (Ambion).
Sections were observed and images were captured using
epifluorescence microscope (80i; Nikon).

Immunohistochemistry Analysis
For immunostaining, 20-μm-thick transverse sections were used,
and the procedure is described in our previous report (Song et al.,
2011). Antibodies used are listed in the Key Resources table. For
double labeling using immunostaining and in situ hybridization,
sections underwent the in situ hybridization procedure first. After
visualization for mRNA, sections were incubated with primary
antibody at 4°C overnight, followed by appropriate secondary
antibody for 3 h. The sections were then processed using a
Vectastain Elite ABC kit (Vector Laboratories) for 1 h, and
immunoreactivity was visualized by incubation with
diaminobenzidine (DAB) and H202.

Bromodeoxyuridine (BrdU) Labeling
For BrdU pulse labeling experiments to analyze cell
proliferation, pregnant mice received a single injection of
BrdU at 50 mg/kg body weight and were sacrificed 1 h later.
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Key Resources Table

Reagent or Resource Source Identifier

Antibodies and Dilution

Goat anti-5-HT (1:300) Immunostar Cat #20079
Mouse anti-Nkx2.2 (1:20) Developmental Studies Hybridoma Bank Cat #74.5A5
Mouse anti-Nkx6.1 (1:40) Developmental Studies Hybridoma Bank Cat #F55A10
Rabbit anti-Cleaved Caspase-3 (1:300) CST Cat #9661S
Rabbit anti-Olig2 (1:300) Abcam Cat #ab109186
Rat anti-BrdU (1:1000) Accrate Chemical Cat #OBT0030G

Experimental Models: organisms/strains

Mouse: Rnf220flox/flox Bingyu Mao’s Lab N/A
Mouse: Nestin-Cre The Jackson Laboratory 003771

Software and Algorithms

Photoshop 2018 CC Adobe N/A
ImageJ Freeware N/A
Prism5 Graphpad N/A

FIGURE 1 | Expression of Rnf220 in the Developing Hindbrain. (A–C) In situ hybridization for Rnf220 of wild-type embryos at E10.5. Rnf220 is expressed in the VZ
of the ventral neural tube and a few post-mitotic cells in the mantle zone. OV, otic vesicle; r5-r7, section at rhombomere 5-7 levels. (D–F) In situ hybridization for Rnf220 of
wild-type embryos at E12.5. Rnf220 is expressed in the VZ of the ventral neural tube andmany post-mitotic cells outside the VZ. (G–I) In situ hybridization for Rnf220 and
Hb9 on adjacent sections at the r5 level of wild-type embryos at E10.5. Rnf220 (green) and Hb9 (magenta) are shown by pseudocolor (I). Few or very weak Rnf220
expression is present in Hb9+ sMNs (arrowheads). sMNs, somatic motor neurons. (J–L) In situ hybridization for Rnf220 and Phox2b on adjacent sections at the r5-
derived level of wild-type embryos at E12.5. Rnf220 (green) and Phox2b (magenta) are shown by pseudocolor (L). Rnf220 is not expressed in Phox2b+ vMNs
(arrowheads). Dashed line in (K) shows the boundary of the hindbrain. vMNs, visceral motor neurons. Scale bar, 100 μm (L); also applies to A–K). (M–O) In situ
hybridization for Rnf220 and Dbx1 (a p0 domain marker) on adjacent slides of E10.5 wild-type embryos. Dbx1 (magenta) and Rnf220 (green) are shown by pseudocolor
(O). The uppermost territory of Rnf220 expression domain corresponds well with that of Dbx1 (brackets). (P–R) In situ hybridization for Rnf220 and Pax3 (a dp1-dp6
domain marker) on adjacent slides of E10.5 wild-type embryos. The expression domain of Rnf220 is adjacent to that of Pax3 (dashed lines). Pax3 (magenta) and Rnf220
(green) are shown by pseudocolor (R). Scale bar, 100 μm (R); also applies to (M–Q). (S) Diagram showing the expression pattern of Rnf220 in the E10.5 hindbrain.
Rnf220 is expressed from p0 to p3 domain and in the floor plate (FP), floor plate.
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Sections were immersed in 0.01 M citrate buffer at 95°C for
20 min, 0.5 M HCl at 55°C for 10 min, and then washed in PBS.
Treated sections were immunostained with anti-BrdU
antibody as described above.

