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The neuron-restrictive silencer factor (NRSF), also known as repressor element 1 (RE-1)
silencing transcription factor (REST) or X2 box repressor (XBR), is a zinc finger transcription
factor that is widely expressed in neuronal and non-neuronal cells. It is a master regulator of
the nervous system, and the function of NRSF is the basis of neuronal differentiation,
diversity, plasticity, and survival. NRSF can bind to the neuron-restrictive silencer element
(NRSE), recruit some co-repressors, and then inhibit transcription of NRSE downstream
genes through epigenetic mechanisms. In neurogenesis, NRSF functions not only as a
transcriptional silencer that can mediate the transcriptional inhibition of neuron-specific
genes in non-neuronal cells and thus give neuron cells specificity, but also as a
transcriptional activator to induce neuronal differentiation. Many studies have confirmed
the association between NRSF and brain disorders, such as brain injury and
neurodegenerative diseases. Overexpression, underexpression, or mutation may lead
to neurological disorders. In tumorigenesis, NRSF functions as an oncogene in neuronal
tumors, such as neuroblastomas, medulloblastomas, and pheochromocytomas,
stimulating their proliferation, which results in poor prognosis. Additionally, NRSF-
mediated selective targets gene repression plays an important role in the development
and maintenance of neuropathic pain caused by nerve injury, cancer, and diabetes. At
present, several compounds that target NRSF or its co-repressors, such as REST-VP16
and X5050, have been shown to be clinically effective against many brain diseases, such
as seizures, implying that NRSF and its co-repressors may be potential and promising
therapeutic targets for neural disorders. In the present review, we introduced the biological
characteristics of NRSF; reviewed the progress to date in understanding the roles of NRSF
in the pathophysiological processes of the nervous system, such as neurogenesis, brain
disorders, neural tumorigenesis, and neuropathic pain; and suggested new therapeutic
approaches to such brain diseases.
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INTRODUCTION

The neuron-restrictive silencer factor (NRSF), also known as
repressor element 1 (RE-1) silencing transcription factor (REST)
or X2 box repressor (XBR), is a zinc finger transcription factor
that is widely expressed in both neuronal and non-neuronal cells
in different species as well as in normal and abnormal brain
tissues (Zhao et al., 2017). It was initially reported independently
by two study groups in 1995 to be a master repressor in
neurogenesis (Schoenherr and Anderson, 1995a; Chong et al.,
1995). NRSF inhibits the expression of target genes by binding to
the neuron-restrictive silencer element (NRSE/RE-1) that is
present in the regulatory region of the neuron-specific genes
(Roopra et al., 2004; Valouev et al., 2008; Song et al., 2015). NRSF
can also specifically activate neuron-related genes, mainly small
non-coding region genes, such as the dynamin I gene (Yoo et al.,
2001). The dynamic expression and variable levels of NRSF in
different cells and tissues and at different stages throughout the
development of the nervous system are vital to blocking the
expression of neuron-specific genes in non-neuron cells and
ensuring the establishment of neuronal specificity (Palm et al.,
1998).

In recent decades, accumulating evidence has also shown the
high involvement of NRSF in neurogenesis, brain disorders,
tumorigenesis, as well as NPP. Chen et al. reported that
knockdown of NRSF during embryogenesis could lead to brain
abnormalities and the premature death of mice (Chen et al.,
1998). Additionally, more andmore compounds that target NRSF
or its co-repressors, such as REST-VP16, X5050, and valproic
acid (VPA), seem to be clinically effective against brain diseases,
including seizures and NPP (Immaneni et al., 2000; Warburton
et al., 2015; Zhao et al., 2017). These findings suggest that NRSF
plays multiple roles in the pathophysiological process of the
nervous system, and it may be a promising potential
therapeutic target for certain brain disorders. Therefore, in the
current review, we aimed to summarize the recent studies about
NRSF in the nervous system, which will facilitate a better
understanding of the pathophysiology of NRSF in the nervous
system and promote NRSF-targeted clinical applications.

BIOLOGICAL CHARACTERISTICS OF NRSF

NRSE is a 21- to 23-bp DNA sequence that is highly conserved
among species and is the target sequence for NRSF protein
binding (Thiel et al., 1998). It was first identified in the
voltage-gated type II sodium channel and the promoter of the
superior cervical ganglion gene 10 (SCG10) (Kraner et al., 1992).
NRSE may not be the only target sequence for NRSF. Otto et al.
(2007) and (Johnson et al., 2010) found a bisect sequence that was
different from the recognized common sequence of NRSE, and
there were 16–19 bases between the two parts of the sequence,
suggesting that there might be more NRSF binding sites.

NRSF is a transcription regulatory protein belonging to the
Gli–Kruppel transcription factor family with a molecular weight
of 116 ku and a full length of 1,069 amino acids (Schoenherr and
Anderson, 1995b; Chong et al., 1995). Previous studies have

shown that NRSF amino acid sequences in different species
have high homology (Bruce et al., 2004). Generally, NRSF
contains nine Cys/His2 zinc finger structures, one DNA-
binding domain, one lysine-rich region, one proline-rich
region, and two repression domains (N-terminal and
C-terminal repressor domains) (Schoenherr and Anderson,
1995a; Chong et al., 1995). Zinc finger structures 2 through 5
mainly play the role of nuclear localization, zinc finger structures
6 to 8 can bind to target sequences, and zinc finger structure 9 has
the function of target DNA and RNA recognition (Schoenherr
and Anderson, 1995b; Chong et al., 1995). NRSF has different
transcripts because of alternative splicing. These transcripts lack
the C-terminal repressor structure compared to NRSF. They can
antagonize the transcriptional inhibition by NRSF and activate
gene transcription (Palm et al., 1998). For example, REST 4, a
truncated form of NRSF found in humans or rodents and mainly
expressed in neuronal cell or tissues, can act as “anti-silencer” that
competitively binds to NRSE, thereby promoting neuron-specific
gene expression (Tabuchi et al., 2002). In several
pathophysiological processes, such as neurogenesis,
neurological disorders, and non-neuronal tumorigenesis, the
dynamic balance between REST 4 and NRSF has been
reported as playing an important role (Coulson et al., 2000;
Yu et al., 2009; Raj et al., 2011).

MECHANISM OF TRANSCRIPTIONAL
INHIBITION BY NRSF

The NRSF-mediated transcriptional inhibition mechanism is
very complicated (Figure 1). It is mainly based on repressor
domains at both ends of NRSF and relies on the assistance of
multiple regulatory factors. The N-terminal and C-terminal
repression domains can independently exert transcriptional
inhibition of neuron-specific genes by recruiting co-repressors.
When NRSF specifically binds to the NRSE sequence of the target
gene, the N-terminal repression domain can bind to mSin3A/B
and recruit histone deacetylase (HDAC) transcriptional
inhibition complexes. The complex deacetylates lysine residues
of nucleosome histones, prompting tight nucleosome
encapsulation to form heterochromatin that blocks the
transcription of target genes and thus maintains gene silencing
(Naruse et al., 1999). The C-terminal repression domain can bind
to REST co-repressor proteins (CoRESTs). The SANT (SWI/SNF,
ADA, NCoR, and TFIIIB) domain of CoRESTs provides a
platform for the assembly of specific transcription inhibitors,
and CoRESTs also act as molecular beacons to further attract
HDAC1, HDAC2, methyl-CpG-binding protein-2 (MeCP2), and
histone H3 and K4 lysine demethylase to promote and maintain
methylated CPG-dependent gene silencing (Lakowski et al., 2006;
Ooi and Wood, 2007). Under certain conditions, the
transcriptional inhibition by NRSF also depends on the
synergic repression by other epigenetic regulators, such as
C-terminal binding protein, DNA methyltransferase,
chromatin remodeling enzyme, Sp3 (one member of the Sp
factor family), CDYL (chromodomain on Y-like), MED19, and
MED26 (Shi et al., 2003; Mulligan et al., 2008; Ding et al., 2009;
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Formisano et al., 2015). For example, synergic repression by Sp3
is required for NRSF to suppress ncx1 gene transcription in brain
ischemia (Formisano et al., 2015).

Noncoding RNAs, including microRNAs and lncRNAs, as
well as ubiquitin and other factors, may be involved in NRSF-
based transcription regulation. NRSF represses the expression of
many microRNAs, while microRNAs can in turn regulate the
expression of NRSF through the regulatory feedback mechanism
and participate in the pathophysiological process of the nervous
system (Kuwabara et al., 2004; Conaco et al., 2006; Laneve et al.,
2010; Hwang et al., 2014; Rockowitz et al., 2014; Brennan et al.,
2016). For instance, Laneve et al. (2010) and Conaco et al. (2006)
reported that the interaction between miRNA-9 or miRNA-124a
and NRSF may be related to the maintenance of neuronal-
differentiation programs. Brennan et al. (2016) found that
miR-124 is involved in epileptogenesis by effectively blocking
NRSF upregulation and enhancing microglia activation and
inflammatory cytokines. Ubiquitin is a NRSF regulator that
modulates NRSF degradation through ubiquitin-mediated
proteolysis via a Skp1-Cul1-F-box protein complex containing
an E3 ubiquitin ligase (β-TRCP). Ubiquitin-mediated NRSF
degradation is required for proper neuronal differentiation,
which promotes the expression of neuron-specific genes in
neuronal cells (Westbrook et al., 2008). In addition, other
factors, such as nSR100, can also negatively regulate NRSF by
inducing alternative slicing of NRSF. The transcripts of NRSF
antagonize transcriptional inhibition by NRSF, and thereby
activate the expression of NRSF-targeted genes (Raj et al., 2011).

NRSF transport disorder may also be involved in NRSF-
mediated transcriptional inhibition. Normally, NRSF is
synthesized in the cytoplasm. Most NRSFs need to be

transported into the nucleus to bind with NRSE and play a
transcriptional-inhibitory role (Zhao et al., 2017). Meanwhile,
NRSF retained in the cytoplasm can be drawn to the ribosome to
activate translation-initiation factors and upregulate neuron-
specific gene expression. However, some special protein
molecules, such as the Huntingtin protein, can reduce NRSF
in the nucleus by “arresting” part of NRSF in the cytoplasm,
thereby upregulating the expression of NRSF target genes in the
nucleus (Bessis et al., 1997; Zuccato et al., 2003).

NRSF AND NEUROGENESIS

At the cellular level, nervous system development is the
differentiation of embryonic stem (ES) cell-derived neuronal
stem cells into neuronal progenitor cells with a limited self-
renewal capacity and then into neuroblasts and glioblasts,
which in turn give rise to neurons and glial cells. These
changes are macroscopically expressed as the generation of the
nervous system (D’Aiuto et al., 2014). Traditionally, the main
mechanism of the regulation of nervous system development is
believed to be that transcription activators that enhance gene
expression are induced by the body step by step to activate
neuron-specific gene expression, thus promoting the
specialization of the nervous system. However, the advent of
NRSF suggested that the “unlocking” of some key genes is also an
important regulatory mechanism (Schoenherr and Anderson,
1995a). The release of NRSF from NRSE sequences of these
genes results in the release of gene transcriptional inhibition and
the expression of characteristic products of the nervous system.
To date, these neuron-specific genes containing NRSE are known