Quantification and Statistical Analysis
To quantify the sizes of progenitor domains (Shh+ for floor
plate, Nkx2.2+ for p3 domain, Olig2+ for pMN domain,
Nkx6.1+ region located dorsal to Olig2+ for p2 domain, the
gap between Dbx1+ and Nkx6.1+ for p1 domain, Dbx1+ for p0
domain and Pax3+ for dp1-dp6 domain) and the numbers of
the ventral post-mitotic neurons (5-HT+, Sert+, Phox2b+,
Hb9+, Chx10+, En1+, and Evx1+) and OPCs (Sox10+), serial
sections of the E10.5 or E12.5 hindbrain neural tubes were
immunostained with the indicated antibodies or processed
with antisense RNA probes. At least three sections around the
rhombomere 5 (r5) level determined by the presence of otic
vesicles in transverse sections or at indicated hindbrain level
were included from each embryo. The size of each domain in
images was measured using ImageJ with the Segmented Line
Tool, and the percentage of each domain to the whole DV
extent of the VZ was calculated. The number of post-mitotic
cells indicated with different markers and BrdU+ and Cleaved
Caspase-3+ cells were counted using the Multi-point
Tool of ImageJ. Data are expressed by mean ± SEM, and
two-tailed Student’s t-test was used for each
comparison. GraphPad software was used for statistical
analysis. p-values less than 0.05 were considered statistically
significant.

RESULTS

Rnf220 is Expressed in the Ventral Half of
the Hindbrain Neural Tube
Our previous study reports that Rnf220 is expressed in the
ventral half of the spinal neural tube (Ma et al., 2019), and we
assumed that it is also the case for the hindbrain. To test this,
we carried out in situ hybridization in wild-type embryos at
E10.5 and E12.5. As expected, intense expression of Rnf220 was
present in the VZ of the ventral neural tube and weak
expression was observed in the floor plate at E10.5 (Figures
1A–C). In the E12.5 hindbrain, Rnf220 expression was also
localized in many post-mitotic cells in the ventral mantle zone
(Figures 1D–F). However, in the VZ region at the level of r5,
where Hb9+ sMNs are generated, much less Rnf220 expression
was present at E10.5 (Figures 1G–I), and the corresponding
VZ region containing Phox2b+ vMNs at E12.5 had weak, if any,
Rnf220 transcripts (Figures 1J–L). To further localize its
distribution pattern, we performed in situ hybridization for
Rnf220 and Dbx1, a p0 domain marker (Pierani et al., 2001),
and also for Pax3, a dp1-dp6 domain marker (Moore et al.,
2013), on adjacent sections at E10.5. The result shows that the
uppermost territory of Rnf220 expression domain corresponds
well with that of Dbx1 (Figures 1M–O, S) and is adjacent to
that of Pax3 (Figures 1P–R, S), confirming that Rnf220 is
restrictively expressed in the ventral half of the hindbrain

neural tube, covering ventral p0-p2, pMN, p3 domains, and
the floor plate (Figure 1S).

Progenitor Domains are Altered in the
Ventral Hindbrain Neural Tube of
Rnf220Nestin CKO Embryos
To investigate the function of Rnf220 in the early development of
the hindbrain, we crossed Rnf220flox/flox (Ma et al., 2019) with a
Nestin-Cre line (Tronche et al., 1999), which expresses Cre
recombinase in the neuronal and glial cell precursors from
E10.5. Nestin-Cre:Rnf220flox/+ mice were crossed with
Rnf220flox/flox or Rnf220flox/+ mice, and the resulting embryos
were genotyped using PCR and processed for phenotypic
analysis. Rnf220Nestin CKO (Nestin-Cre:Rnf220flox/flox) embryos
were obtained, and littermates with other genotypes showing no
detectable phenotypes were used as controls. The Rnf220Nestin

CKO embryos were found to be neonatal lethal, and the deletion
of Rnf220 expression in these embryos was confirmed by in situ
hybridization using an exon2-specific probe (Supplementary
Figure S1). Residual weak Rnf220 expression in the ventral-
most hindbrain is likely caused by incomplete or absent Cre
activity in these cells.