FIGURE 1 | A schematic illustration of the transcriptional repression mechanism by NRSF. (A) After specifically binding of NRSF to the NRSE sequence of the target
gene, the N-terminal repression domain of NRSF can bind to mSin3A/B, and recruit HDACs and other factors to form transcriptional inhibition complex. The complex
deacetylates lysine residues of nucleosome histones, prompting tight nucleosome encapsulation to form heterochromatin that blocks the transcription of target genes
and thus maintains gene silencing. (B) The C-terminal repression domain can bind to REST co-repressor proteins (CoRESTs), and further attract HDAC1, HDAC2,
and MeCP2 to promote andmaintain methylated CPG-dependent gene silencing. (C) LncRNAs and microRNAs regulate the expression of NRSF through the regulatory
feedback mechanism. (D) Ubiquitin dynamically modulates NRSF expression by degrading NRSF through ubiquitin-mediated proteolysis. nSR100 negatively regulate
NRSF by inducing alternative slicing of NRSF. NRSF transportation disorder reduces the NRSF level in the nucleus, thus alleviating the transcriptional repression by
NRSF.
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to include 1) ion channels, such as the NaCh II gene; 2)
neurotransmitters and their synthases, such as the
neurotransmitter gene TACl; 3) synaptic vesicle proteins; 4)
cell-adhesion molecules, such as the protocadherin gene; 5)
hormones, such as neurokinin B01 and human tyrosine
hydroxylase; and 6) neurotrophic factors, cytoskeletal proteins,
and extracellular matrix genes (Kraner et al., 1992; Sun et al.,
2005; Kim M. Y. et al., 2006; Greco et al., 2007; D’Alessandro
et al., 2009; Gillies et al., 2009; Abrajano et al., 2010; Tan et al.,
2010). These NRSF-target genes are commonly involved in
neuronal differentiation and synaptic plasticity, including ion
conductance, axonal growth, and vesicle transport and release
(Sun et al., 2005). Under the transcriptional regulation of NRSF,
these neuron-specific genes are differentially expressed in various
cells at different stages of nervous system development. However,
the regulatory mechanism of NRSF synthesis remains unclear
(Zhao et al., 2017). Several cytokines and signaling pathways have
been shown to regulate NRSF expression, including IκB kinase α,
bone morphogenetic protein, Oct4, β-TrCP, canonical Wnt
pathways, and RA pathways (Nishihara et al., 2003; Kohyama
et al., 2010; Ohnuki et al., 2010; Khoshnan and Patterson, 2012).
Intriguingly, the NRSE sequence was also found to be contained
in the gene promoter of NRSF, indicating that NRSF expression is
also regulated by self-feedback (Sun et al., 2005; Abrajano et al.,
2010).

NRSF is involved in the regulation of ES cell totipotency
maintenance and self-renewal ability. In vitro, the silencing of
NRSF target genes in ES cells of mice resulted in the loss of the
self-renewal ability of these ES cells, and the expression levels of
important genes maintaining cell totipotency, such as Oct4,
Nanog, Sox2, Tbx3, and c-myc, were significantly
downregulated. Exogenous addition of NRSF protein could
restore the self-renewal ability of these cells (Kim S. M. et al.,
2006; Singh et al., 2008). In vivo, knockout of the NRSF gene in
mice resulted in early embryonic lethality with deficient
neurogenesis due to the decreased self-renewal ability of ES
cells (Zhao et al., 2017). In humans, Bahn et al. (2002)
reported that neurological deficits in patients with Down
syndrome are due to reduced NRSF expression in ES cells and
the premature onset of neuronal differentiation, apoptosis, or
neuronal loss. Decreased NRSF levels in ES cells and a mouse
model of Down syndrome reduced the expression of totipotency
maintenance–related transcription factors such as Oct4, Nanog,
and Sox2, while the expression of specific differentiation-related
transcription factors (e.g., GATA4, GATA6, FOXA2, PITX2, and
SNAI1) were upregulated (Canzonetta et al., 2008). All this
evidence suggests that NRSF plays an important role in the
self-renewal ability and maintenance of totipotency of the
inner cell mass during blastocyst formation. However, several
contrary studies have shown that the perturbation of NRSF in
embryonic stem cells does not alter their differentiation status
(Buckley et al., 2009; Jørgensen et al., 2009; Yamada et al., 2010;
Soldati et al., 2012). For example, Jørgensen et al. (2009) reported
that NRSF-deficient embryonic stem cells remain pluripotent,
capable of differentiating into cells of the three germ layers,
i.e., mesoderm, endoderm, and ectoderm. They argued that ES
cell pluripotency needs to be evaluated in a complex context, but

not only under culture conditions. Moreover, extracellular matrix
components, such as feeding cells and laminin, may salvage the
role of NRSF in ESC pluripotency (Singh et al., 2012). Taken
together, these findings suggest that NRSF is an important but not
indispensable element inmaintaining ES cell totipotency and self-
renewal ability, though NRSF depresses the neuron-specific gene
expression program.

NRSF also plays an important part in regulating neuronal
differentiation and neurogenesis. In vitro, several studies have
demonstrated that downregulation of NRSF is required to induce
the differentiation of ES cells toward the neuronal lineage (Ekici
et al., 2008; Gao et al., 2011). High levels of NRSF in the nucleus of
ES cells and neuronal stem cells maintain high transcriptional
inhibition of neuron-specific genes, while the level of NRSF in
neuronal progenitor cells, neuronal precursor cells, and neurons
is gradually decreased, and the expression level of NRSF-target
genes such as Drd2, Syt2, and Kirrel3, is gradually increased on
the whole, thereby ensuring the normal process of neuronal
differentiation and endowing neuronal specificity (Sun et al.,
2005). These findings are similar to those of studies by Gupta
et al. (2009) and Yang et al. (2008), which found that NRSF
regulates the differentiation of ES cells or bone marrow-derived
mesenchymal stem cells into neurons, accompanied by the
increased expression of various characteristic proteins of
neurons. Additionally, several in vivo studies also confirmed
the roles of NRSF in neuronal differentiation and neurogenesis
(Chen et al., 1998; Olguín et al., 2006; Gao et al., 2011). In
Xenopus embryos, NRSF inhibition resulted in abnormal
neurogenesis, including perturbations of the cranial ganglia,
neural tube, and visual development; reduced expression of
neural crest markers; and expression loss of pro-neural,
neuronal, and neurogenic genes (Olguín et al., 2006). In
chicken embryos, NRSF inactivation caused repression of
neuronal tubulin and several other neuronal genes, while
overexpression of NRSF inhibited endogenous target genes
and increased the frequency of axon guidance errors (Chen
et al., 1998). Similar findings have been reported in zebrafish
(Wang et al., 2012). Knockdown of NRSF resulted in gastrulation
delay or blockage and subsequent embryo lethality with deficient
neurogenesis (Wang et al., 2012). In summary, this evidence both
in vivo and vitro demonstrates that NRSF-mediated neuron-
specific gene repression is an important regulatory mechanism
in neuronal differentiation and neurogenesis.

The development of the nervous system is a complex,
continuous, and gradual process. Although NRSF-mediated
gene repression is an important regulatory mechanism in the
establishment and maintenance of neuronal identity, it also
requires post-transcriptional downregulation of non-neuronal
transcripts, which is modulated by the interaction between
NRSF and microRNAs (Yu et al., 2011; Conti et al., 2012). For
example, NRSF regulates the expression of miR-124, and miR-
124 in turn targets the messenger RNA (mRNA) of small
C-terminal domain phosphatase l, leading to reduced
expression of small C-terminal domain phosphatase l in
differentiated neurons and the downregulation of NRSF
transcriptional inhibition, thus participating in cell
differentiation and neurogenesis (Conti et al., 2012). It should
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be emphasized that NRSF is not the sole master regulator
responsible for neuronal fate acquisition; instead, NRSF acts as
a regulatory hub that mediates multiple levels of neuronal
development (Zhao et al., 2017).

NRSF AND BRAIN DISORDERS

The above evidence has shown that NRSF is involved in multiple
physiological processes of normal brain function. Therefore,
overexpression, underexpression, mutation, or abnormal
distribution of NRSF may lead to brain dysfunction. The
following neurological diseases have been reported to closely
correlate with aberrant expression of NRSF: neurodegenerative
diseases (e.g., HD, PD, dementia, Down syndrome, and
Niemann–Pick type C disease [NPC]), brain injury (e.g.,
ischemia injury, global ischemia, and stroke-related brain
injury), seizures, mental diseases, and other disorders, like
alcoholism (Lepagnol-Bestel et al., 2009; Cai et al., 2011; Yu
et al., 2013; Henriksson et al., 2014; Hwang and Zukin, 2018;
Kawamura et al., 2019). Comprehensive understanding the
underlying mechanisms of NRSF and its copartners in these
diseases contributes to identifying potential therapeutic targets.

HD is a neurodegenerative disease directly caused by
mutations in the Huntington protein (Htt) (Hwang and
Zukin, 2018). Under normal physiological conditions, dynactin
p150Glued, huntingtin-associated protein 1 (HAP1), REST-
interacting LIM domain protein (RILP), and huntingtin form
a complex that can interact with NRSF and be involved in the
translocation of NRSF into the nucleus, of which HAP1 is
responsible for the cellular localization of NRSF in neurons.
The wild-type Htt sequesters NRSF in the cytoplasm of mouse
striatum neurons, thereby inhibiting its function (Shimojo and
Hersh, 2006; Shimojo, 2008). However, the mutant Huntington
protein reduces the binding ability of the complex to NRSF, and
NRSF is massively transferred to the nucleus (Hwang and Zukin,
2018). The high concentration of NRSF in the nucleus highly
inhibits the transcription of protein-coding genes and
non–protein-coding genes containing NRSE sequences, thereby
resulting in neuronal death (Zuccato et al., 2007; Johnson et al.,
2010). For example, brain-derived neurotrophic factor (BDNF),
an NRSF-target gene that is essential for neuronal survival,
plasticity, and dendritic growth, is repressed in HD due to the
high level of NRSF in the nucleus and the formation of the
repressor complex on the promoter of BDNF, ultimately resulting
in neurodegeneration (Zuccato et al., 2003). NRSF represses the
transcription process of genes other than BDNF, which may also
involve in the pathophysiological process of HD, such as
synaptophysin, synaptosomal nerve-associated protein 25,
fibroblast growth factor 1, and mitochondrial ornithine
aminotransferase, which are responsible for synaptic activity,
immunomodulation, neurotransmitter release, the secretion of
neurotransmitters, striatal neuronal survival, and glutamate
synthesis (Wong et al., 1982; Zuccato et al., 2007; Soldati
et al., 2011). The underlying mechanisms of NRSF in HD are
complicated and remain nebulous. On one hand, NRSF may be
involved in HD by blocking the expression of these neuronal

genes through an epigenetic mechanism. Deacetylation on the
promoters of several neuronal genes that encode neuronal
proteins responsible for morphogenesis and neurogenesis was
increased, such as polo-like kinase and Ras and Rab interactor 1
(Guiretti et al., 2016). Furthermore, the use of HDAC inhibitors
improved motor dysfunction and survival due to less neuronal
loss in a mouse model of HD (Ferrante et al., 2004; Gardian et al.,
2005). Complicatedly, the epigenetic pathway in HD is not only
regulated by NRSF but also by other factors, and it may also occur
in the absence of NRSF (Pogoda et al., 2021). On the other hand,
NRSF may be involved in HD by interacting with microRNAs.
For example, miR-9, a microRNA that regulates NRSF expression
levels, upregulated NRSF in HD through a negative feedback
mechanism (Packer et al., 2008).