A group of genes was used to determine whether the deletion
of Rnf220 affects the progenitor domains in the ventral hindbrain
neural tube at E10.5. In situ hybridization for Dbx1 and
immunostaining for Nkx6.1 (a marker for p2-pMN and p3
domains) showed that the p0 domain was expanded ventrally
at the expense of the p1 domain (a gap between the Nkx6.1+ and
Dbx1+ domains) in Rnf220Nestin CKO embryos (Figures 2A,B,
M,N). In addition, the Dbx2+ p0-p1 and Nkx6.1+ domains were
located next to each other without overlapping in control neural
tubes (Figure 2C). In contrast, there was an increase of Dbx2
expression in the p0 and p1 domains and weak Dbx2 expression
was expanded ventrally into the Nkx6.1+ domain in Rnf220Nestin

CKO embryos (Figure 2D). Double immunostaining for Olig2 (a
pMN domain marker) and Nkx2.2 (a p3 domain marker) showed
that both the p3 and pMN domains were dorsally expanded in the
CKO embryos compared with controls (Figures 2E,F, M,N). The
increase of the pMN and p3 domains were further confirmed by
double immunostaining for Olig2 and Nkx6.1 (Figures 2G,H).
The reduction of p2 domain was confirmed as shown by the
Nkx6.1+ region located dorsal to the Olig2+/Nkx6.1+ pMN
domain (Figures 2G,H, M,N), and the double staining also
provided evidence showing the pMN domain was shifted
dorsally (Figures 2G,H, N). Note that the extent of the ventral
neural tube from the p0 domain to the floor plate was not
changed (Figures 2M,N).

We next moved to examine if the floor plate and dorsal neural
tube was affected in Rnf220Nestin CKO embryos. The floor plate
shown by the expression of Shh and the dorsal neural tube shown
by Pax3 were not obviously changed (Figures 2I–L). Taken
together, we conclude that the loss of Rnf220 led to the
expansions of the dorsal-most (p0) and ventral-most (pMN
and p3) domains at the expense of the middle domains
(i.e., the p1 and p2 domains) in the ventral hindbrain neural
tube (Figure 2N).
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No Obvious Changes in Proliferation and
Cell Death in the Developing Ventral
Hindbrain of Rnf220Nestin CKO Embryos at
E10.5
The loss of Rnf220 resulted in alterations of progenitor domains
of the ventral hindbrain neural tube. We wondered if the changes
in progenitor domains were due to abnormal proliferation or cell

death. To explore such a possibility, we performed pulse labeling
of BrdU and immunostaining of Cleaved Caspase-3 to label cell
proliferation and cell death, respectively. Overall, BrdU labeling
was not obviously different between the two groups (Figures
3A,B). To clearly define the territory of the pMN and p3 domains
for quantification of BrdU+ cells, double staining for BrdU and
Olig2 was carried out. Because the DV extents of the pMN and p3
domains were increased, we compared the numbers of BrdU+