PD is another neurodegenerative disease associated with
abnormalities in NRSF. In human dopaminergic SH-SY5Y
cells treated with neurotoxin 1 (MPP+), the NRSF expression
level and nucleo-plasma distribution ratio in cells were changed,
resulting in repression of NRSF-target genes and the death of
dopaminergic neurons. Meanwhile, alternation of NRSF
expression by RNAi techniques reversed cell viability (Yu
et al., 2009). The synchronous occurrence of NRSF
abnormality and dopaminergic neuron death suggests that
NRSF is related to HD. Furthermore, the tyrosine hydroxylase
gene, a rate-limiting enzyme of dopamine synthesis, may be an
NRSF-target gene and is repressed by NRSF because suppression
of NRSF with the HDAC inhibitor promotes tyrosine hydroxylase
promoter activity (Kim M. Y. et al., 2006). Meanwhile, Ohnuki
et al. (2010) observed that the expression of NRSF correlates with
the dysregulation of striatal genes in an MPTP-lesioned monkey
model. Taken together, this evidence implies that NRSF-mediated
target gene repression is an important mechanism in the
development of PD.

During normal aging, NRSF is induced in part by cell non-
autonomousWnt signaling, and targets and suppresses several genes
that promote cell death and Alzheimer’s disease (AD) pathology.
However, in several dementias, such as AD, frontotemporal
dementia, and dementia with Lewy bodies, NRSF is almost
absent from the nucleus of cortical and hippocampal neurons,
while it is found in autophagosomes together with misfolded
proteins, thus leading to the upregulation of NRSF-target genes
and causing neurodegeneration, which is consistent with the finding
that conditional deletion of NRSF from themouse brain leads to age-
related neurodegeneration (Lu et al., 2014). NRSF is also involved in
NPC, a lysosomal storage disorder-related neurodegenerative disease
characterized by cholesterol accumulation in late endosomes and
lysosomes, which is caused by a null mutation in the NPC1 gene (Du
et al., 2015). In NSCs derived from NPC1-deficient mice, valproic
acid (VPA) increases neuronal differentiation and restores impaired
astrocytes. Moreover, several neurotrophic genes, such as TrkB,
BDNF, and NeuroD, are upregulated by blocking the function of
NRSF with VPA treatment (Kim et al., 2007).

The above evidence confirms the involvement of NRSF in
the development of neurodegenerative diseases. NRSF is
involved in seizures and other epilepsy-promoting insults as
well. Increased expression of NRSF in hippocampal neurons
has been observed, and the epileptic phenotype can be
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attenuated by suppressing NRSF function (McClelland et al.,
2011). Many NRSE-containing genes in the hippocampus that
code for receptors, ion channels, and other important proteins
can be restored by blocking the binding site of NRSF to
chromatin, which further demonstrates the involvement of
NRSF in the development of seizures (McClelland et al., 2014).
Furthermore, brain ischemia, global ischemia injury,
ischemia–reperfusion injury, or stroke-related injury that
causes neuronal damage or delayed death of hippocampal
CA1 pyramidal neurons may also be associated with
aberrant expression of NRSF. On the one hand, increased
NRSF expression in ischemia injury may suppress GluR2
promoter activity and gene expression, which is essential for
synaptic plasticity and synaptic remodeling. In an in vitro
model, Calderone et al. (2003) demonstrated that acute
knockdown of the NRSF gene reverses GluR2 suppression
and rescues post-ischemic neurons from ischemia-induced
cell death. On the other hand, increased NRSF may
downregulate mu opioid receptor 1 (MOR-1) mRNA and
protein expression which is abundantly expressed in basket
cells and inhibitory interneurons of CA1 via epigenetic
modifications. Ischemia promotes the deacetylation of core
histone proteins H3 and H4 and the dimethylation of histone
H3 at lysine-9 over the MOR-1 promoter. Acute knockdown of
MOR-1 gene expression protects against ischemia-induced
death of CA1 pyramidal neurons in vivo and in vitro
(Formisano et al., 2007). In recent research, Luo et al.
(2020) reported that cerebral ischemia–reperfusion injury
caused a downregulation of HCN1 expression by enhancing
the nuclear NRSF–HDAC4 gathering that contributes to
neuron damage, which further demonstrates the
involvement of NRSF in brain ischemia injury. Additionally,
the interaction of NRSF and casein kinase 1 (CK1) or miR-132
(a microRNA that is important for synaptogenesis, synaptic
plasticity, and structural remodeling) is also implicated in
ischemia-induced hippocampal cell death. Ischemic insults
promote NRSF binding and epigenetic remodeling at the
miR-132 promoter and silencing of miR-132 expression in
selectively vulnerable hippocampal CA1 neurons. Depletion of
NRSF by an RNAi technique blocks ischemia-induced loss of
miR-132 in insulted hippocampal neurons in vivo, consistent
with a causal relationship between the activation of NRSF and
silencing of miR-132 (Wu and Xie, 2006; Hwang et al., 2014).
In addition, overexpression of miR-132 in primary cultures of
hippocampal neurons or delivered directly into the CA1 of
living rats by means of the lentiviral expression system prior to
induction of ischemia protects against ischemia-induced
neuronal death (Hwang et al., 2014). Brain ischemia injury
also triggered a downregulation of CK1 and an upregulation of
NRSF in rat hippocampal CA1 neurons. Administration of the
CK1 activator immediately after ischemia could successfully
suppress the expression of NRSF and rescue neuronal death
(Kaneko et al., 2014). In addition, several studies also revealed
the involvement of NRSF in mental diseases. Tateno et al.
showed that ethanol-induced neuronal loss is associated with
increased NRSF. The abnormal neuronal differentiation of
NSCs induced by ethanol can be rescued by lithium and

mood-stabilizing drugs by blocking the binding activity of
NRS to chromatin (Tateno et al., 2006; Tateno and Saito,
2008).

NRSF AND TUMORIGENESIS

NRSF plays different roles in different tumor types. Under
normal physiological conditions, NRSF is highly expressed in
non-neuronal cells, but there is almost no or very low expression
of it in mature neuronal cells (Song et al., 2015; Zhao et al., 2017).
On the contrary, NRSF expression is decreased in non-neural
tumors and increased in neural tumors. Thus, NRSF is thought to
play a tumor-suppressor role in non–nervous system tumors,
while it acts as a proto-oncogene in nervous system tumors
(Huang and Bao, 2012). Currently, the neurogenic tumors that
have been reported to be related to NRSF mainly include gliomas,
medulloblastomas, and pheochromocytomas, among which
adverse drug reactions, high recurrence rate, and poor
prognosis are still important problems for patients with such
tumors. In this section, we focus on the progress made in the
regulatory mechanisms of NRSF in neural tumors.

Glioma (neuroglioma) is the most common type of tumor of
the central nervous system and has no effective therapies due to
its poor differentiation, rapid proliferation, and strong tissue
invasion (Reifenberger et al., 2017). NRSF was found to be
highly expressed in glioma tumor cells and tissues. Conti et al.
(2012) reported that the expression level of NRSF in tumorigenic
glioma cell lines was significantly higher than that in brain-
derived neural stem cells. Furthermore, the expression level of
NRSFmRNA in glioma tumor tissues was two to five times higher
than that in normal brain tissues (Conti et al., 2012). In vitro,
NRSF was found to be involved in glioma cell line formation.
Overexpression of NRSF prevents neuronal cells from
differentiating into glial cells but induces glioma cell line
formation (Bergsland et al., 2014). By altering the expression
of telomere-binding protein 2 and ubiquitin ligase E3, the
upstream regulators of NRSF, the growth of glioma stem cells
was accelerated, and differentiation was reduced after the
reduction in NRSF expression (Bai et al., 2014). Moreover,
NRSF is a master regulator that maintains glioblastoma cell
proliferation and migration. Inhibition of NRSF suppresses
proliferation and migration in glioblastoma cells, partly
through regulating the cell cycle by repressing downstream
genes (Conti et al., 2012). In clinical practice, Wagoner and
Roopra (2012) observed that glioblastoma patients with high
NRSF expression have greater malignancy, less sensitivity to
chemotherapy, and significantly lower overall survival than
patients with low NRSF expression. Taken together, this
evidence suggests that high expression of NRSF found in both
glioma tissues and cell lines may regulate the growth of glioma
cells by affecting their proliferative ability and tumorigenicity,
and that NRSF may be a prognostic factor of glioma because the
degree of deterioration of glioma is positively correlated with the
level of NRSF expression. The underlying mechanisms of NRSF
gliomas are complicated. On the one hand, NRSF can regulate the
tolerance of glioma cells to glutamate by inhibiting GluR2
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expression and improve their adaptability to the living
environment. Glutamate secreted by glioma cells can produce
a certain degree of cytotoxicity to itself through glutamate
receptors on the cell surface, and interference with the
expression of glutamate receptors can reduce the sensitivity of
glioma cells to glutamate (Ekici et al., 2012). Ekici et al. (2012)
reported that the overexpression of NRSF reduced the mRNA
expression of the GluR2 gene (an important type of glutamate
receptor subtype, containing an NRSF sequence), and the
expression of GluR2 increases following interference in NRSF
expression with shRNA or induction of NRSF mutation. On the
other hand, the actions of NRSF in gliomas involve microRNAs.
These microRNAs include tumor-promoting miR-21, miR-10b,
and miR26a, and tumor-inhibiting miR-326, miR-128, miR-181,
miR-7, and miR-124a (Fu et al., 2018; Huang et al., 2019;
Bautista-Sánchez et al., 2020; Bhere et al., 2020; Rezaei et al.,
2020; Stakaitis et al., 2020; Wang et al., 2020). For example, high
NRSF expression in glioblastoma decreases the miR-124a
expression, and thereby increasing the expression of NRSF-
target genes, such as SNAI-1 (a transcription factor that
promotes cell invasion and tumor metastases), Scp1, and
PTPN12 (two small phosphatases), and finally stimulating cell
proliferation (Tivnan et al., 2014). In addition, several studies
have also confirmed the role of the balance between NRSF and
REST4 in gliomas (Chen and Miller, 2013; Ren et al., 2015; Li
et al., 2017). REST4 is a truncated transcript of NRSF that can
affect the expression of NRSF in vivo and in vitro (Zhao et al.,
2017). Chen and Miller (2013) observed selective shearing of
NRSF in a variety of tumor tissues and cell lines, and found that
pioglitazone, a peroxidase growth factor activator receptor 1
agonist, can induce selective shearing of NRSF to form REST4,
resulting in the loss of an important part of nuclear translocation
and preventing NRSF from binding to DNA. In addition,
pioglitazone can inhibit the proliferation and induce apoptosis
of glioma cells and has an anti-glioma effect, whichmay be related
to the reduction of NRSF expression level regulated by REST4
(Ren et al., 2015).

Medulloblastoma (MB) is the most malignant glioma in the
brain. In clinical practice, human MB cells showed high
expression of NRSF compared to neuronal precursor cells
(NTera2) and fully differentiated human neural cells (hNT),
and MB patients with high NRSF expression had poorer
overall survival and progression-free survival than patients
with low NRSF expression (Lawinger et al., 2000; Taylor et al.,
2012). Moreover, the proliferation of MB cells was decreased and
apoptosis was increased when transfected with REST–VPL6, a
recombinant transcription factor that is a competitive inhibitor of
NRSF (Lawinger et al., 2000). These findings were consistent with
the finding by Fuller et al. that NRSF was highly expressed in 17 of
21 MB tissues, while NRSF was not expressed in the adjacent
tissues, and the growth ofMB cells and tissue in the brains of mice
was stopped by the use of REST–VPL6, competitively
antagonizing the action of NRSF (Fuller et al., 2005). Taken
together, this evidence suggests the involvement of NRSF in MB.
However, the underlying mechanism of NRSF in MB is
complicated and remains elusive. In vitro, sertraline,
chlorprothixene, and chlorpromazine inhibit MB cell growth