FIGURE 2 | The Progenitor Domains are Altered in the Developing Ventral Hindbrain of Rnf220Nestin CKO Embryos at E10.5. (A,B) In situ hybridization forDbx1 and
immunostaining for Nkx6.1 show that Dbx1 expression is expanded ventrally to the dorsal boundary of the Nkx6.1+ domain in Rnf220Nestin CKO embryos (B), whereas
there is a gap region (i.e., the p1 domain) between the Nkx6.1+ and Dbx1+ domains in control embryos (A). (C,D) In situ hybridization for Dbx2 and immunostaining for
Nkx6.1 show that Dbx2 expression is expanded ventrally into the Nkx6.1+ domain in Rnf220Nestin CKO embryos (D) (arrowhead), whereas a clear boundary
between the Nkx6.1+ and Dbx2+ domains is present in the control neural tubes (C). Scale bar, 100 μm (D); also applies to (A–C). Insets are high-magnification images of
boxed areas in (C,D). Scale bar, 25 μm. (E,F) Double immunostaining shows that both the Nkx2.2+ (red) p3 domain and the Olig2+ (green) pMN domain are expanded
along the DV axis of the VZ in Rnf220Nestin CKO embryos (F) relative to controls (E). (G,H) Double immunostaining for Nkx6.1 (red) and Olig2 (green) shows a dorsal shift
of the Nkx6.1+/Olig2+ pMN domain and a reduction of the p2 domain in the Rnf220Nestin CKO neural tubes (H) compared with controls (G). The p2 domain corresponds
to the Nkx6.1+ region located dorsal to the Nkx6.1+/Olig2+ pMN domain. Scale bar, 100 μm (H); also applies to (E-G). (I,J) In situ hybridization for Pax3 of control (I) and
CKO embryos (J) at E10.5. OV, otic vesicle. (K,L) In situ hybridization for Shh of control (K) and CKO embryos (L) at E10.5. Scale bar, 100 μm (L); also applies to (I–K).
(M) Quantification of the sizes of each progenitor domain in the neural tube of control and Rnf220Nestin CKO embryos. The size is shown by its proportion in the whole
extent of the VZ along the DV axis. CTN, control; CKO, Rnf220Nestin CKO. Dorsal, Pax3+ domain; p0, Dbx1+ domain; p1, gap region between the Dbx1+ and Nkx6.1+

domains; p2, Olig2- domain in the dorsal part of the Nkx6.1+ region; pMN, Olig2+ domain; p3, Nkx2.2+ domain; FP, floor plate, Shh+ domain. Data are expressed by
mean ± SEM. Student’s t-test (n≥3 for each). *, p<0.05; **, p<0.01; ns, no significant difference. (N) Diagram showing the changes of the progenitor domains of the
ventral hindbrain in Rnf220Nestin CKO embryos at E10.5. The loss of Rnf220 leads to the expansion of the Dbx1+ p0, Olig2+ pMN, and Nkx2.2+ p3 domains in the ventral
hindbrain neural tube at the expense of the middle domains (i.e., the p1 and p2 domains) without affecting the extent of the dorsal neural tube.
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cells per 100 μm-length in the two domains and found no
significant difference between Rnf220Nestin CKO and control
embryos (Figure 3C). Next, we compared percentages of
BrdU/Olig2 double-labeled cells in Olig2+ cells in the pMN
domain and revealed no significant difference either
(Figure 3D). In addition, no significant difference was
detected in the numbers of Cleaved Caspase-3+ cells between
the two groups (Figures 3E–G). However, proliferation and cell
death were altered at E12.5. Rnf220Nestin CKO embryos showed
lower density of BrdU+ cells in the ventral VZ than control
embryos (Supplementary Figures S2A–C), and more Cleaved
Caspase-3+ cells were detected in the ventral hindbrain of CKO
embryos (Supplementary Figures S2D–F). These data suggest
that the changes of progenitor domains in Rnf220Nestin CKO

embryos at E10.5 are not due to abnormal proliferation or cell
death, but it remains to be established how Rnf220 mutation
affects neural stem cell proliferation and cell death at later stages.