by acting with the NRSF-binding site of the corepressor mSin3
(Kurita et al., 2018). Furthermore, knockdown of NRSF, which is
highly expressed in MB cells, can relieve the inhibitory effect on
the gene encoding the de-ubiquitination enzyme USP37,
upregulate the expression of USP37 protein and promote the
de-ubiquitination of tumor suppressor p27 and stabilize its
expression, thus inhibiting the proliferation of tumor cells,
which indicates that the classical action of NRSF, namely
NRSF-mediated transcription inhibition—especially the NRSF-
USP37-P27 pathway—may be a vital regulatory mechanism in
the development of MB (Das et al., 2013). Additionally, NRSF
may also influence the proliferation and pathogenicity of MB
through other mechanisms. For example, increased NRSF
promotes the growth of MB, possibly by promoting vascular
growth through autocrine and paracrine mechanisms, which
further demonstrates the complexity of the NRSF regulatory
mechanism in MB (Shaik et al., 2021).

In summary, various studies have implicated the oncogenic
role of NRSF in neural tumors, and several NRSF-mediated
regulatory mechanisms of tumorigenesis have been identified.
However, further studies are warranted to reveal the
comprehensive cell biological networks of tumorigenesis by
which NRSF governs cell proliferation, cell transformation,
and tumor growth.

NRSF AND NEUROPATHIC PAIN

NPP is a common chronic pain in clinical practice that is mainly
caused by sensitization of the central or peripheral nervous
system. It is widely considered one of the most difficult pain
syndromes to treat, and current therapeutic strategies are largely
ineffective due to a lack of understanding of its causes (Finnerup
et al., 2021). In recent years, several studies have shown NRSF-
mediated suppression of specific genes is an important
component in the development and maintenance of NPP.

The Kcnd3 gene encodes the Kv4.3 channel protein, which is
widely involved in the process of sensory signal transduction. In
the Kcnd3 genes of mouse, rat, and human, a conserved NRSE
sequence was verified. Using a mouse sciatic nerve injury model,
(Uchida et al., 2010a), found that NRSF expression was
upregulated and Kcnd3 expression was downregulated, with
the binding of NRSF to NRSE in the promotor region of
Kcnd3 significantly increased and histone H4 acetylation
decreased. Anti-sense nucleotide knockdown of NRSF can
reverse the downregulation of Kv4.3 channel expression, which
further demonstrates that NRSF plays important roles in
modulating the expression of Kv4.3 and the development and
maintenance of NPP (Uchida et al., 2010b). In the Scn10a gene,
similar regulatory mechanisms were observed. The expression of
NRSF in the dorsal root ganglion (DRG) is increased after nerve
injury, and it specifically binds to NRSE sequence in the promoter
region of the Scn10a gene and downregulates the transcription
and ion channel protein expression through an epigenetic
mechanism, thereby participating in the primary sensory nerve
C-fiber inactivation process. Knockdown of NRSF with the
HDAC inhibitor trichostatin A, VPA, suberoylanilide
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hydroxamic acid or anti-sense oligonucleotide can effectively
reverse the downregulation of Scn10a transcription and the
inhibition of C fiber function (Uchida et al., 2010a). Our
previous work in a sarcoma murine model verified that MOR
mRNA expression is also regulated by NRSF. In DRG neurons of
sarcoma-bearing mice, NRSF expression is upregulated while
MOR mRNA expression is downregulated, accompanied by
promoted binding of NRSF to NRSE within the promoter area
of the MOR gene and a hypoacetylation state of histone H3 and
H4. Genetically knocking down NRSF with anti-sense
oligodeoxynucleotide rescued the expression of MOR and
potentiated the analgesic effect of morphine (Zhu et al., 2017).
These findings were also demonstrated in a nerve injury pain
model, which further indicates that NRSF-mediated transcription
inhibition of the MOR gene is an important regulatory
mechanism in pain signal transduction (Kim et al., 2004).
Chrm2 is another gene that is selectively repressed by NRSF
in NPP. Zhang et al. (2018) reported that nerve injury persistently
increased the NRSF expression and reduced Chrm2 expression in
DRG neurons, as well as increasing the enrichment of NRSF in
the Chrm2 promoter and diminishing the analgesic effect of
muscarine. Knockdown or genetic ablation of NRSF in DRG
neurons rescued the Chrm2 expression and augmented
muscarine’s analgesic effect on NPP (Zhang et al., 2018).
Currently, the NRSF-mediated transcriptional inhibition target
gene pool has not been well established in NPP. Many genes
upregulated in the microarray and RNA sequencing studies of
NPP mouse models also have promoter regions that show
occupancy by NRSF or its cofactors (such as SIN3A, CoREST,
and HDAC1/2) in the ENCODE database. These genes include
Cacna2d1 (an L-type voltage-gated calcium channel), GABAA
receptor 5 subunit, vasoactive intestinal peptide, growth-
associated protein 43, and Gadd45a (DNA demethylase)
(Perkins et al., 2014). Further study is warranted to verify
whether these genes are involved in NPP in the future. Taken
together, these findings indicate that NRSF regulates the gene
transcription of various nociceptive transduction molecules
through epigenetic mechanisms to affect the development and
maintenance of NPP.