Alterations of Post-mitotic Neurons in the
Developing Ventral Hindbrain of
Rnf220Nestin CKO Embryos
Having observed dramatic changes in the progenitor domains of
the ventral hindbrain neural tube, it is likely that their progeny
may also be altered in the absence of Rnf220. The progenitor
domains that express Rnf220 within the ventral hindbrain
neural tube of control embryos include p0, p1, p2, pMN, and
p3 domains, which give rise to V0, V1, V2 interneurons; sMNs;

FIGURE 3 |No Significant Changes in Proliferation and Cell Death in the Ventral Hindbrain ofRnf220Nestin CKO Embryos at E10.5. (A–B)Double immunostaining for
BrdU (green) and Olig2 (red) shows no obvious changes of proliferation in the ventral VZ of the hindbrain between Rnf220Nestin CKO embryos and controls. (A’,B’) are
high-magnification images of boxed areas in (A,B), respectively. (C) Quantification of the numbers of BrdU+ cells per 100 μm-length in the Olig2+ pMN domain and p3
domain of control and Rnf220Nesin CKO embryos at E10.5. The p3 domain corresponds to the BrdU+ region located ventral to the Olig2+ pMN domain. ns, no
significant difference. (D)Quantification of the percentages of BrdU/Olig2 double-labeled cells in Olig2+ cells in the pMN domain of control andRnf220Nesin CKO embryos
at E10.5. (E,F) Immunostaining for Cleaved Caspase-3 shows similar cell death in Rnf220Nestin CKO embryos compared with controls. (E’,F’) are high-magnification
images of boxed areas in (E,F), respectively. Scale bar, 100 μm (F); also applies to (A,B,E); 50 μm (F’); also applies to (A’,B’,E’). (G) Quantification of the numbers of
Cleaved Caspase-3+ cells in the ventral neural tube in the two groups at E10.5. Data are expressed by mean ± SEM. Student’s t-test (n ≥ 3 for each).
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OPCs; vMNs; and 5-HTNs, respectively. As expected, more
post-mitotic neurons from the p0 domain were observed as
shown by the increased expression of Evx1 in Rnf220Nestin CKO
embryos relative to its expression in the control embryos at
E12.5 (Figures 4A,B,K). More ventrally, the En1+ V1 and
Chx10+ V2 interneurons were markedly reduced or abolished
in CKO embryos (Figures 4C–F,K). The sMNs from the pMN
domain express Hb9, which were significantly increased in
Rnf220Nestin CKO embryos (Figures 4G,H,K). Unexpectedly,
Phox2b+ vMNs from the p3 domain in Rnf220Nestin CKO
embryos were slightly reduced compared with those in the
control group (Figures 4I–K) although the p3 domain was
increased in Rnf220Nestin CKO embryos (Figures 2E–H,
M,N). In addition, there was ectopic distribution of Hb9+

cells at the r6-derived level of the hindbrain in Rnf220Nestin

CKO embryos, whereas they were only present at the r5- and r7-
derived hindbrain in control mice (Supplementary Figure S3).
This is perhaps due to the migration defect of r5-derived
neurons of the abducens nerve and r7-derived neurons
associated with the hypoglossal nerve, but further experiment
is needed. Thus, the deletion of Rnf220 not only changed the

progenitor domains, but also altered their progeny in the ventral
hindbrain correspondingly.

5-HTNs are Increased in Rnf220Nestin CKO
Mice
Neurons that are capable of synthesis and release the essential
neurotransmitter 5-HT are called 5-HTNs. 5-HT is
synthesized by Tph2 (Walther et al., 2003) and aromatic
L-amino-acid decarboxylase (Aadc) (Albert et al., 1987)
from tryptophan. Then, 5-HT is packaged into synaptic
vesicles by Vmat2 (Weihe et al., 1994). Extracellular 5-HT
can be transported back into the cells by Sert (Hoffman et al.,
1991). In the cells, 5-HT is broken down by MaoA and MaoB
(Luque et al., 1995). As 5-HTNs are generated from the p3
domain, which was increased in Rnf220Nestin CKO embryos, we
examined whether the development of 5-HTNs was affected by
knocking out Rnf220. In situ hybridization for Sert and
immunostaining for 5-HT showed that the number of 5-
HTNs was increased in Rnf220Nestin CKO embryos at E12.5
(Figures 5A–D,K). To further confirm this, in situ

FIGURE 4 | Changes in the Domains of Post-mitotic Neurons in the Ventral Hindbrain Neural Tube of Rnf220Nestin CKO Embryos at E12.5. (A,B) More Evx1+ V0
neurons are observed in Rnf220Nestin CKO embryos (B) than in controls (A). (C,D) The En1+ V1 neurons are hardly detected in Rnf220Nestin CKO embryos (D) compared
with the V1 neuronal domain in controls (C). (E,F) The number of Chx10+ V2 neurons is reduced in Rnf220Nestin CKO embryos (F) compared with controls (E). (G,H)
Hb9+ somatic motor neurons (sMNs) are increased in Rnf220Nestin CKO embryos (H) compared with controls (G). (I,J) Phox2b+ visceral motor neurons (vMNs) are
reduced in Rnf220Nestin CKO embryos (J) compared with controls (I). Scale bar, 50 μm (J); also applies to (A–I). Insets (A,C,E,G,I) are schematic diagrams of the
hindbrain level and position shown in (A–J). (K) Quantification of different groups of post-mitotic neurons in the ventral hindbrain neural tube of control and Rnf220Nestin

CKO embryos. Data are expressed by mean ± SEM. Student’s t-test (n=3 for each). *, p<0.05; **, p<0.01.
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hybridization for Tph2, Vmat2, and MaoA were performed
(Figures 5E–J), and expressions of all these genes were
increased. We also detected the numbers of 5-HTNs at
E14.5 (Figures 5L–O) and postnatal day 0
(Figures 5P,Q), which were still increased in Rnf220Nestin

CKO mice.

OPCs are also Increased in Rnf220Nestin

CKO Embryos
OPCs are generated in the ventral hindbrain at E12.5 from the
Olig2+ pMN domain (Richardson et al., 2006), which was shifted

and expanded dorsally in Rnf220Nestin CKO embryos as
mentioned above. This prompted us to examine if the
generation of OPCs was altered in the CKO embryos. We
observed that Sox10+ OPCs in the ventral hindbrain were
increased and shifted dorsally at E12.5 (Figures 6A,B,E). As
development progressed, mature oligodendrocytes, marked by
Mbp and Plp1, were located in a narrow region in the mantle zone
along the VZ in control embryos, whereas they displayed a
dispersed distribution pattern in the Rnf220Nestin CKO
hindbrain at E14.5 (Supplementary Figure S4). In addition,
OPCs are also generated in the ventral spinal cord, but its
development in Rnf220-deficient mice has not been examined.

FIGURE 5 | The Number of 5-HTNs is Increased in the Hindbrain of Rnf220Nestin CKOMice. (A,B) In situ hybridization for Sert shows increased number of 5-HTNs
in Rnf220Nestin CKO embryos (B) compared with controls (A) at E12.5. (C,D) DAB staining for 5-HT shows more 5-HTNs in Rnf220Nestin CKO embryos (D) than in
controls (C) at E12.5. Scale bar, 100 μm (D); also applies to (A–C). (E–J) In situ hybridization for Tph2, Vmat2 andMaoA shows increased expressions of these genes in
Rnf220Nestin CKO embryos (F,H,J) compared with controls (E,G,I). Scale bar, 50 μm (J); also applies to (E–I). Insets (A,C,E,G,I) are schematic diagrams of the
hindbrain level and position shown in (A–J). (K) Quantification of Sert+ and 5-HT+ neurons. Data are expressed by mean ± SEM. Student’s t-test (n=3 for each). **,
p<0.01. (L,M) In situ hybridization for Sert shows increased number of 5-HTNs in Rnf220Nestin CKO embryos (M) compared with controls (L) at E14.5. (N,O) DAB
staining for 5-HT shows more 5-HTNs in Rnf220Nestin CKO embryos (O) than in controls (N) at E14.5. Scale bar, 100 μm (O); also applies to (L–N). (P,Q) In situ
hybridization for Sert shows more 5-HTNs in Rnf220Nestin CKO mice (Q) than in controls (P) at postnatal day 0 (P0). Scale bar, 200 μm (Q); also applies to (P).
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OPCs in the spinal cord, however, were diminished in CKO
embryos at E12.5 (Figures 6C,D,F). Note that the reduction
coincides with the decrease of the Olig2+ domain of the Rnf220−/−