The epigenetic mechanisms of NRSF-mediated selective gene
repression in NPP remain elusive. On the one hand, in the same
way as its classical action, NRSF recruits co-repressors, such as
mSin3 and HDACs, and then deacetylates nucleosome histones,
thereby inhibiting the transcription of target genes involved in
NPP. In a diabetic pain model, Xiao-Die et al. (2020) reported
that high glucose and high palmitic acid treatment induced the
upregulation of NRSF and its cofactors (mSin3A, CoREST, and
HDAC1) but the downregulation of GluR2 and NMDAR2B in
the anterior cingulate cortex neurons. Knockdown of NRSF could
partially reverse the expression changes of HDAC1 and
NMDAR2B. These findings were further confirmed by Ueda
et al. (2017), who found that a chemically optimized mimetic
mS-11 (a mimetic of the mSin3-binding helix) can inhibit
mSin3–NRSF binding and successfully reverse lost peripheral
and central morphine analgesia in mouse models of pain. In
addition, previous studies also have shown that HDAC inhibitors
reduce pain symptoms in a variety of pain models by eliminating

NRSF-mediated chromatin remodeling and transcriptional
inhibition (Bai et al., 2015). On the other hand, pain-induced
phosphorylation of MeCP2 may be another potential epigenetic
mechanism for NRSF-mediated gene transcription inhibition in
NPP. MeCP2 is a methylated DNA-binding protein that recruits
co-inhibitory complexes and promotes NRSF recruitment of
CoREST (Chen et al., 2003). In a mouse model of pain,
elevated phosphorylation of MeCP2 was observed in DRG
neurons. When MeCP2 is phosphorylated, its affinity for
methylated DNA is reduced, and the transcription levels of its
target genes are thereby promoted (Géranton et al., 2007).
Additionally, whether the actions of NRSF in NPP involve
microRNAs remains controversial, though several studies have
documented decreased microRNA expression in chronic pain
models (Descalzi et al., 2015). For example, expression levels of
miR-7a, -134, and -96 were downregulated in the DRG neurons
in various rodent pain models (Ni et al., 2013; Sakai et al., 2013;
Chen et al., 2014). However, the promoter regions of these
downregulated microRNAs do not contain NRSE or NRSF-
related binding sequences (Willis et al., 2016). There are two
possible explanations for the contrary phenomenon (altered
expression but without NRSE sequences). First, the
downregulation of these microRNAs may not be mediated by
NRSF but instead by other inhibitory factors. Second, the
decreased microRNAs may be modulated by distant NRSF
complexes, because previous studies have demonstrated that
several microRNAs are regulated by NRSF in several
physiological or pathological processes of the nervous system.
In the future, further studies are required to investigate the
upregulation mechanism of NRSF expression and the
molecular mechanism of NRSF regulation and inhibition of
the transcription level and post-transcription level of target
genes, as well as the roles of alternative splicing and
microRNAs in NPP.

CLINICAL PROSPECTS

The abovementioned findings highlight the master role of NRSF
not only in modulating neurogenesis by dynamically inhibiting
neuron-specific genes expression, but also in certain brain
disorders. It hence provides a potential therapeutic target for
these disorders, which has attracted significant attention over the
past few decades, especially regarding neurodegenerative diseases,
epilepsy, and neural tumors. Here, we summarized some
potential therapeutic approaches that target NRSF or its co-
repressors for such disorders.

Some small molecules, such as 4SC-202 and SP2509, that
target the interaction between the C-terminal domain of NRSF
and CoREST have been tested (Inui et al., 2017). Such small
molecules could inhibit the deacetylase and demethylase activity
of the NRSF -CoREST complex in MB cells and negatively
affected cell viability (Inui et al., 2017). Many drugs focusing
on restoring the homeostasis of NRSF, such as X5050 or REST-
VP16, may be more promising candidates for NRSF-related brain
diseases (Su et al., 2004; Charbord et al., 2013). X5050, a chemical
compound that targets NRSF degradation, can upregulate the
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expression of certain neuronal genes though promoting NRSF
degradation. This was demonstrated in an HD model in which
treatment with X5050 increased the expressions of BDNF and
several other NRSF-regulated genes by degrading increased NRSF
in the nucleus (Charbord et al., 2013). REST-VP16, a competitive
antagonist of NRSF, can bind to the same DNA binding site as
NRSF does. However, it functions as an activator instead of a
repressor and can directly activate the gene transcription
suppressed by NRSF. This mechanism has been verified by
both in vitro and vivo studies (Su et al., 2004). In an HD
model, heat shock protein 90 (Hsp90) was reported necessary
to maintain the levels of NRSF and huntingtin proteins.
Inhibition or knockdown of Hsp90 reduced the levels of NRSF
and mutant huntingtin in the nucleus and rescued cells from
mHtt-induced cellular cytotoxicity, thus providing
neuroprotective activity (Orozco-Díaz et al., 2019). These
findings suggest that rescuing the aberrant expression of NRSF
is a promising approach for the related central nervous system
disorders. However, much work is still needed to further
investigate the underlying mechanisms as well as the
accompanying side effects of such drugs. As there are
hundreds of targets of NRSF, it may trigger distinct cellar
pathways in different neurological disorders to exert its
multiple roles.

CONCLUSION

NRSF acts as a master regulator in the pathophysiological
processes of the nervous system. A dynamic level of NRSF
under physiological conditions is required for proper
neurogenesis, while aberrant expression is associated with
many brain disorders, such as neurodegenerative diseases and
neural tumors. At present, the comprehensive pathogenic

mechanisms and promising therapeutic targets based on NRSF
remain elusive, though several NRSF-targeting compounds or
mimetics are being constructed and tested in various models.

Even though NRSFmay be a promising clinical biomarker and
treatment target of brain disorders in the future, some major
problems remain to be solved. First, though it is one of the most
important transcriptional regulators in nervous system
development and mediates common signaling pathways in
many brain diseases, the mechanism by which NRSF itself is
regulated remains unknown. Second, NRSF acts not only as an
inhibitor but also an activator, which means that it may trigger
distinct cellar pathways in different neurological disorders.
Hence, more evidence is required to confirm the
comprehensive regulatory mechanism of NRSF. In particular,
even though the interaction between NRSF and microRNAs in
the nervous system has been reported, the combination and
molecular mechanism remain unclear, which may be a novel
therapeutic target in the future.
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