spinal neural tube (Ma et al., 2019). Thus, there is a different
phenotype in the ventral neural tube patterning in the absence of
Rnf220: An increased Olig2+ domain led to an increase of OPCs
in the hindbrain, but a reduced Olig2+ domain resulted in a
decrease of OPCs in the spinal cord.

DISCUSSION

Our and other previous studies show that Rnf220 is expressed in
the ventral spinal neural tube (Kim et al., 2018; Ma et al., 2019).
The present study shows that this restricted expression pattern is
also present in the hindbrain neural tube with the exception of
Hb9+ sMNs and Phox2b+ vMNs, where few or weak Rnf220
transcripts are distributed (Figure 1). Consistent with the
expression pattern, our data from Rnf220Nestin CKO embryos
demonstrates that Rnf220 is involved in the DV patterning of the
hindbrain neural tube in mice. The loss of Rnf220 alters neural
progenitor domains: the p0, pMN, and p3 domains located at the
two ends of the ventral tube are increased, and the p1 and p2
domains located in the middle are decreased; their progeny show
similar changes (Figures 2, 7).

Shh signaling plays crucial roles in patterning the ventral neural
tube of both the spinal cord and hindbrain by controlling the
expressions of several patterning genes (e.g., Olig2, Nkx2.2, and
Nkx6.1) through opposing gradients of repressor and activator
forms of Gli transcription factors (Ruiz i Altaba, 1998; Cohen et al.,
2015; Ma et al., 2019). Our previous study shows that the deletion
of Rnf220 does not affect Shh expression in the notochord or the
floor plate in the spinal cord but affects the functional balance
between two forms of Glis via the K63-linked ubiquitination
mechanism (Ma et al., 2019). The deletion of Rnf220 in the
spinal neural tube leads to the expansions of the two end
domains (p0 and p3) with reductions of those in the middle
(p1, p2, and pMN) and intact expression of Shh (Ma et al.,
2019). Generally, the defective neural tube patterning in the
hindbrain of Rnf220Nestin CKO embryos is very similar to that
in the spinal neural tube, but there is a difference in the pMN
domain: reduced in the spinal cord but expanded in the hindbrain.
The alterations led to similar changes in the numbers of sMNs:
increased in the hindbrain (Figure 4) but reduced in the spinal
cord (Ma et al., 2019). Overall, Rnf220 is homogeneously expressed
in the VZ of the ventral hindbrain, but its expression is much

FIGURE 6 |OPCs are Increased in the Hindbrain but not the Spinal Cord
of Rnf220Nestin CKO Embryos. (A–D) In situ hybridization for Sox10 at E12.5.
At the r5-derived level of the hindbrain, the number of the OPCs are increased
in Rnf220Nestin CKO embryos (B) compared with controls (A), whereas
the number is decreased in CKO (D) compared with that of the control (C) in
the spinal cord. Scale bar, 100 μm (D); also applies to (A–C). (E)
Quantification of Sox10+ cells of the r5 hindbrain at E12.5. (F)Quantification of
Sox10+ cells of the spinal cord at E12.5. Data are expressed by mean ± SEM.
Student’s t-test (n ≥ 3 for each). **, p<0.01.

FIGURE 7 | Diagram Showing the Changes of Post-mitotic Cells in the
Ventral Hindbrain of Rnf220Nestin CKO Embryos at E12.5. The loss of Rnf220
leads to the expansion of the Evx1+ V0, Hb9+ sMNs and Sox10+ OPCs
domains, whereas the En1+ V1 and Chx10+ V2 domains are reduced.
Within the domain differentiated from p3, the Phox2b+ vMNs domain
decreases slightly but the number of 5-HTNs is increased.
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reduced in the pMN domain at the level of generation of sMNs
shown by Hb9 and devoid in the progenitors of the visceral motor
neuron domain at the level of generation of vMNs indicated by
Phox2b (Figure 1). Both Shh and Glis are proposed to work in
concentration-associated gradient fashions, and the discontinued
expression of Rnf220 in the ventral VZ may affect the shape of the
gradients leading to the distinct alteration of the pMN domain in
the hindbrain of Rnf220Nestin CKO embryos.

Although the neural tube patterning of the ventral hindbrain
is altered in the absence of Rnf220, the proliferation of neural
progenitors in the VZ seems not to be affected as shown by BrdU
labeling at E10.5 (Figures 3A–D). However, BrdU+ cells are
significantly reduced in the VZ of Rnf220Nestin CKO embryos at
E12.5 (Supplementary Figures S2A–C), suggesting the
proliferation capability is reduced during the embryonic
development. Our previous studies show that the roles of
Rnf220 in regulating neural development is achieved by
controlling the stability and activity of some key genes (e.g.,
transcription factors) via ubiquitylation mechanisms (Ma et al.,
2019; Song et al., 2020), and thus, exploring possible interactions
between Rnf220 and genes involved in the proliferation of
neural stem cells is required in future studies.

Different progenitor domains give rise to distinct types of neurons.
Consistent with the changes in progenitor domains, more V0
interneurons and sMNs are observed, whereas V1 and V2
interneurons are significantly reduced or lost in Rnf220Nestin CKO
embryos at later embryonic stages (Figures 4, 7). The loss of hindbrain
V2 neurons might account for the neonatal death of the Rnf220Nestin

CKO mice as the medullary V2a neurons are required for central
respiratory rhythm generation in mice (Crone et al., 2012). Different
from the spinal neural tube, the p3 domain in the hindbrain
successively gives rise to vMNs and 5-HTNs (Pattyn et al., 2003).
Interestingly, the number of vMNs is slightly reduced, and the number
of 5-HTNs is significantly increased (Figures 4, 5, 7). Thus, although
the p3 domain is expanded, the successively generated neurons from
this domain are not equally affected in the absence of Rnf220. Future
research is required to clarify whether the progenitor identity within
the p3 domain was changed in Rnf220Nestin CKO embryos.

The pMN domain gives rise to sMNs first and OPCs at later
embryonic stages in both the spinal and hindbrain neural tube
(Zhou et al., 2000; Novitch et al., 2001; Zannino and Appel, 2009).
Intriguingly, Hb9+ sMNs and Sox10+ OPCs are increased in the
hindbrain, but they are decreased in the spinal cord (Figures 4, 6;
Ma et al., 2019). Further studies are needed to explore the
mechanism concerning the different effects of Rnf220 in the
production of sMNs and OPCs between the hindbrain and spinal
cord. It is also of interest to study if Rnf220 is implicated in the
maintenance of 5-HTNs and oligodendrocytes in the adult brain
as these two types of cells are involved in mental disorders and
neurodegenerative diseases.

Dysfunctions of the central 5-HT system are implicated in
psychiatric disorders in human and abnormal behaviors in mice
(Stein and Stahl, 2000; Dai et al., 2008; Dalley and Roiser, 2012; Jia
et al., 2014; Song et al., 2016; Daut and Fonken, 2019; Chen et al.,
2021). Our data suggest that Rnf220 might play an important role
in maintaining the homeostasis of the 5-HT system, which infers
that Rnf220 might be a risk gene in mental diseases.

In summary, Rnf220 plays an indispensable role in the early
development of the hindbrain, which is evidenced by drastic
alterations of neural progenitor domains in the ventral
hindbrain of Rnf220Nestin CKO mice. These results also
reveal a conserved function of Rnf220 in regulating neural
tube patterning in the early development of the spinal cord and
hindbrain with difference in affecting the generation of post-
mitotic cells such as sMNs, OPCs, and those located only in the
hindbrain (i.e., 5-HTNs).
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